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Exercise 3.1. Let f : Rd → R be a nonnegative lower semicontinuous function. Show that:

(i) f admits a minimizer in every compact set K ⊂ Rn.

(ii) f can be approximated from below monotonically (namely, fλ(x) ↑ f(x) for every x ∈ Rd) by a

sequence of functions fλ as λ → ∞, where fλ is λ-Lipschitz.

(iii) for every sequence of measures µn ⇀ µ narrowly,

lim inf
n→∞

∫
Rd

f dµn ≥
∫
Rd

f dµ.

Hint: For (ii), define fλ(x) = inf
y∈Rn

{f(y) + λ|x− y|}.

Solution:

(i) Let K ⊂ Rd be a compact set and {xn}∞n=1 ⊂ K a minimizing sequence, i.e.

lim
n→∞

f(xn) = inf{f(x) : x ∈ K}.

Since K is compact, there is a converging subsequence {xnk
}∞k=1 such that xnk

→ x ∈ K.

Then, since f is lower semicontinuous,

f(x) ≤ lim inf
k→∞

f(xnk
) = inf{f(x) : x ∈ K}.

Thus

f(x) ≤ f(y) ∀y ∈ K.

(ii) Define fλ(x) = inf
y∈Rn

{f(y) + λ|x− y|}. We begin by showing that {fλ}λ∈R is increasing in λ

and bounded by f . Assume λ < λ′, then

fλ(x) ≤ f(y) + λ|x− y| ≤ f(y) + λ′|x− y| for every y ∈ Rd.

Taking the infimum over y, we get fλ(x) ≤ fλ′(x). In addition due to the definition of fλ,

we get fλ(x) ≤ f(x). Now we prove that fλ is indeed λ-Lipschitz. We have

fλ(x
′) ≤ f(y) + λ|x′ − y| ≤ f(y) + λ|x− y|+ λ|x′ − x|.

Taking the infimum over y, we get fλ(x
′) ≤ fλ(x)+λ|x′−x|. In a similar way, we can prove

fλ(x) ≤ fλ(x
′) + λ|x′ − x|. Hence, |fλ(x′) − fλ(x)| ≤ λ|x − x′|, for all x, x′ ∈ Rd, proving

that fλ is λ-Lipschitz.
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Now finally, we prove that limλ→∞ fλ = f . Let x ∈ Rd. Since f is lower semicontinuous, for

any ϵ > 0, there is δ > 0 so that for all y such that |x−y| ≤ δ we have f(y) ≥ min{f(x)−ϵ, 1ϵ}.
In addition, since f is nonnegative f(y) + λ|x− y| ≥ δλ, for all y such that |x− y| > δ. We

conclude

fλ(x) ≥ min{f(x)− ϵ,
1

ϵ
, δλ}.

Letting λ → ∞, we get

lim inf
λ→∞

fλ(x) ≥ min{f(x)− ϵ,
1

ϵ
}.

Since ϵ is arbitrary, we deduce lim infλ→∞ fλ(x) ≥ f(x). Finally, since fλ is bounded by f ,

we deduce

lim
λ→∞

fλ(x) = f(x).

(iii) Notice that the function min{fλ, λ} is continuous and bounded so that since µn ⇀ µ,∫
Rd

min{fλ, λ} dµ = lim
n→∞

∫
Rd

min{fλ, λ} dµn ≤ lim inf
n→∞

∫
Rd

f dµn,

where the inequality follows from the fact that fλ ≤ f . Letting λ → ∞, we get, due to the

monotone convergence theorem,∫
Rd

f dµ ≤ lim inf
n→∞

∫
Rd

f dµn.

Exercise 3.2. The support of a nonnegative measure µ ∈ M+(Rn) is defined as the smallest closed

set on which µ is concentrated, i.e.

spt(µ) :=
⋂

{C ⊂ Rn closed : µ(Rn \ C) = 0}.

Let us take a sequence of nonnegative measures µj ∈ M+(Rn) such that µj
∗
⇀ µ. Prove the following

fact: for every x ∈ spt(µ), there exists a sequence of points xj ∈ spt(µj) such that xj → x.

Solution: Suppose by contradiction that for some ϵ > 0 there is a sequence jk → ∞ for which

spt(µjk) ⊂ Rn \Bϵ(x). Let us consider a test function φ ∈ Cc(Bϵ(x)) such that
φ ≥ 0 in Rn,

φ = 0 in Rn \Bϵ(x),

φ = 1 in Bϵ/2(x).

