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Given a function f: R? = R U {—00, 00} we define the convex conjugate f* as

f*(y) = sup (z -y — f(z)).
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When f: RY — R U {+oco} is convex, f* is also known as Legendre transform of f. Notice that, at
least informally, if we assume that f is differentiable and that the supremum in the right-hand side is
realized at a point Z, then y = V f(Z).

Exercise 4.1. Given two functions f,g: R? — R U {+o00} such that f,g # +oco. Show the following:

(i) f* and g* are convex functions.

(i) If f <g, then g* < f*.

Solution:

(i) Let us prove that f* is convex. Define X; := {x € R?| f(z) < 400}. Notice that if z € X
and 2/ € R%\ Xy, then for any y € R? we have

ey — f(af) <z-y— fx),

and therefore, in the definition of f* we can take the supremum in X; instead of R

[ (y) = sup (z-y— f(x)).
CEEXf
Hence f* is the (pointwise) supremum of a family of affine functions, since scalar products

are linear, which implies that it is convex.

(i) Let y € R% Then, since f < g, we immediately have that = -y — f(z) > z -y — g(z) for all
z € R4, and hence

sup (z -y — f(x)) = sup (z -y — g()).
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By definition, f* > g*.

Exercise 4.2. Compute the convex conjugate of
(i) f(z) = %(x,x} for z € X, X =R%

(ii) f(z) = (x,x0), for € X, where 2o € X is a fixed point, X = R%;



(iii) a function f defined by f(zp) = 0 and for x € X, x # ¢, f(x) = +o00, where zg € X is a fixed
point, X = R%;

(iv) f(z) = %|x]p ifl<p<ooand X =R.

Solution:

(i) Notice that

£*(4) = sup(e, ) — >(z,2) = sup(e,4) — (& 2) + 2y ) — =(,9)

z€X 2 z€X 2 2 2
1 1 1 1 1
sup 2<y,y> 2<y T,y — ) 5 (y,y) 5 zng@ T,y — ) 5 (Y, y),

where in the last equality we are using that (y —z,y — x) > 0.

(ii) Observe that f*(y) = supyex(z,y) — (x,z0) = supyex(z,y — x0), so that we need to take
the supremum of a linear function. In particular, if y — z9 # 0, f*(y) = +oo. Otherwise, if
y = xo, [*(zo) = 0. That is
0 y = wo,

fy) =
+o00 Y # xp.

(iii) If = # g, then (z,y) — f(z) = —oo for all y € X. If instead x = x¢, then (z,y) — f(x) =
(xg,y) > —oo. Hence

[ () = (2o, y)

(iv) We need to compute f*(y) = sup,cp 2y — %mp for all y € R. We can do it in two ways:

The first way is by using Young’s inequality, which states that
1 1
2y < —|z|P + =|y|? for all z,y € R,
p q

where 1 < ¢ < oo is such that % + % = 1, with equality if and only if |z|? = |y|? and xy > 0.
Using this fact, we have xy — %mp < %|y\q SO SUP,eR LY — %\x|p < %\y|q. Since for x such

that |z|P = |y|? and zy > 0 we have zy — %\x]p = %]y\q, we reach

1 1

f*(y) = sup zy — —|a’ = —[y[*.
zeR p q

For the second way of computing the supremum, simply consider the function fy(z) =

Ty — ]%|:c|p for each y € R. We can then find the maximum by taking the point where the

derivative vanishes, to obtain the desired result.

Exercise 4.3. Let f : R? — RU{+0c0} be a convex lower semicontinuous function such that f # +oc.
Prove that (f*)* = f.



Hint: Prove the two inequalities separately, f > (f*)* and f < (f*)*. For the latter, use point

and of Exercise

Solution:

(i) Observe that f(x) > (x,y) — f*(y). We can take supremum in y € R? on the right-hand side

to deduce

f(x) = sup (z,y) — f*(y) = (/)" (@),
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as we wanted.

(ii) As a consequence of Exercise points (ii) and (iii) we already know that the desired

conclusion holds for affine functions. That is, if h is an affine function, (h*)* = h.

On the other hand, since f is convex and lower semicontinuous, we can write it as f =
sup;cy hi for some family of affine functions {h;}ies such that h; < f for all ¢ € I. In
particular, by Exercise [£.1 we have that f* < h¥ and (f*)* > (hf)* = h; so that

(f)" =suph; = f,
iel

as we wanted to see.

Exercise 4.4. Given a function f: R = R U {+occ}, prove that
(i) y € f(x) if and only if f(x) + f*(y) = (z, y);

(ii) If f is convex, lower semicontinuous, and f # +oo, then y € df(z) < x € df*(y).

Solution:

i) Let z € R% and y € df(x). By definition, we have that
(i) y
(') > f(x)+ (y,2' —x) for all 2’ € RY.
That is, we equivalently have
<l’7y>—f($) > <$/7 y>—f(:6/) for all ‘T/ € Rd — <I,y>—f(I) = sup <.’E,,y>—f(l’/) = f*(y)
as we wanted to see.
(i) Let € R Then, for all 2/ € R? by Exercise

yedf(x) <= [fla)+ ) = (z,y) — () @)+ =(zy < vcdf(y)




Exercise 4.5 (). Consider a strictly convex C' function f : R? — R such that

m M—+oo

om0 |z]

Prove that Vf : R — R is a bijection and f(z) + f*(y) = (z,%) if and only if Vf(z) = .

Solution: Let us first prove that the gradient is injective. Let x,y € R? with x # y. Since f is

strictly convex we have
= (Vf(z)=Vf(y) (y—=z)<O0.

In particular, Vf(z) # Vf(y) for all z,y € RY, x # 1.
We now prove surjectivity. Let us fix y € R? and let us consider g,(z) = f(z) — x - y. Notice

that
lim g,(z) > lim |z| | == —|y| | = +o0
|z =00 |z|

|z| =00
and in particular, g,(z) achieves a minimum for any y € R<. That is,

F'y) = - inf gy(2) =maxaz-y— f(z) =20y — f(wo)

for some o € R% In particular, by Exercise we equivalently have y € Jdf(xo), and since
f is convex and C!, 0f(zo) = {Vf(z0)} so that y = Vf(zo). Notice that, in this case, this is

equivalent to f*(y) + f(x0) = zo - y, again, by Exercise This shows the surjectivity and proves
that V f is a bijection.




