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Given a function f : Rd → R ∪ {−∞,∞} we define the convex conjugate f∗ as

f∗(y) = sup
x∈Rd

(x · y − f(x)).

When f : Rd → R ∪ {+∞} is convex, f∗ is also known as Legendre transform of f . Notice that, at

least informally, if we assume that f is differentiable and that the supremum in the right-hand side is

realized at a point x̄, then y = ∇f(x̄).

Exercise 4.1. Given two functions f, g : Rd → R ∪ {+∞} such that f, g ̸≡ +∞. Show the following:

(i) f∗ and g∗ are convex functions.

(ii) If f ≤ g, then g∗ ≤ f∗.

Solution:

(i) Let us prove that f∗ is convex. Define Xf := {x ∈ Rd | f(x) < +∞}. Notice that if x ∈ Xf

and x′ ∈ Rd \Xf , then for any y ∈ Rd we have

x′ · y − f(x′) < x · y − f(x),

and therefore, in the definition of f∗ we can take the supremum in Xf instead of Rd:

f∗(y) = sup
x∈Xf

(x · y − f(x)).

Hence f∗ is the (pointwise) supremum of a family of affine functions, since scalar products

are linear, which implies that it is convex.

(ii) Let y ∈ Rd. Then, since f ≤ g, we immediately have that x · y − f(x) ≥ x · y − g(x) for all

x ∈ Rd, and hence

sup
x∈Rd

(x · y − f(x)) ≥ sup
x∈Rd

(x · y − g(x)).

By definition, f∗ ≥ g∗.

Exercise 4.2. Compute the convex conjugate of

(i) f(x) = 1
2⟨x, x⟩ for x ∈ X, X = Rd;

(ii) f(x) = ⟨x, x0⟩, for x ∈ X, where x0 ∈ X is a fixed point, X = Rd;
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(iii) a function f defined by f(x0) = 0 and for x ∈ X, x ̸= x0, f(x) = +∞, where x0 ∈ X is a fixed

point, X = Rd;

(iv) f(x) = 1
p |x|

p if 1 < p < ∞ and X = R.

Solution:

(i) Notice that

f∗(y) = sup
x∈X

⟨x, y⟩ − 1

2
⟨x, x⟩ = sup

x∈X
⟨x, y⟩ − 1

2
⟨x, x⟩+ 1

2
⟨y, y⟩ − 1

2
⟨y, y⟩

= sup
x∈X

1

2
⟨y, y⟩ − 1

2
⟨y − x, y − x⟩ = 1

2
⟨y, y⟩ − 1

2
inf
x∈X

⟨y − x, y − x⟩ = 1

2
⟨y, y⟩,

where in the last equality we are using that ⟨y − x, y − x⟩ ≥ 0.

(ii) Observe that f∗(y) = supx∈X⟨x, y⟩ − ⟨x, x0⟩ = supx∈X⟨x, y − x0⟩, so that we need to take

the supremum of a linear function. In particular, if y − x0 ̸= 0, f∗(y) = +∞. Otherwise, if

y = x0, f
∗(x0) = 0. That is

f∗(y) =

0 y = x0,

+∞ y ̸= x0.

(iii) If x ̸= x0, then ⟨x, y⟩ − f(x) = −∞ for all y ∈ X. If instead x = x0, then ⟨x, y⟩ − f(x) =

⟨x0, y⟩ > −∞. Hence

f∗(y) = ⟨x0, y⟩

(iv) We need to compute f∗(y) = supx∈R xy − 1
p |x|

p for all y ∈ R. We can do it in two ways:

The first way is by using Young’s inequality, which states that

xy ≤ 1

p
|x|p + 1

q
|y|q for all x, y ∈ R,

where 1 < q < ∞ is such that 1
p +

1
q = 1, with equality if and only if |x|p = |y|q and xy ≥ 0.

Using this fact, we have xy − 1
p |x|

p ≤ 1
q |y|

q so supx∈R xy − 1
p |x|

p ≤ 1
q |y|

q. Since for x such

that |x|p = |y|q and xy ≥ 0 we have xy − 1
p |x|

p = 1
q |y|

q, we reach

f∗(y) = sup
x∈R

xy − 1

p
|x|p = 1

q
|y|q.