Since x ∈ spt(µ), µ(Bϵ/2(x)) > 0. Testing the weak∗ convergence of µjk to µ with φ, we get

0 =

∫
φdµjk

k→∞−→
∫

φdµ ≥ µ(Bϵ/2(x)) > 0,

a contradiction.
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Exercise 3.3 (Characterizations of weak-∗ convergence). Let µj , µ ∈ P(Rn) be probability measures

in Rn.

i) Show that µj ⇀ µ narrowly if and only if one of the following properties hold:

a) For every open set A ⊂ Rn:

lim inf
j→∞

µj(A) ≥ µ(A).

b) For every closed set C ⊂ Rn:

lim sup
j→∞

µj(C) ≤ µ(C).

c) For every set E ⊂ Rn such that µ(∂E) = 0:

lim
j→∞

µj(E) = µ(E).

ii) Give an example of a sequence of probability measures µj ∈ P(Rn) such that µj
∗
⇀ µ for some

measure µ ∈ M+(Rn) and an open set A such that

lim inf
j→∞

µj(A) > µ(A).

Hint: For one implication in (i), use Exercise 3.1. For the other, use the layer-cake formula∫
φdµ =

∫ ∞

0
µ({φ > t})dt for every φ ∈ Cb(Rn), φ ≥ 0.

Solution:

(i) We will prove the following chain of implications:

µj ⇀ µ narrowly =⇒ a) =⇒ b) =⇒ c) =⇒ µj ⇀ µ narrowly.

µj ⇀ µ narrowly =⇒ a). Let µj ⇀ µ narrowly and take A an open set. Notice that the

function 1A is lower semicontinuous since A is open. Thus, using Exercise 3.1

lim inf
j→∞

µj(A) = lim inf
j→∞

∫
1A dµn ≥

∫
1A dµ = µ(A).

a) =⇒ b). Now assume a) holds true and take C a closed set. Then A := Rn \ C is open,

therefore, by a):

lim sup
j→∞

µj(C) = lim sup
j→∞

(1− µj(A)) = 1− lim inf
j→∞

µj(A)

≤ 1− µ(A) = µ(C).

b) =⇒ c). Assume b) holds true. With the same argument as above we can easily show

that a) holds true as well. Let E ⊂ Rn be a set so that µ(∂E) = 0. We call A := E \ ∂E
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and C := E, and note that A is open and C is closed. Then, using a), b) and µ(∂E) = 0 we

obtain the following chain of inequalities:

lim sup
j→∞

µj(E) ≤ lim sup
j→∞

µj(C) ≤ µ(C) = µ(E) =

= µ(A) ≤ lim inf
j→∞

µj(A) ≤ lim inf
j→∞

µj(E).

Hence the previous inequalities must be all equalities proving that µj(E) → µ(E), as desired.

c) =⇒ µj ⇀ µ narrowly. Assume that c) holds true and let φ ∈ Cb(Rn) be a nonnegative

bounded continuous function. Observe that for almost every t > 0, the set Et := {φ > t} is

such that µ(∂Et) = 0. Hence, by c):

lim
j→∞

µj(Et) = µ(Et) for almost every t > 0.

Therefore, using the layer cake formula, together with the dominated convergence theorem

we get ∫
φdµ =

∫ maxφ

0
µ(Et)dt = lim

j→∞

∫ maxφ

0
µj(Et)dt = lim

j→∞

∫
φdµj .

This proves that µj ⇀ µ narrowly.

(ii) Let {xj}∞j=1 ⊂ Rn be a sequence of points such that |xj | → ∞ as j → ∞. For any j ∈ N, we
define µj = δxj . Now for any φ ∈ Cc(Rn),

lim
j→∞

∫
φdµj = lim

j→∞
φ(xj) = 0 since |xj | → ∞.

Hence, µj
∗
⇀ µ, where µ is the null measure. Now taking A = Rn we get

1 = lim inf
j→∞

µj(Rn) > µ(Rn) = 0.

Exercise 3.4. Let {µn}n∈N ⊂ P(R) be a sequence of probability measures with µn ⇀ µ narrowly.

Define Fn(x) := µn((−∞, x]), F (x) := µ((−∞, x]).

(i) Prove that µ is a probability measure.

(ii) Prove that

lim sup
n

Fn(x) ≤ F (x) for every x ∈ R.

(iii) Prove that

lim
n

Fn(x) = F (x) for every x ∈ R at which F is continuous.

(iv) Give an example of a sequence of measures µn ⇀ µ narrowly and an x ∈ R for which

lim sup
n

Fn(x) < F (x).
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Solution:

(i) To prove that µ is a probability measure, use the definition of narrow convergence with the

test function f ≡ 1.

(ii) We have the following

lim sup
n

Fn(x) = lim sup
n

(1− µn((x,∞)))

= 1− lim inf
n

µn((x,∞))

≤ 1− µ((x,∞)) = F (x),

which gives the thesis.

