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Exercise 7.1 (Counterexamples). For any of the following statements, find two probability measures

µ, ν ∈ P(Rd) with compact support such that the statement holds (you can choose also the dimension

d ∈ N). Each of the statements should be treated independently.

(i) There is more than one1 optimal transport map from µ to ν with respect to the linear cost

|x− y|.

(ii) There is more than one optimal transport map from µ to ν with respect to the quadratic cost
1
2 |x− y|2.

(iii) There is not an optimal transport plan between µ and ν with respect to the cost c(x, y) =

⌊|x− y|⌋ (the floor function2 of the distance).

(iv) There is an optimal transport map from µ to ν with respect to the linear cost, but there is none

with respect to the quadratic cost.

Hint: To solve (iii), show that the infimum of the Kantorovich problem for µ = χ[0,1]L1, ν = χ[1,2]L1

is 0 but any transport plan has strictly positive cost.

Solution:

(i) Let d = 1 and µ := 1
2(δ0 + δ1), ν := 1

2(δ1 + δ2). Every transport map from µ to ν has the

same cost (cf. Remark 2.7.5), thus the two maps T1, T2 : {0, 1} → {1, 2} given by

T1(0) = 1, T1(1) = 2, T2(0) = 2, T2(1) = 1,

both send µ to ν and are both optimal.

(ii) Let d = 2 and let p1, p2, p3 ⊂ R2 be the three vertices of an equilateral triangle. Let

µ := 1
2(δp1 + δp2) and ν := 1

2(δp3 + δ p1+p2+p3
3

). One can explicitly check that every transport

plan from µ to ν has the same quadratic cost. Thus the two maps from µ to ν (namely,

T1(p1) = p3, T1(p2) =
p1+p2+p3

3 , and T2(p1) =
p1+p2+p3

3 , T2(p2) = p3) are both optimal.

(iii) Let d = 1 and µ := dx|[0,1], ν := dy|[1,2]. We will show that the infimum of the Kantorovich

problem is 0, but any transport plan has strictly positive cost.

Given ε > 0, consider the map Tε : [0, 1] → [1, 2] defined as

Tε(x) :=

{
x+ 2− ε if 0 ≤ x ≤ ε,

x+ 1− ε if ε < x ≤ 1.

1Uniqueness should be understood in the µ-almost everywhere sense.
2Given t ≥ 0, ⌊t⌋ is the largest integer n such that n ≤ t.
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One can check that (Tε)#µ = ν. Also, it holds∫
[0,1]

c(x, Tε(x)) dµ(x) =

∫ ε

0
⌊2− ε⌋ dx+

∫ 1

ε
⌊1− ε⌋ dx = ε.

Since ε can be chosen arbitrarily small, we have proven that the infimum of the Kantorovich

problem is 0.

Let us assume by contradiction that γ ∈ Γ(µ, ν) achieves cost 0. Hence γ must have all his

mass on the set

{(x, y) ∈ R2 : c(x, y) = 0} = {(x, y) ∈ R2 : |x− y| < 1}. (1)

However, since γ ∈ Γ(µ, ν), by the marginal condition we get

1 =

∫
R2

(y − x)dγ(x, y) =

∫
R2

|y − x|dγ(x, y) < 1,

a contradiction.

(iv) Let d = 1 and µ := dx|[0, 1
2
] +

1
2δ1, ν := dy|[ 5

2
,3] +

1
2δ2. Since µ is supported on {x ≤ 2},

whereas ν is supported on {x ≥ 2}, Remark 2.7.5 implies that any admissible plan has the

same cost with respect to the linear cost, and this cost is given by∫
R
x dν −

∫
R
x dµ =

7

4
.

In particular, any admissible map is optimal with respect to the linear cost (and it is clear

that there is at least one, take for instance T (x) = x+5/2 for x ∈ [0, 1/2) and T (1/2) = 2).

On the other hand, the optimal map with respect to the quadratic cost (if it exists) must be

nondecreasing. Let us assume by contradiction that there is an admissible transport map

T : R → R that is nondecreasing. Since it is an admissible map, it must hold T (1) = 2. The

monotonicity then implies that T (x) ≤ 2 for any x ≤ 1 and thus ν = T#µ is supported on

x ≤ 2, that is a contradiction.

