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Exercise 7.1 (Counterexamples). For any of the following statements, find two probability measures
v € P(RY) with compact support such that the statement holds (you can choose also the dimension
d € N). Each of the statements should be treated independently.
(i) There is more than oneF_-I optimal transport map from g to v with respect to the linear cost
|z —yl.
(ii) There is more than one optimal transport map from p to v with respect to the quadratic cost

Tl —yl.

(iii) There is not an optimal transport plan between p and v with respect to the cost c¢(x,y) =
|z — y|J (the floor function?| of the distance).

(iv) There is an optimal transport map from p to v with respect to the linear cost, but there is none

with respect to the quadratic cost.

Hint: To solve show that the infimum of the Kantorovich problem for p = X[O,l]z’la V= X[m]ﬁl

is 0 but any transport plan has strictly positive cost.

Solution:

(i) Let d = 1 and p = (8o + 61), v := (61 + 02). Every transport map from p to v has the
same cost (cf. Remark 2.7.5), thus the two maps 71,75 : {0,1} — {1,2} given by

T:(0) =1, Ti(1) =2, T5(0) =2, Ty(1)=1,
both send i to v and are both optimal.

(i) Let d = 2 and let pi,p2,p3 C R? be the three vertices of an equilateral triangle. Let
f = 1(8p, + 6p,) and v 1= £ (Sp, + Gp1potry ). One can explicitly check that every transport

3
plan from p to v has the same quadratic cost. Thus the two maps from p to v (namely,

Ty(p1) = ps, Ti(p2) = PEEZFPS and Ty(py) = BER2FEE Ty (py) = ps3) are both optimal.

(iii) Let d =1 and p := dx|g 1}, v := dy|[1,9). We will show that the infimum of the Kantorovich

problem is 0, but any transport plan has strictly positive cost.

Given ¢ > 0, consider the map 7% : [0,1] — [1, 2] defined as

r+2—¢ if0<x<e,
Te(z) :=
r+1l—¢ ife<z<l.

!Uniqueness should be understood in the p-almost everywhere sense.
2Given t > 0, |t] is the largest integer n such that n < t.



One can check that (7¢)xp = v. Also, it holds

€ 1
/[0,1} oz, Te(w)) dpulw) = /0 |2 —¢]dx +/€ |1 —¢]dr=ce.

Since € can be chosen arbitrarily small, we have proven that the infimum of the Kantorovich

problem is 0.

Let us assume by contradiction that v € I'(u, v) achieves cost 0. Hence v must have all his

mass on the set

{(z,y) €eR*: c(z,y) =0} ={(z,y) € R*: |z —y| < 1}. (1)

However, since v € I'(u, ), by the marginal condition we get

1= /Rz(yfc)dv(way) = /R2 ly — zldy(z,y) <1,

a contradiction.

(iv) Let d = 1 and p := da|p 1) + 301, v = dyls 5 + 302. Since p is supported on {z < 2},
72 27
whereas v is supported on {z > 2}, Remark 2.7.5 implies that any admissible plan has the

same cost with respect to the linear cost, and this cost is given by

/azdu—/azd,u:7.
R R 4

In particular, any admissible map is optimal with respect to the linear cost (and it is clear
that there is at least one, take for instance T'(z) = z+5/2 for x € [0,1/2) and T'(1/2) = 2).

On the other hand, the optimal map with respect to the quadratic cost (if it exists) must be
nondecreasing. Let us assume by contradiction that there is an admissible transport map
T : R — R that is nondecreasing. Since it is an admissible map, it must hold 7'(1) = 2. The
monotonicity then implies that T'(x) < 2 for any < 1 and thus v = T is supported on

x < 2, that is a contradiction.

Exercise 7.2. Let p,v € P(R?) be two compactly supported probability measures invariant under
rotations (that is, u(L(E)) = p(F) and v(L(E)) = v(FE) for any Borel set E and any orthogonal
transformation L € O(d)). Assume that u < £% and let T be the unique optimal transport map
from p to v with respect to the quadratic cost (see Theorem 2.5.9). Show that T' can be written as

r— T(|x\)%, where 7 : [0, +00) — [0,+00) is a nondecreasing function.

Hint: The function 7 is the monotone transport map between two suitable 1-dimensional measures.

Also, one may want to use (and prove) the following lemma:

Lemma 1. Let 1%, u' € P(RY) be two rotationally invariant probability measures, and let ®(x) := |x|.
If ®upu = dyp' then p¥ = pl.



Solution:

Sketch of the proof of Lemma[l We need to show that, given any smooth function ¢ € CX(RY),

/sauo Z/wl-

Since o is rotationally symmetric, we know that [pq¢ (Lx)du®(z = Jpap(z (x)dul(x) for any
othonormal transformation L € O(d). In particular, we can take all Symmetrles L € O(d) and we
have
[ e@ant@ = oo [ [ eltodd@L = [ o)
Rd 0(d)] Jo(a) Jre Rd
where

I i
PUo) = 707 o P

is rotationally invariant. That is, ¢(z) = ¢(|z|) for some ¢ : [0,00) — R, and since ®yu’ = d4put

we have

/W —/ o(|z])dp (z /¢ 2)d®y 1 (z /cb x)d®yp' (z / o(|z])dp (z /

as we wanted to see. O
Let us now solve the exercise. Let ®(z) := |z|, and define the one-dimensional compactly

supported measures
fui=Pyp € P([0,+00)), U= ®yuv € P([0,400)).

