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Exercise 6.1 (Translations are optimal). Let T : Rd → Rd be the translation map T (x) := x + x0,

where x0 ∈ Rd. For any probability measure µ ∈ P(Rd), show that T is an optimal transport map

from µ to T#µ with respect to the quadratic cost.

Solution: We provide two solutions.

(i) We just need to show that T is the gradient of a convex function (see Corollary 2.5.10). Let

φ : Rd → R be the convex function φ(x) := 1
2 |x+ x0|2. Since T = ∇φ, the optimality of T

follows.

(ii) By the general case of Kantorovich duality (Theorem 2.6.6) we know that for any ϕ and ψ

continuous and bounded such that ϕ(x) + ψ(y) ≤ c(x, y), we have∫
X
ϕdµ+

∫
Y
ψdν ≤ min

γ∈Γ(µ,ν)

∫
X×Y

c(x, y)dγ(x, y)

where X and Y need not be compact and ν = T#µ.

Consider ϕ(x) = −⟨x, x0⟩ and ψ(y) = ⟨y − x0, x0⟩+ 1
2 ||x0||

2. Then

ϕ(x) + ψ(y) = −⟨x, x0⟩+ ⟨y − x0, x0⟩+
1

2
∥x0∥2 = ⟨y − x, x0⟩ −

1

2
∥x0∥2

≤ ∥y − x∥∥x0∥ −
1

2
∥x0∥2 ≤

1

2
∥y − x∥2 = c(x, y).

Hence, recalling ν = T#µ with T (x) = x+ x0

min
γ∈Γ(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) ≥
∫
Rn

−⟨x, x0⟩dµ(x) +
∫
Rn

(
⟨y − x0, x0⟩+

1

2
∥x0∥2

)
dν(y)

= −
∫
Rn

⟨x, x0⟩dµ(x) +
∫
Rn

(
⟨x, x0⟩+

1

2
∥x0∥2

)
dµ(x)

=

∫
Rn

1

2
∥x0∥2dµ(x) =

∫
Rn

c(x, T (x))dµ(x)

which means that T is optimal.

Exercise 6.2 (Homoteties are optimal). Let T : Rd → Rd be the homotety map T (x) := λx, where

λ > 0. For any compactly supported probability measure µ ∈ P(Rd), show that T is an optimal

transport map from µ to T#µ with respect to the quadratic cost.
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Solution: We provide two solutions.

(i) It is sufficient to show that the homothety T is the gradient of a convex function (see

Corollary 2.5.10). Let φ : Rd → R be the convex function φ(x) := λ
2 |x|

2. Since T = ∇φ, the
optimality of T follows.

(ii) We consider the potential ϕ(x) = 1
2(1 − λ)∥x∥2 together with its c-transform ϕc. Since µ

is compactly supported, we can work on a compact domain Ω = max(1, λ)spt(µ) ⊂ Rn, so

that ϕ is bounded in Ω. We compute

ϕc(y) = inf
x∈Rn

c(x, y)−ϕ(x) = inf
x∈Rn

1

2
∥x− y∥2−1

2
(1−λ)∥x∥2 ≥ inf

x∈Rn

1

2
(∥x∥−∥y∥)2−1

2
(1−λ)∥x∥2

The previous is a quadratic expression and the infimum is achieved when ∥x∥ = 1
λ∥y∥. In

particular, we find

ϕc(y) = −(1− λ)

2λ
∥y∥2.

The definition of c-transform implies ϕ(x) + ϕc(y) ≤ c(x, y). Thus, if we denote ν = T#µ

with T (x) = λx,

min
γ∈Γ(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) ≥
∫
Ω
ϕ(x)dµ(x) +

∫
Ω
ϕc(x)dν(x)

=

∫
Ω

1

2
(1− λ)∥x∥2dµ(x)−

∫
Ω

λ(1− λ)

2
∥x∥2dµ(x)

=

∫
Ω

(1− λ)2

2
∥x∥2dµ(x) =

∫
Rn

c(x, T (x))dµ(x),

which means that T is optimal.

Exercise 6.3. Let S : Rd → Rd be the function S(x) := −x. Characterize the probability measures

µ ∈ P(Rd) with compact support such that S is an optimal transport map between µ and S#µ with

respect to the quadratic cost.

Solution: Assume that S is optimal from µ to S#µ, and let γ := (id × S)#µ be the associated

coupling. Since γ is optimal, Corollary 2.5.7 implies the existence of a cyclically monotone set

A ⊂ Rd×Rd such that γ is supported on A. Since γ is also supported on graph(S), we can assume

without loss of generality that A ⊂ graph(S).

Take two points x, y ∈ Rd such that (x, S(x)), (y, S(y)) ∈ A. By cyclical monotonicity, it holds

1

2
|x− S(x)|2 + 1

2
|y − S(y)|2 ≤ 1

2
|x− S(y)|2 + 1

2
|y − S(x)|2.

Developing the squares and rearranging terms, this is equivalent |x− y|2 ≤ 0, thus x = y. Hence,

this implies that A contains only one point (x0, S(x0)), and therefore µ = δx0 .

On the other hand, if µ is δx0 for some x0 ∈ Rd, then S is optimal from µ to S#µ = δS(x0)

(since there is only one transport map).
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Exercise 6.4. Let B1 be the unit ball in R2. Write it as B+
1 ∪B−

1 , where B
+
1 = B1 ∩ {(x, y) : x ≥ 0}

and B−
1 = B1 ∩ {(x, y) : x < 0}. Find a convex function φ : B1 → R such that ∇φ is the optimal

transport between 1B1L
2 and

(
1(−1,0)+B−

1
+ 1(1,0)+B+

1

)
L 2 with the quadratic cost.

� Observation: Recall that 1A denotes the indicator function of a set A ⊂ R2.

� (,) Optional question (not required for the hand-in serie): For every small ϵ > 0, define

the strip

Sϵ := [−1, 1]× [−ϵ, ϵ] ⊂ R2.

Let µ = 1B1L
2, and consider the measures

νϵ :=
1

1 + 4ϵ

(
1(−1,0)+B−

1
+ 1(1,0)+B+

1

)
L 2 +

1

1 + 4ϵ
1SϵL

2.

Let Tϵ : R2 → R2 be the optimal transport map from µ to νϵ with respect to the quadratic cost.

Prove that for ϵ sufficiently small, Tϵ is discontinuous in the interior of B1.

Solution:

We may conjecture that the optimal transport moves each point horizontally by +1 or -1

depending on which side of B1 they are. Namely, we claim that the optimal transport map

T = ∇φ is given by ∇φ(x, y) = (signx + x, y). Observe that this map is transporting the right

measures, since

(∇φ(x, y))#1B1L
2 = ((x, y) → (1 + x, y))#1B+

1
L 2 + ((x, y) → (−1 + x, y))#1B−

1
L 2

=
(
1(−1,0)+B−

1
+ 1(1,0)+B+

1

)
L 2.

From here, we observe that the corresponding φ then could be given by (integrating in x and

y the expression of ∇φ)
φ(x, y) = |x|+ 1

2
(x2 + y2)

which is a convex function.

By Theorem 2.5.9 and Corollary 2.5.10, every gradient of a convex function is the unique

optimal map between its own marginals in the setting of this problem, so φ is the unique optimal

transport map that we are looking for.
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