Exercise 7.2. Let µ, ν ∈ P(Rd) be two compactly supported probability measures invariant under

rotations (that is, µ(L(E)) = µ(E) and ν(L(E)) = ν(E) for any Borel set E and any orthogonal

transformation L ∈ O(d)). Assume that µ ≪ Ld, and let T be the unique optimal transport map

from µ to ν with respect to the quadratic cost (see Theorem 2.5.9). Show that T can be written as

x→ τ(|x|) x
|x| , where τ : [0,+∞) → [0,+∞) is a nondecreasing function.

Hint: The function τ is the monotone transport map between two suitable 1-dimensional measures.

Also, one may want to use (and prove) the following lemma:

Lemma 1. Let µ0, µ1 ∈ P(Rd) be two rotationally invariant probability measures, and let Φ(x) := |x|.
If Φ#µ

0 = Φ#µ
1 then µ0 = µ1.
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Solution:

Sketch of the proof of Lemma 1. We need to show that, given any smooth function φ ∈ C∞
c (Rd),∫

φµ0 =

∫
φµ1.

Since µ0 is rotationally symmetric, we know that
∫
Rd φ(Lx)dµ

0(x) =
∫
Rd φ(x)dµ

0(x) for any

othonormal transformation L ∈ O(d). In particular, we can take all symmetries L ∈ O(d) and we

have ∫
Rd

φ(x)dµ0(x) =
1

|O(d)|

∫
O(d)

∫
Rd

φ(Lx)dµ0(x)dL =

∫
Rd

φ̄(x)dµ0(x)

where

φ̄(x) =
1

|O(d)|

∫
O(d)

φ(Lx)dL

is rotationally invariant. That is, φ̄(x) = ϕ(|x|) for some ϕ : [0,∞) → R, and since Φ#µ
0 = Φ#µ

1

we have∫
φµ0 =

∫
Rd

ϕ(|x|)dµ0(x) =
∫
R
ϕ(x)dΦ#µ

0(x) =

∫
R
ϕ(x)dΦ#µ

1(x) =

∫
Rd

ϕ(|x|)dµ0(x) =
∫
φµ1

as we wanted to see.

Let us now solve the exercise. Let Φ(x) := |x|, and define the one-dimensional compactly

supported measures

µ̃ := Φ#µ ∈ P([0,+∞)), ν̃ := Φ#ν ∈ P([0,+∞)).

From the identity Φ#dx = ωdr
d−1dr|[0,+∞) (use polar coordinates), where ωd is the measure of the

unit sphere in Rd, and the fact that µ ≪ Ld, it follows that µ̃ ≪ Φ#Ld = ωdr
d−1dr|[0,+∞) ≪ dr.

Hence, applying Theorem 2.5.9 from µ̃ to ν̃, there exists a convex function ψ : [0,+∞) → R such

that τ := ψ′ is the optimal transport map from µ̃ to ν̃. Notice that ψ is nondecreasing (ψ′ ≥ 0).

Let us show that T (x) := τ(|x|) x
|x| is the optimal transport map from µ to ν, so T = T . We

begin by noticing that T is the gradient of the function Ψ(x) := ψ(|x|), T = ∇Ψ, and that Ψ is

convex (since ψ is convex and non-decreasing). By Corollary 2.5.10, T is an optimal transport

map. It remains only to prove T#µ = ν.

First, we prove that T#µ is rotationally invariant and Φ#T#µ = Φ#ν. Given L ∈ O(d),

L ◦ T (x) = L
(
τ(|x|) x

|x|

)
= τ(|x|)Lx

|x|
= τ(|Lx|) Lx

|Lx|
= T ◦ Lx.

Since µ is rotationally invariant, we get

L#T#µ = (L ◦ T )#µ = (T ◦ L)#µ = T#L#µ = T#µ,

and thus T#µ is rotationally invariant. Also, from the identity Φ ◦ T = τ ◦ Φ, we deduce that

Φ#T#µ = (Φ ◦ T )#µ = (τ ◦ Φ)#µ = τ#µ̃ = ν̃ = Φ#ν.
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Hence, applying the Lemma stated in the hint we conclude that T#µ = ν, as desired.

Exercise 7.3. Find the optimal transport map for the quadratic cost c(x, y) = 1
2 |x − y|2 between

µ = f · L2 and ν = g · L2 in R2, where f(x) = 1
π1B1(x) and g(x) =

1
8π (4− |x|2)1B2(x).