(iii) Let us fix a point x ∈ R and δ > 0: we take a continuous non increasing function f such

that f(t) ≡ 1 for t ≤ x and f(t) ≡ 0 for every t ≥ x+ δ, then we have

F (x+ δ) ≥
∫
R
f(x)dµ(x) = lim

n

∫
R
f(x)dµn(x) ≥ lim sup

n
Fn(x).

Now consider a non increasing function f such that f(t) ≡ 1 for t ≤ x− δ and f(t) ≡ 0 for

every t ≥ x, then we have

F (x− δ) ≤
∫
R
f(x)dµ(x) = lim

n

∫
R
f(x)dµn(x) ≤ lim inf

n
Fn(x),

the thesis follows from the continuity of F in x.

(iv) For the example consider µn = δ1/n, µ = δ0 and x = 0.

Exercise 3.5.

(i) Find a sequence of functions fn : [0, 1] → [0, 1] such that (fn)#(L
1 [0, 1]) = (L 1 [0, 1]) but fn

weakly converge to 1/2 .

(ii) What is the weak limit of (id, fn)#L 1 [0, 1]?

(iii) (,) Can these functions be taken C1?

Hint: For (i), use piecewise affine oscillating functions.

Solution:

(i) Define ϕ : R → R on [0, 1] by

ϕ(x) =

2x if x ∈ [0, 1/2];

2(1− x) if x ∈ (1/2, 1],
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and extend it to R by 1-periodicity. Define fn : [0, 1] → [0, 1] by

fn(x) = ϕ(nx).

From the Riemann-Lebesgue theorem, it is clear that fn converges weakly to 1/2. In order

to prove (fn)#(L |[0,1]) = (L |[0,1]) we need to show that

(L |[0,1])(f−1
n (A)) = (L |[0,1])(A) for any A ⊆ R Borel set. (1)

Since the Borel σ-algebra is generated by sets of the form A = (a,∞) it suffices to show the

previous equality for sets of this form. First we have

ϕ−1((a,∞)) =
⋃
m∈Z

(m+ a/2,m+ 1− a/2) if a ∈ [0, 1).

If a ≥ 1, then ϕ−1((a,∞)) = ∅ and if a < 0, then ϕ−1((a,∞)) = R. From this we deduce

that

f−1
n ((a,∞)) =

n−1⋃
m=0

(
m

n
+

a

2n
,
m+ 1

n
− a

2n

)
if a ∈ [0, 1).

In addition, f−1
n ((a,∞)) = ∅ if a ≥ 1 and f−1

n ((a,∞)) = [0, 1] if a < 0. Thus the equation

(1) is satisfied if a ≥ 1 or a < 0. Now considering the case when a ∈ [0, 1), we have

(L |[0,1])(f−1
n ((a,∞))) = (L |[0,1])

(
n−1⋃
m=0

(
m

n
+

a

2n
,
m+ 1

n
− a

2n

))
=

n−1∑
m=0

1− a

n
= 1− a.

which implies (1). In conclusion, since (1) holds for any set of the form A = (a,∞) and the

family of these sets generate the Borel σ-algebra, (1) holds for any Borel set which proves

that

(fn)#(L |[0,1]) = (L |[0,1]).

(ii) Let φ ∈ Cc(R× R). We will show∫
φ(x, y) d(id, fn)#L |[0,1] →

∫
φ(x, y) dL 2|[0,1]2 as n → ∞.

Fix any ϵ > 0. Since φ is uniformly continuous there is δ > 0 such that if |x− y| < δ, then

|φ(x)− φ(y)| < ϵ. Let n ∈ N be large enough so that 2/n < δ. Now we will consider a grid

covering [0, 1]2 composed by 2n2 rectangles of the form

Rij =

[
i

2n
,
i+ 1

2n

]
×
[
j

n
,
j + 1

n

]
i = 0, . . . , 2n− 1, j = 0, . . . , n− 1.

Notice that all Rij have a diameter smaller than δ. Now for any k = 0, . . . , 2n2 − 1, denote

ik, jk the unique integers such that(
2k + 1

4n2
, fn

(
2k + 1

4n2

))
∈ Rikjk
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Then, using the fact that φ is uniformly continuous, we get∣∣∣∣∣
∫ k+1

2n2

k
2n2

φ(x, fn(x)) dx− 1

2n2
φ

(
2k + 1

4n2
, fn

(
2k + 1

4n2

))∣∣∣∣∣ < 1

2n2
ϵ ∀k = 1, . . . , 2n2 − 1

and ∣∣∣∣∣
∫
Rikjk

φ(x, y) dxdy − 1

2n2
φ

(
2k + 1

4n2
, fn

(
2k + 1

4n2

))∣∣∣∣∣ < 1

2n2
ϵ ∀k = 1, . . . , 2n2 − 1.