From the identity ®ydx = wyrd=1dr| [0,+00) (use polar coordinates), where wy is the measure of the
unit sphere in R%, and the fact that u < £%, it follows that i < <I>#£d = wdrdfldr“oﬁoo) <L dr.
Hence, applying Theorem 2.5.9 from fi to ©, there exists a convex function % : [0, +00) — R such
that 7 := ¢’ is the optimal transport map from f to . Notice that ¢ is nondecreasing (¢’ > 0).
Let us show that 7 (x) := 7’(|{L‘D|37|
begin by noticing that 7 is the gradient of the function ¥(z) := ¢(|z|), T = V¥, and that ¥ is

convex (since 1 is convex and non-decreasing). By Corollary 2.5.10, 7 is an optimal transport

is the optimal transport map from p to v, so T =T. We

map. It remains only to prove Typ = v.

First, we prove that Ty pu is rotationally invariant and ®4Txp = ®4v. Given L € O(d),

LoT(@) = L(r(al) ;) = (|:z:])’aj T(|ny)|§i‘:ToLx,

Since p is rotationally invariant, we get

LyTppn = (Lo T)pps = (T o L)y = TyLpps = Ty,

and thus 7y is rotationally invariant. Also, from the identity ® o 7 = 7 o ®, we deduce that

OuTyup=(PoT)yp=(To®@)up="Tpji=0=dyuv.




Hence, applying the Lemma stated in the hint we conclude that Txu = v, as desired.

Exercise 7.3. Find the optimal transport map for the quadratic cost c¢(z,y) = %|x — y|? between
p=f-L?and v=g- L% in R?, where f(z) = 11p (z) and g(z) = &= (4 — |2[*)1p,(z).

T

Solution: Let us use Exercise We know that the optimal transport map will be of the form
T(x) = T(‘.’L’Dﬁ for some 7 nondecreasing. We need to choose 7 such that Ty p = v. It is enough

to check this condition on balls. Indeed, we need to find 7 such that for any r € (0, 1),

We have 1
w(By) =— | do=r?
T JB,
and, knowing that 7(r) < 2,
(Bro) =gz [, (4= b= 1/T(r)<41&2>tdt— L) — o (r ()
v T(r)—87r 5.0 T x—40 _27'7“ 167r .

That is, for all 7 € (0,1) solving 3(7(r))? — {5(7(r))* = r* for 7(r) positive we obtain 7(r) =

2y 1+ 1 —r2. That is,
x
T(:E) = 2\/ 1 + \V 1-— |x’2 HRB(OJ)

is the optimal transport map we are looking for.

Remark 7.1. We gave in class a counterexample for the following statement: let us fix a cost ¢ lower
semicontinuous and 7 € I'(u, v) such that suppy is c-cyclically monotone, then ~ is optimal.

The example is the following: let 4 = £ be the lebesgue measure on the one dimensional torus
T=R/Z,a e R\Q, ¢: T x T — R be defined as follows

1 if and only if y =z — a,
c(x,y) =<0  if and only if y = z,

oo otherwise ,

v = (Id,T)yp and T(x) = x —a. We proved in class that supp~y is c-cyclically monotone but v is not

optimal.

Exercise 7.4. (¢) In this exercise we want to go deeper in the understanding of the counterexample
in Remark [7.1]

(i) Find as many points as you can in the proof of the statement “supp~ is c-cyclically monotone,

then ~y is optimal for a continuous cost” where it could fail.



(ii) If we define for any n € N the cost

1 ifand only if y =z — «,
cn(z,y) =40 if and only if y = =,

n  otherwise.

Is it true that v is optimal for the cost ¢, (where v was defined above v = (Id,T)xpu)? Is it true

that supp~ is ¢,-cyclically monotone for the cost ¢,?

Solution:

(i)

(i)

One point is when we defined

o(x) = sup  {—c(z,yn) +clen,yn) —clzn,yn—1) + c(xn—1,yn—1) + - —c(z1,90)}
N2>1,(z4,y:)€S

we should verify that ¢(x) # —oo (which is direct if we use the quadratic cost, because ¢ is

a convex function which is finite in a point) otherwise the definition of
¢°(y) = sup{—c(y, z) — p(2)} = +o0
z
(or is not well defined, what is —oo + oo =7?) which compromises the proof of

c(r,y) +o(x) +¢°(y) =0 < y € dp(r)

used in the proof of “supp7y c-cyclically monotone implies v optimal”. Indeed if x is such
that o(r) = —oo then dp(x) = R?, but c(z,y) + ¢(x) + ¢°(y) is not well defined and in

particular cannot be equal to 0.

Remark 7.2. As an extra exercise you can verify that ¢ defined above for the cost function
¢ and the c-cyclically monotone set S = suppy defined in Remark we do not have the
following property: ¢(x) # —oo for any point & € T. This is one point where the proof for

a continuous cost function fails in the particular case of the example in Remark
For any n € N, v is not optimal because (KP)=0, but [, c(z, y)dy(z,y) = 1.
For any n € N the support of v is not ¢,-cyclically monotone.

Construct the same sequence as in class, but now the closing condition cost n instead of
~+o00, more precisely, let us fix n € N and we prove that supp~y is not ¢,-cyclically monotone:

let 1 € T, for any ¢ € N we iteratively define
Tigl = Yi = T; — Q.
It is clear that the sequence (z;,y;) € supp(y) for any ¢ and if we take the sequence
{zi}i=1,. nt+1 we have that
n+1 n+1

ntl = cl@,y) > Y c(Tip1,4) = (Tny2,Ynt1) = c(@1, Yny1) = (21, 71— (n+1)a) = n
i=1 i=1




where we imposed the closing condition x4 = 7.




