

Serie 7

Optimal transport, Fall semester

EPFL, Mathematics section, Dr. Xavier Fernández-Real

Exercise 7.1 (Counterexamples). For any of the following statements, find two probability measures $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ with compact support such that the statement holds (you can choose also the dimension $d \in \mathbb{N}$). Each of the statements should be treated independently.

- (i) There is more than one¹ optimal transport map from μ to ν with respect to the linear cost $|x - y|$.
- (ii) There is more than one optimal transport map from μ to ν with respect to the quadratic cost $\frac{1}{2}|x - y|^2$.
- (iii) There is not an optimal transport plan between μ and ν with respect to the cost $c(x, y) = \lfloor |x - y| \rfloor$ (the floor function² of the distance).
- (iv) There is an optimal transport map from μ to ν with respect to the linear cost, but there is none with respect to the quadratic cost.

Hint: To solve (iii), show that the infimum of the Kantorovich problem for $\mu = \chi_{[0,1]}\mathcal{L}^1$, $\nu = \chi_{[1,2]}\mathcal{L}^1$ is 0 but any transport plan has *strictly* positive cost.

Solution:

(i) Let $d = 1$ and $\mu := \frac{1}{2}(\delta_0 + \delta_1)$, $\nu := \frac{1}{2}(\delta_1 + \delta_2)$. Every transport map from μ to ν has the same cost (cf. Remark 2.7.5), thus the two maps $T_1, T_2 : \{0, 1\} \rightarrow \{1, 2\}$ given by

$$T_1(0) = 1, \quad T_1(1) = 2, \quad T_2(0) = 2, \quad T_2(1) = 1,$$

both send μ to ν and are both optimal.

(ii) Let $d = 2$ and let $p_1, p_2, p_3 \subset \mathbb{R}^2$ be the three vertices of an equilateral triangle. Let $\mu := \frac{1}{2}(\delta_{p_1} + \delta_{p_2})$ and $\nu := \frac{1}{2}(\delta_{p_3} + \delta_{\frac{p_1+p_2+p_3}{3}})$. One can explicitly check that every transport plan from μ to ν has the same quadratic cost. Thus the two maps from μ to ν (namely, $T_1(p_1) = p_3$, $T_1(p_2) = \frac{p_1+p_2+p_3}{3}$, and $T_2(p_1) = \frac{p_1+p_2+p_3}{3}$, $T_2(p_2) = p_3$) are both optimal.

(iii) Let $d = 1$ and $\mu := dx|_{[0,1]}$, $\nu := dy|_{[1,2]}$. We will show that the infimum of the Kantorovich problem is 0, but any transport plan has *strictly* positive cost.

Given $\varepsilon > 0$, consider the map $T_\varepsilon : [0, 1] \rightarrow [1, 2]$ defined as

$$T_\varepsilon(x) := \begin{cases} x + 2 - \varepsilon & \text{if } 0 \leq x \leq \varepsilon, \\ x + 1 - \varepsilon & \text{if } \varepsilon < x \leq 1. \end{cases}$$

¹Uniqueness should be understood in the μ -almost everywhere sense.

²Given $t \geq 0$, $\lfloor t \rfloor$ is the largest integer n such that $n \leq t$.

One can check that $(T_\varepsilon)_\# \mu = \nu$. Also, it holds

$$\int_{[0,1]} c(x, T_\varepsilon(x)) d\mu(x) = \int_0^\varepsilon \lfloor 2 - \varepsilon \rfloor dx + \int_\varepsilon^1 \lfloor 1 - \varepsilon \rfloor dx = \varepsilon.$$

Since ε can be chosen arbitrarily small, we have proven that the infimum of the Kantorovich problem is 0.

Let us assume by contradiction that $\gamma \in \Gamma(\mu, \nu)$ achieves cost 0. Hence γ must have all his mass on the set

$$\{(x, y) \in \mathbb{R}^2 : c(x, y) = 0\} = \{(x, y) \in \mathbb{R}^2 : |x - y| < 1\}. \quad (1)$$

However, since $\gamma \in \Gamma(\mu, \nu)$, by the marginal condition we get

$$1 = \int_{\mathbb{R}^2} (y - x) d\gamma(x, y) = \int_{\mathbb{R}^2} |y - x| d\gamma(x, y) < 1,$$

a contradiction.

