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Exercise 3.1. Let f : R? — R be a nonnegative lower semicontinuous function. Show that:

(i) f admits a minimizer in every compact set K C R™.

(ii) f can be approximated from below monotonically (namely, f(z) 1 f(x) for every x € R?%) by a

sequence of functions fy as A — oo, where f) is A-Lipschitz.

(iii) for every sequence of measures p,, — pu narrowly,

liminf/ fd,unz/ fdu.
n—oo Rd Rd

Hint: For define fy(x) = iean {fly) + Az —y|}.
y n

Solution:

(i) Let K C R? be a compact set and {z,}°°; C K a minimizing sequence, i.e.

lim f(z,) =inf{f(z):2 € K}.

n—oo
Since K is compact, there is a converging subsequence {zy, }?°, such that z,, — z € K.

Then, since f is lower semicontinuous,

f(z) <liminf f(z,,) = inf{f(z) : x € K}.

k—o00

Thus
f(z) < fly) VyeK.

(ii) Define fy(x) = ian {f(y) + Az — y|}. We begin by showing that {f)}er is increasing in A
yeR™
and bounded by f. Assume A\ < ), then

@) < f@) + Nz —y| < fly) + Nz —y| for every y € R™

Taking the infimum over y, we get fi(x) < fyv(z). In addition due to the definition of f),
we get fi(z) < f(x). Now we prove that f) is indeed A\-Lipschitz. We have

@) < fly) + A" =yl < fly) + Mz —y| + A2’ —z|.

Taking the infimum over y, we get fy(2') < fa(z) + A2’ — z|. In a similar way, we can prove
M) < fial@) + Ma' — z|. Hence, |fr(z') — fr(z)] < Mo —2/|, for all z,2’ € RY, proving
that fy is A-Lipschitz.




Now finally, we prove that limy_, fx = f. Let 2 € R?. Since f is lower semicontinuous, for
any € > 0, there is § > 0 so that for all y such that [x—y| < § we have f(y) > min{f(z)—¢, 1}.
In addition, since f is nonnegative f(y) + Alz —y| > A, for all y such that |z — y| > §. We

conclude X
f(z) > min{f(z) — ¢, E,5)\}.

Letting A — oo, we get
1
liminf f)(z) > min{f(z) — €, —}.
A—00 €

Since € is arbitrary, we deduce liminfy_,o, fy(z) > f(x). Finally, since f) is bounded by f,

we deduce

lim fi(z) = f(x).
A—00
(iii) Notice that the function min{ fy, A} is continuous and bounded so that since p, — u,

/ min{ fy,A\} du = lim / min{ fy, \} du, < lim inf/ [ dp,
Rd n—oo Rd n—oo Rd

where the inequality follows from the fact that f) < f. Letting A — oo, we get, due to the

monotone convergence theorem,

/fd,ugliminf/ £ dpun.
Rd n—oo Rd

Exercise 3.2. The support of a nonnegative measure p € M (R"™) is defined as the smallest closed

set on which p is concentrated, i.e.
spt(p) = ﬂ{C C R" closed : u(R™\ C) = 0}.

Let us take a sequence of nonnegative measures p; € M (R™) such that s, X . Prove the following

fact: for every x € spt(p), there exists a sequence of points z; € spt(p;) such that z; — .

Solution: Suppose by contradiction that for some € > 0 there is a sequence ji — oo for which
spt(pj,) C R™\ Be(z). Let us consider a test function ¢ € C,(B¢(z)) such that

©>0  inR",

=0 in R" \ Be(x),
p=1 in B jp().

Since x € spt(u), p(Bej2(z)) > 0. Testing the weak™ convergence of yj, to p with ¢, we get

k—o0
0= /wdujk =3 /sodu > p(B.ja(x)) >0,

a contradiction.




Exercise 3.3 (Characterizations of weak-* convergence). Let p;, p € Z(R"™) be probability measures

in R™.
i) Show that p; — p narrowly if and only if one of the following properties hold:

a) For every open set A C R™:
liminf 1;(A) > p(A).