Solution: Let us use Exercise 7.2. We know that the optimal transport map will be of the form

T (x) = τ(|x|) x
|x| for some τ nondecreasing. We need to choose τ such that T#µ = ν. It is enough

to check this condition on balls. Indeed, we need to find τ such that for any r ∈ (0, 1),

µ(Br) = ν(T (Br)) = ν(Bτ(r)).

We have

µ(Br) =
1

π

∫
Br

dx = r2

and, knowing that τ(r) < 2,

ν(Bτ(r)) =
1

8π

∫
Bτ(r)

(4− |x|2)dx =
1

4

∫ τ(r)

0
(4− t2)tdt =

1

2
(τ(r))2 − 1

16
(τ(r))4.

That is, for all r ∈ (0, 1) solving 1
2(τ(r))

2 − 1
16(τ(r))

4 = r2 for τ(r) positive we obtain τ(r) =

2
√

1 +
√
1− r2. That is,

T (x) = 2

√
1 +

√
1− |x|2 x

|x|
1B(0,1)

is the optimal transport map we are looking for.

Remark 7.1. We gave in class a counterexample for the following statement: let us fix a cost c lower

semicontinuous and γ ∈ Γ(µ, ν) such that suppγ is c-cyclically monotone, then γ is optimal.

The example is the following: let µ = L be the lebesgue measure on the one dimensional torus

T = R/Z, α ∈ R \Q, c : T× T → R be defined as follows

c(x, y) =


1 if and only if y = x− α,

0 if and only if y = x,

∞ otherwise ,

γ = (Id, T )#µ and T (x) = x−α. We proved in class that suppγ is c-cyclically monotone but γ is not

optimal.

Exercise 7.4. (,) In this exercise we want to go deeper in the understanding of the counterexample

in Remark 7.1.

(i) Find as many points as you can in the proof of the statement “suppγ is c-cyclically monotone,

then γ is optimal for a continuous cost” where it could fail.
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(ii) If we define for any n ∈ N the cost

cn(x, y) =


1 if and only if y = x− α,

0 if and only if y = x,

n otherwise.

Is it true that γ is optimal for the cost cn (where γ was defined above γ = (Id, T )#µ)? Is it true

that suppγ is cn-cyclically monotone for the cost cn?

Solution:

(i) One point is when we defined

φ(x) = sup
N≥1,(xi,yi)∈S

{−c(x, yN ) + c(xN , yN )− c(xN , yN−1) + c(xN−1, yN−1) + · · · − c(x1, y0)}

we should verify that φ(x) ̸≡ −∞ (which is direct if we use the quadratic cost, because φ is

a convex function which is finite in a point) otherwise the definition of

φc(y) = sup
z
{−c(y, z)− φ(z)} ≡ +∞

(or is not well defined, what is −∞+∞ =?) which compromises the proof of

c(x, y) + φ(x) + φc(y) = 0 ⇐ y ∈ ∂cφ(x)

used in the proof of “suppγ c-cyclically monotone implies γ optimal”. Indeed if x is such

that φ(x) = −∞ then ∂φ(x) = Rd, but c(x, y) + φ(x) + φc(y) is not well defined and in

particular cannot be equal to 0.

Remark 7.2. As an extra exercise you can verify that φ defined above for the cost function

c and the c-cyclically monotone set S = suppγ defined in Remark 7.1 we do not have the

following property: φ(x) ̸= −∞ for any point x ∈ T. This is one point where the proof for

a continuous cost function fails in the particular case of the example in Remark 7.1.

(ii) For any n ∈ N, γ is not optimal because (KP)=0, but
∫
T2 c(x, y)dγ(x, y) = 1.

For any n ∈ N the support of γ is not cn-cyclically monotone.

Construct the same sequence as in class, but now the closing condition cost n instead of

+∞, more precisely, let us fix n ∈ N and we prove that suppγ is not cn-cyclically monotone:

let x1 ∈ T, for any i ∈ N we iteratively define

xi+1 = yi = xi − α.

It is clear that the sequence (xi, yi) ∈ supp(γ) for any i and if we take the sequence

{xi}i=1,..,n+1 we have that

n+1 =
n+1∑
i=1

c(xi, yi) >
n+1∑
i=1

c(xi+1, yi) = c(xn+2, yn+1) = c(x1, yn+1) = c(x1, x1−(n+1)α) = n
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where we imposed the closing condition xn+2 = x1.
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