(iv) Let $d = 1$ and $\mu := dx|_{[0, \frac{1}{2}]} + \frac{1}{2}\delta_1$, $\nu := dy|_{[\frac{5}{2}, 3]} + \frac{1}{2}\delta_2$. Since μ is supported on $\{x \leq 2\}$, whereas ν is supported on $\{x \geq 2\}$, Remark 2.7.5 implies that any admissible plan has the same cost with respect to the linear cost, and this cost is given by

$$\int_{\mathbb{R}} x d\nu - \int_{\mathbb{R}} x d\mu = \frac{7}{4}.$$

In particular, any admissible map is optimal with respect to the linear cost (and it is clear that there is at least one, take for instance $T(x) = x + 5/2$ for $x \in [0, 1/2]$ and $T(1/2) = 2$).

On the other hand, the optimal map with respect to the quadratic cost (if it exists) must be nondecreasing. Let us assume by contradiction that there is an admissible transport map $T : \mathbb{R} \rightarrow \mathbb{R}$ that is nondecreasing. Since it is an admissible map, it must hold $T(1) = 2$. The monotonicity then implies that $T(x) \leq 2$ for any $x \leq 1$ and thus $\nu = T_\# \mu$ is supported on $x \leq 2$, that is a contradiction.

Exercise 7.2. Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ be two compactly supported probability measures invariant under rotations (that is, $\mu(L(E)) = \mu(E)$ and $\nu(L(E)) = \nu(E)$ for any Borel set E and any orthogonal transformation $L \in O(d)$). Assume that $\mu \ll \mathcal{L}^d$, and let T be the unique optimal transport map from μ to ν with respect to the quadratic cost (see Theorem 2.5.9). Show that T can be written as $x \rightarrow \tau(|x|) \frac{x}{|x|}$, where $\tau : [0, +\infty) \rightarrow [0, +\infty)$ is a nondecreasing function.

Hint: The function τ is the monotone transport map between two suitable 1-dimensional measures. Also, one may want to use (and prove) the following lemma:

Lemma 1. Let $\mu^0, \mu^1 \in \mathcal{P}(\mathbb{R}^d)$ be two rotationally invariant probability measures, and let $\Phi(x) := |x|$. If $\Phi_\# \mu^0 = \Phi_\# \mu^1$ then $\mu^0 = \mu^1$.

Solution:

Sketch of the proof of Lemma 1. We need to show that, given any smooth function $\varphi \in C_c^\infty(\mathbb{R}^d)$,

$$\int \varphi \mu^0 = \int \varphi \mu^1.$$

Since μ_0 is rotationally symmetric, we know that $\int_{\mathbb{R}^d} \varphi(Lx) d\mu^0(x) = \int_{\mathbb{R}^d} \varphi(x) d\mu^0(x)$ for any orthonormal transformation $L \in O(d)$. In particular, we can take all symmetries $L \in O(d)$ and we have

$$\int_{\mathbb{R}^d} \varphi(x) d\mu^0(x) = \frac{1}{|O(d)|} \int_{O(d)} \int_{\mathbb{R}^d} \varphi(Lx) d\mu^0(x) dL = \int_{\mathbb{R}^d} \bar{\varphi}(x) d\mu^0(x)$$

where

$$\bar{\varphi}(x) = \frac{1}{|O(d)|} \int_{O(d)} \varphi(Lx) dL$$

is rotationally invariant. That is, $\bar{\varphi}(x) = \phi(|x|)$ for some $\phi : [0, \infty) \rightarrow \mathbb{R}$, and since $\Phi_\# \mu^0 = \Phi_\# \mu^1$ we have

$$\int \varphi \mu^0 = \int_{\mathbb{R}^d} \phi(|x|) d\mu^0(x) = \int_{\mathbb{R}} \phi(x) d\Phi_\# \mu^0(x) = \int_{\mathbb{R}} \phi(x) d\Phi_\# \mu^1(x) = \int_{\mathbb{R}^d} \phi(|x|) d\mu^1(x) = \int \varphi \mu^1$$

as we wanted to see. \square

Let us now solve the exercise. Let $\Phi(x) := |x|$, and define the one-dimensional compactly supported measures

$$\tilde{\mu} := \Phi_\# \mu \in \mathcal{P}([0, +\infty)), \quad \tilde{\nu} := \Phi_\# \nu \in \mathcal{P}([0, +\infty)).$$