J—00

b) For every closed set C' C R™:
lim sup 11;(C) < pu(C).

Jj—00

c) For every set E C R™ such that u(0F) = 0:

lim 115 (E) = p(E).

Jj—o0

ii) Give an example of a sequence of probability measures p; € Z(R") such that p; X for some

measure 4 € M (R") and an open set A such that

liminf p1;(A) > p(A).
j—o0

Hint: For one implication in (i), use Exercise For the other, use the layer-cake formula

/godu = / p({e > t})dt for every v € Cy(R"), ¢ > 0.
0

Solution:

(i) We will prove the following chain of implications:

pj — p narrowly = a) = b) = ¢) = p; — p narrowly.

pj — p narrowly = a). Let p; — p narrowly and take A an open set. Notice that the

function 14 is lower semicontinuous since A is open. Thus, using Exercise [3.1

lim inf 11 (A) :liminf/ILAdlunZ/RAd,u,:,u,(A).

Jj—00 j—00

a) => b). Now assume a) holds true and take C a closed set. Then A := R" \ C' is open,
therefore, by a):

limsup p1;(C) = limsup (1 — p;(A)) = 1 — liminf p1;(A)

j—o0 j—o0 J—o0

< 1— p(A) = p(0).

b) = c¢). Assume b) holds true. With the same argument as above we can easily show
that a) holds true as well. Let £ C R™ be a set so that u(0F) = 0. We call A := E\ 0F




and C := E, and note that A is open and C is closed. Then, using a), b) and u(0F) = 0 we

obtain the following chain of inequalities:

limsupp;(E) < limsupp;(C) < p(C) = p(E) =

Jj—o0 Jj—o0

= p(A) <liminfy;(A) < liminfy;(E).
j—o0 Jj—oo

Hence the previous inequalities must be all equalities proving that u;(E) — u(E), as desired.

c¢) = p; — p narrowly. Assume that ¢) holds true and let ¢ € Cp(R™) be a nonnegative
bounded continuous function. Observe that for almost every ¢ > 0, the set E; := {¢ >t} is
such that pu(0E;) = 0. Hence, by ¢):

lim p1;(Ey) = p(Ey)  for almost every ¢ > 0.
j—oo

Therefore, using the layer cake formula, together with the dominated convergence theorem

we get

max ¢ max ¢
[edu= [ utBoar = tim (Bt = Tim [ ;.
0

Jj—o0 Jo Jj—00

This proves that p; — p narrowly.

(ii) Let {acj};-’il C R™ be a sequence of points such that |z;| — oo as j — co. For any j € N, we
define p1; = 0,,. Now for any ¢ € C.(R"),

lim [ pdp; = lim p(z;) =0 since |z;| — oo.

Hence, 21, where g is the null measure. Now taking A = R™ we get

1 = liminf p;(R™) > p(R™) = 0.
j—o0

Exercise 3.4. Let {pn}nen € Z(R) be a sequence of probability measures with p,, — p narrowly.
Define F,(z) := pn((—o00,z]), F(z) := p((—o0, x]).

(i) Prove that p is a probability measure.

(ii) Prove that
limsup F,(x) < F(z) for every x € R.
n

(iii) Prove that

lim F,,(z) = F(x) for every x € R at which F' is continuous.
n
(iv) Give an example of a sequence of measures j, — p narrowly and an = € R for which

limsup Fy,(z) < F(x).



Solution:

(i) To prove that p is a probability measure, use the definition of narrow convergence with the

test function f = 1.

(ii) We have the following

lim sup F(7) = limsup(1 — pn((z, 0)))
=1- limninf pn((x,00))
<1 —p((z,00)) = F(z),
which gives the thesis.

(iii) Let us fix a point z € R and 6 > 0: we take a continuous non increasing function f such
that f(t) =1 for t <z and f(t) =0 for every t > z + §, then we have

F(x+9) > /Rf(a:)du(a:) = liyrln/Rf(x)dun(:U) > limnsup F,(z).