For the second way of computing the supremum, simply consider the function fy(x) =

xy − 1
p |x|

p for each y ∈ R. We can then find the maximum by taking the point where the

derivative vanishes, to obtain the desired result.

Exercise 4.3. Let f : Rd → R∪{+∞} be a convex lower semicontinuous function such that f ̸≡ +∞.

Prove that (f∗)∗ = f .
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Hint: Prove the two inequalities separately, f ≥ (f∗)∗ and f ≤ (f∗)∗. For the latter, use point (ii)

and (iii) of Exercise 4.2.

Solution:

(i) Observe that f(x) ≥ ⟨x, y⟩−f∗(y). We can take supremum in y ∈ Rd on the right-hand side

to deduce

f(x) ≥ sup
y∈Rd

⟨x, y⟩ − f∗(y) = (f∗)∗(x),

as we wanted.

(ii) As a consequence of Exercise 4.2 points (ii) and (iii) we already know that the desired

conclusion holds for affine functions. That is, if h is an affine function, (h∗)∗ = h.

On the other hand, since f is convex and lower semicontinuous, we can write it as f =

supi∈I hi for some family of affine functions {hi}i∈I such that hi ≤ f for all i ∈ I. In

particular, by Exercise 4.1 we have that f∗ ≤ h∗i and (f∗)∗ ≥ (h∗i )
∗ = hi so that

(f∗)∗ ≥ sup
i∈I

hi = f,

as we wanted to see.

Exercise 4.4. Given a function f : Rd → R ∪ {+∞}, prove that

(i) y ∈ ∂f(x) if and only if f(x) + f∗(y) = ⟨x, y⟩;

(ii) If f is convex, lower semicontinuous, and f ̸≡ +∞, then y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y).

Solution:

(i) Let x ∈ Rd and y ∈ ∂f(x). By definition, we have that

f(x′) ≥ f(x) + ⟨y, x′ − x⟩ for all x′ ∈ Rd.

That is, we equivalently have

⟨x, y⟩−f(x) ≥ ⟨x′, y⟩−f(x′) for all x′ ∈ Rd ⇐⇒ ⟨x, y⟩−f(x) = sup
x′∈Rd

⟨x′, y⟩−f(x′) = f∗(y)

as we wanted to see.

(ii) Let x ∈ Rd. Then, for all x′ ∈ Rd, by Exercise 4.3,

y ∈ ∂f(x) ⇐⇒ f(x) + f∗(y) = ⟨x, y⟩ ⇐⇒ (f∗)∗(x) + f∗(y) = ⟨x, y⟩ ⇐⇒ x ∈ ∂f∗(y)
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Exercise 4.5 (,). Consider a strictly convex C1 function f : Rd → R such that

lim
|x|→∞

f(x)

|x|
= +∞.

Prove that ∇f : Rd → Rd is a bijection and f(x) + f∗(y) = ⟨x, y⟩ if and only if ∇f(x) = y.

Solution: Let us first prove that the gradient is injective. Let x, y ∈ Rd with x ̸= y. Since f is

strictly convex we have

∇f(x) · (y − x) < f(y)− f(x)

∇f(y) · (x− y) < f(x)− f(y)
⇒ (∇f(x)−∇f(y)) · (y − x) < 0.

In particular, ∇f(x) ̸= ∇f(y) for all x, y ∈ Rd, x ̸= y.

We now prove surjectivity. Let us fix y ∈ Rd and let us consider gy(x) = f(x)− x · y. Notice

that

lim
|x|→∞

gy(x) ≥ lim
|x|→∞

|x|
(
f(x)

|x|
− |y|

)
= +∞

and in particular, gy(x) achieves a minimum for any y ∈ Rd. That is,

f∗(y) = − inf
x∈Rd

gy(x) = max
x∈Rd

x · y − f(x) = x0 · y − f(x0)

for some x0 ∈ Rd. In particular, by Exercise 4.4, we equivalently have y ∈ ∂f(x0), and since

f is convex and C1, ∂f(x0) = {∇f(x0)} so that y = ∇f(x0). Notice that, in this case, this is

equivalent to f∗(y)+f(x0) = x0 ·y, again, by Exercise 4.4. This shows the surjectivity and proves

that ∇f is a bijection.
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