From the identity $\Phi_\# dx = \omega_d r^{d-1} dr|_{[0, +\infty)}$ (use polar coordinates), where ω_d is the measure of the unit sphere in \mathbb{R}^d , and the fact that $\mu \ll \mathcal{L}^d$, it follows that $\tilde{\mu} \ll \Phi_\# \mathcal{L}^d = \omega_d r^{d-1} dr|_{[0, +\infty)} \ll dr$. Hence, applying Theorem 2.5.9 from $\tilde{\mu}$ to $\tilde{\nu}$, there exists a convex function $\psi : [0, +\infty) \rightarrow \mathbb{R}$ such that $\tau := \psi'$ is the optimal transport map from $\tilde{\mu}$ to $\tilde{\nu}$. Notice that ψ is nondecreasing ($\psi' \geq 0$).

Let us show that $\mathcal{T}(x) := \tau(|x|) \frac{x}{|x|}$ is the optimal transport map from μ to ν , so $\mathcal{T} = T$. We begin by noticing that \mathcal{T} is the gradient of the function $\Psi(x) := \psi(|x|)$, $\mathcal{T} = \nabla \Psi$, and that Ψ is convex (since ψ is convex and non-decreasing). By Corollary 2.5.10, \mathcal{T} is an optimal transport map. It remains only to prove $\mathcal{T}_\# \mu = \nu$.

First, we prove that $\mathcal{T}_\# \mu$ is rotationally invariant and $\Phi_\# \mathcal{T}_\# \mu = \Phi_\# \nu$. Given $L \in O(d)$,

$$L \circ \mathcal{T}(x) = L\left(\tau(|x|) \frac{x}{|x|}\right) = \tau(|x|) \frac{Lx}{|x|} = \tau(|Lx|) \frac{Lx}{|Lx|} = \mathcal{T} \circ Lx.$$

Since μ is rotationally invariant, we get

$$L_\# \mathcal{T}_\# \mu = (L \circ \mathcal{T})_\# \mu = (\mathcal{T} \circ L)_\# \mu = \mathcal{T}_\# L_\# \mu = \mathcal{T}_\# \mu,$$

and thus $\mathcal{T}_\# \mu$ is rotationally invariant. Also, from the identity $\Phi \circ \mathcal{T} = \tau \circ \Phi$, we deduce that

$$\Phi_\# \mathcal{T}_\# \mu = (\Phi \circ \mathcal{T})_\# \mu = (\tau \circ \Phi)_\# \mu = \tau_\# \tilde{\mu} = \tilde{\nu} = \Phi_\# \nu.$$

Hence, applying the Lemma stated in the hint we conclude that $T_{\#}\mu = \nu$, as desired.

Exercise 7.3. Find the optimal transport map for the quadratic cost $c(x, y) = \frac{1}{2}|x - y|^2$ between $\mu = f \cdot \mathcal{L}^2$ and $\nu = g \cdot \mathcal{L}^2$ in \mathbb{R}^2 , where $f(x) = \frac{1}{\pi} \mathbb{1}_{B_1}(x)$ and $g(x) = \frac{1}{8\pi}(4 - |x|^2) \mathbb{1}_{B_2}(x)$.

Solution: Let us use Exercise 7.2. We know that the optimal transport map will be of the form $T(x) = \tau(|x|) \frac{x}{|x|}$ for some τ nondecreasing. We need to choose τ such that $T_{\#}\mu = \nu$. It is enough to check this condition on balls. Indeed, we need to find τ such that for any $r \in (0, 1)$,

$$\mu(B_r) = \nu(T(B_r)) = \nu(B_{\tau(r)}).$$

We have

$$\mu(B_r) = \frac{1}{\pi} \int_{B_r} dx = r^2$$

and, knowing that $\tau(r) < 2$,

$$\nu(B_{\tau(r)}) = \frac{1}{8\pi} \int_{B_{\tau(r)}} (4 - |x|^2) dx = \frac{1}{4} \int_0^{\tau(r)} (4 - t^2) t dt = \frac{1}{2}(\tau(r))^2 - \frac{1}{16}(\tau(r))^4.$$

That is, for all $r \in (0, 1)$ solving $\frac{1}{2}(\tau(r))^2 - \frac{1}{16}(\tau(r))^4 = r^2$ for $\tau(r)$ positive we obtain $\tau(r) = 2\sqrt{1 + \sqrt{1 - r^2}}$. That is,

$$T(x) = 2\sqrt{1 + \sqrt{1 - |x|^2}} \frac{x}{|x|} \mathbb{1}_{B(0,1)}$$

is the optimal transport map we are looking for.