Now consider a non increasing function f such that f(t) =1 for ¢t <z —§ and f(t) =0 for

every t > x, then we have

Flz—6) < /R f(@)dp(z) = lim /R £(@)djun (@) < liminf F (z),

the thesis follows from the continuity of F' in x.

(iv) For the example consider ji, = d;/,, pp = 6o and z = 0.

Exercise 3.5.

(i) Find a sequence of functions f, : [0,1] — [0, 1] such that (f,)x(L1L[0,1]) = (£L1L[0,1]) but f,
weakly converge to 1/2 .

(ii) What is the weak limit of (id, f,)x-£*L[0,1]?
(iii) (¢) Can these functions be taken C1?

Hint: For use piecewise affine oscillating functions.

Solution:

(i) Define ¢: R — R on [0, 1] by

2x if x € [0,1/2];
201 —z) ifxe(1/21],

¢(x) =




and extend it to R by 1-periodicity. Define f,,: [0, 1] — [0, 1] by

fa(2) = ¢(n).

From the Riemann-Lebesgue theorem, it is clear that f,, converges weakly to 1/2. In order
to prove (fn)#(Zl0,1)) = (Zj0,1)) We need to show that

(Llioa)(f (A)) = (L]jo)(A) for any A C R Borel set. (1)

Since the Borel o-algebra is generated by sets of the form A = (a, 00) it suffices to show the

previous equality for sets of this form. First we have

¢ ((a,0)) = U (m+a/2,m+1—a/2) ifael0,1).
meZ

If a > 1, then ¢~!((a,0)) = () and if a < 0, then ¢~!((a,o0)) = R. From this we deduce
that

n—1

fo((a,00) = | (7::+2C;m:1—2‘2> if a € [0,1).

In addition, f,'((a,00)) = 0 if a > 1 and f,!((a,00)) = [0,1] if a < 0. Thus the equation
is satisfied if @ > 1 or a < 0. Now considering the case when a € [0, 1), we have

n—1 n—1
1 m a m+1 a 1—a
- oy - = =1-a.
(Lhoa) (7 ((@.50)) = (Zlo) (g (Z+a ™ 2n)) P
which implies . In conclusion, since holds for any set of the form A = (a,c0) and the

family of these sets generate the Borel o-algebra, holds for any Borel set which proves
that

(fn)#(-iﬂ’[O,l]) = (g

0,1))-

Let ¢ € C.(R x R). We will show

/ o, ) d(id, £) 4L 0.1 — / o y)dL gz s - oo

Fix any € > 0. Since ¢ is uniformly continuous there is 6 > 0 such that if |z — y| < J, then
lp(z) — ¢(y)| < e. Let n € N be large enough so that 2/n < §. Now we will consider a grid

covering [0, 1] composed by 2n? rectangles of the form

i=0,....2n—1,7=0,...,n—1.

i i41] [ gt1
n n

Rii— | —
“ [2n’ 2n ’

Notice that all R;; have a diameter smaller than §. Now for any £ =0, ... ,2n? — 1, denote

ik, jr the unique integers such that

2k+1 2k+1
< 47’12 7fn< 4n2 >> eRZk]k




Then, using the fact that ¢ is uniformly continuous, we get

k+1

o 1 (2k+1 , [2k+1 1 B )

4n? 4n? 2n
2n2

and

1 2k 41 2k 41 1 )
dedy — —o [ == f, [ 22— — e Vk=1,...,2n> - 1.
/R o(z,y) dedy 2n2<p< PO ( 2 >>'<2n26 n

ik

Therefore, we get

2n2—1
_ 1 2% + 1 2% + 1
[ e did fsLloy - 55 > @( i ’fn< I >>
k=1

2n2-1 k+1
1 2n2 2k +1 2k +1
< 2 321 /2k2 So(thn('x)) dr — 14 ( 4n2 7fn < An2 >>i <€

and

2n2—1
1 2k +1 2k +1
/so(%y)dfl[o,u?—gnz ; ‘P< 4n? ’f”< 4n? ))

2k +1 2k +1

ik
This proves that

' [ etepdta sl — [ o) dslo| <2

when 7 is large enough. We conclude that (id, fn)x-Z|[0,1) converges weakly to & 2\[0’1}2.