Remark 7.1. We gave in class a counterexample for the following statement: let us fix a cost c lower semicontinuous and $\gamma \in \Gamma(\mu, \nu)$ such that $\text{supp}\gamma$ is c -cyclically monotone, then γ is optimal.

The example is the following: let $\mu = \mathcal{L}$ be the lebesgue measure on the one dimensional torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, $c : \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ be defined as follows

$$c(x, y) = \begin{cases} 1 & \text{if and only if } y = x - \alpha, \\ 0 & \text{if and only if } y = x, \\ \infty & \text{otherwise,} \end{cases}$$

$\gamma = (Id, T)_{\#}\mu$ and $T(x) = x - \alpha$. We proved in class that $\text{supp}\gamma$ is c -cyclically monotone but γ is not optimal.

Exercise 7.4. (✿) In this exercise we want to go deeper in the understanding of the counterexample in Remark 7.1.

- (i) Find as many points as you can in the proof of the statement “ $\text{supp}\gamma$ is c -cyclically monotone, then γ is optimal for a continuous cost” where it could fail.

(ii) If we define for any $n \in \mathbb{N}$ the cost

$$c_n(x, y) = \begin{cases} 1 & \text{if and only if } y = x - \alpha, \\ 0 & \text{if and only if } y = x, \\ n & \text{otherwise.} \end{cases}$$

Is it true that γ is optimal for the cost c_n (where γ was defined above $\gamma = (Id, T)_{\#}\mu$)? Is it true that $\text{supp}\gamma$ is c_n -cyclically monotone for the cost c_n ?

Solution:

(i) One point is when we defined

$$\varphi(x) = \sup_{N \geq 1, (x_i, y_i) \in S} \{-c(x, y_N) + c(x_N, y_N) - c(x_N, y_{N-1}) + c(x_{N-1}, y_{N-1}) + \cdots - c(x_1, y_0)\}$$

we should verify that $\varphi(x) \not\equiv -\infty$ (which is direct if we use the quadratic cost, because φ is a convex function which is finite in a point) otherwise the definition of

$$\varphi^c(y) = \sup_z \{-c(y, z) - \varphi(z)\} \equiv +\infty$$

(or is not well defined, what is $-\infty + \infty = ?$) which compromises the proof of

$$c(x, y) + \varphi(x) + \varphi^c(y) = 0 \iff y \in \partial_c \varphi(x)$$

used in the proof of “ $\text{supp}\gamma$ c-cyclically monotone implies γ optimal”. Indeed if x is such that $\varphi(x) = -\infty$ then $\partial\varphi(x) = \mathbb{R}^d$, but $c(x, y) + \varphi(x) + \varphi^c(y)$ is not well defined and in particular cannot be equal to 0.

Remark 7.2. As an extra exercise you can verify that φ defined above for the cost function c and the c-cyclically monotone set $S = \text{supp}\gamma$ defined in Remark 7.1 we do not have the following property: $\varphi(x) \neq -\infty$ for any point $x \in \mathbb{T}$. This is one point where the proof for a continuous cost function fails in the particular case of the example in Remark 7.1.

(ii) For any $n \in \mathbb{N}$, γ is not optimal because $(KP)=0$, but $\int_{\mathbb{T}^2} c(x, y) d\gamma(x, y) = 1$.

For any $n \in \mathbb{N}$ the support of γ is not c_n -cyclically monotone.

Construct the same sequence as in class, but now the closing condition cost n instead of $+\infty$, more precisely, let us fix $n \in \mathbb{N}$ and we prove that $\text{supp}\gamma$ is not c_n -cyclically monotone: let $x_1 \in \mathbb{T}$, for any $i \in \mathbb{N}$ we iteratively define

$$x_{i+1} = y_i = x_i - \alpha.$$

It is clear that the sequence $(x_i, y_i) \in \text{supp}(\gamma)$ for any i and if we take the sequence $\{x_i\}_{i=1, \dots, n+1}$ we have that

$$n+1 = \sum_{i=1}^{n+1} c(x_i, y_i) > \sum_{i=1}^{n+1} c(x_{i+1}, y_i) = c(x_{n+2}, y_{n+1}) = c(x_1, y_{n+1}) = c(x_1, x_1 - (n+1)\alpha) = n$$

where we imposed the closing condition $x_{n+2} = x_1$.