(iii) Assume ¢ € C'(R) such that ()x(Z
y € (0,1) such that ¢'(y) = 0. For any € > 0, there is § > 0 such that for all x € R with
|z —y| < § we have |¢/(x)| < e. Thus, for all 2 such that |x — y| < 0, we get

0,1]) = Z|[0,1)- For a contradiction, assume there is

lp(z) — p(y)] < elz —y| < €l

Then
(x—6,2+08) C o ((p(x) — €, p(x) + b)),

so that

266 = (0) (L jo,1)) ((p() — €6, p(x) + €6)) = (Llp,1) (¢~ ((p(x) — €6, 0(x) + €))) > 26

which yields a contradiction when taking e < 1. This proves that ¢’ never vanishes on (0, 1)

so that ¢ is either strictly increasing or strictly decreasing. Assume ¢ is stricly increasing




(the other case is similar). Then for any a,b € (0,1), we have

b—a=(p)x(ZL]on)(a,0) = Ll ((¢™ (a), 07 (1)) = ¢~ (0) — ¢ (a).

Thus, for any x,y € (0,1), p(z) — ¢(y) = x —y. We conclude ¢(x) = z on (0,1). If we
assume ¢ is strictly decreasing, then ¢(x) = 1—2 on (0,1). We conclude by noting that any

sequence of such functions cannot converge weakly to 1/2.

Exercise 3.6 (§). Let u € Z(R") be a probability measure. We say that a sequence of borel functions
T; : R" — R" converge in py-measure to 7' : R® — R" iiﬂ

lim p ({z € R" : |Tj(z) —T(z)] > €}) =0 for every e > 0.
J]—00

Denoting by 7; := (id, Tj)up, 7 := (id, T)up € Z(R™ x R"), prove the following equivalence:

T = = T} converges to T' in p-measure

Solution: Assume first that 7 converges to 7" in p-measure. We wish to prove that (id,Tj)xpu
weakly-* converge to (id,T)xp. Let ¢ € Co(R™ x R™). Then, from each subsequence ji, * oo,
we can extract a further subsequence j;, * oo for which Tij converges to T pointwise p-almost
everywhere, and so, by the change of variables formula and the dominated convergence theorem

we obtain
. L—o0 .
[ e T pdu= [ oo T @)dn " [ oo T@)dn= [ pdid, ) ydn
R” xR™ n n R xR™

which gives the desired result.

Let us now assume that 7; = (id,T;)gp weakly-* converge to m = (id,T)4xp (and hence
narrowly, as all these measures have the same total mass), and prove that 7} converges to T in
p-measure. Fix e > 0. By Lusin’s Theorem, there exists a continuous map T : R” — R" such that
pw({T # T}) < €. Let us then consider the continuous bounded test function ¢ : R” x R® — R
defined as

p(x,y) = min{ly — T(x)], 1}.
By the change of variables formula and the narrow convergence,
[ minlTy0) - Tl b= [y [
R™ R® xRR"™ R™ xRR"™

= [ min{|T(@) - T(@)]. Djdp < p((T #T)) < c.

!By standard measure theory arguments one can easily prove that whenever T; converges to 1" in p-measure, there is
a subsequence jr " oo such that T}, converge to T pointwise p-almost everywhere.



Thus if j is large enough we have

/ min{|Tj(z) — T'(z)|,1}dp < / min{|T}(z) — T(z)|, 1}dp —|—/ min{|T(z) — T(z)|, 1}du < 2.
R" R" Rn

Finally, given any § > 0, using Markov’s inequality, we get, for j large enough:

WL = 71> 0 < 5 [ min{iTy(0) - (@)l 1 < 5

and the thesis follows from the arbitrariness of e.