Therefore, we get∣∣∣∣∣∣
∫

φ(x, y) d(id, fn)#L |[0,1] −
1

2n2

2n2−1∑
k=1

φ

(
2k + 1

4n2
, fn

(
2k + 1

4n2

))∣∣∣∣∣∣
≤ 1

2n2

2n2−1∑
k=1

∣∣∣∣∣
∫ k+1

2n2

k
2n2

φ(x, fn(x)) dx− φ

(
2k + 1

4n2
, fn

(
2k + 1

4n2

))∣∣∣∣∣ < ϵ

and ∣∣∣∣∣∣
∫

φ(x, y) dL |[0,1]2 −
1

2n2

2n2−1∑
k=1

φ

(
2k + 1

4n2
, fn

(
2k + 1

4n2

))∣∣∣∣∣∣
≤ 1

2n2

2n2−1∑
k=1

∣∣∣∣∣
∫
Rikjk

φ(x, y) dxdy − φ

(
2k + 1

4n2
, fn

(
2k + 1

4n2

))∣∣∣∣∣ < ϵ.

This proves that ∣∣∣∣∫ φ(x, y) d(id, fn)#L |[0,1] −
∫

φ(x, y) dL 2|[0,1]2
∣∣∣∣ < 2ϵ

when n is large enough. We conclude that (id, fn)#L |[0,1] converges weakly to L 2|[0,1]2 .

(iii) Assume φ ∈ C1(R) such that (φ)#(L |[0,1]) = L |[0,1]. For a contradiction, assume there is

y ∈ (0, 1) such that φ′(y) = 0. For any ϵ > 0, there is δ > 0 such that for all x ∈ R with

|x− y| < δ we have |φ′(x)| < ϵ. Thus, for all x such that |x− y| < δ, we get

|φ(x)− φ(y)| < ϵ|x− y| < ϵδ

Then

(x− δ, x+ δ) ⊆ φ−1((φ(x)− ϵδ, φ(x) + ϵδ)),

so that

2ϵδ = (φ)#(L |[0,1])((φ(x)− ϵδ, φ(x) + ϵδ)) = (L |[0,1])(φ−1((φ(x)− ϵδ, φ(x) + ϵδ))) ≥ 2δ

which yields a contradiction when taking ϵ < 1. This proves that φ′ never vanishes on (0, 1)

so that φ is either strictly increasing or strictly decreasing. Assume φ is stricly increasing
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(the other case is similar). Then for any a, b ∈ (0, 1), we have

b− a = (φ)#(L |[0,1])((a, b)) = L |[0,1]((φ−1(a), φ−1(b))) = φ−1(b)− φ−1(a).

Thus, for any x, y ∈ (0, 1), φ(x) − φ(y) = x − y. We conclude φ(x) = x on (0, 1). If we

assume φ is strictly decreasing, then φ(x) = 1−x on (0, 1). We conclude by noting that any

sequence of such functions cannot converge weakly to 1/2.

Exercise 3.6 (,). Let µ ∈ P(Rn) be a probability measure. We say that a sequence of borel functions

Tj : Rn → Rn converge in µ-measure to T : Rn → Rn if1

lim
j→∞

µ ({x ∈ Rn : |Tj(x)− T (x)| > ϵ}) = 0 for every ϵ > 0.

Denoting by πj := (id, Tj)#µ, π := (id, T )#µ ∈ P(Rn × Rn), prove the following equivalence:

πj
∗
⇀ π ⇐⇒ Tj converges to T in µ-measure

Solution: Assume first that Tj converges to T in µ-measure. We wish to prove that (id, Tj)#µ

weakly-∗ converge to (id, T )#µ. Let φ ∈ Cc(Rn × Rn). Then, from each subsequence jk ↗ ∞,

we can extract a further subsequence jkℓ ↗ ∞ for which Tjkℓ
converges to T pointwise µ-almost

everywhere, and so, by the change of variables formula and the dominated convergence theorem

we obtain∫
Rn×Rn

φd(id, Tjkℓ
)#dµ =

∫
Rn

φ(x, Tjkℓ
(x))dµ

ℓ→∞→
∫
Rn

φ(x, T (x))dµ =

∫
Rn×Rn

φd(id, T )#dµ,

which gives the desired result.

Let us now assume that πj = (id, Tj)#µ weakly-∗ converge to π = (id, T )#µ (and hence

narrowly, as all these measures have the same total mass), and prove that Tj converges to T in

µ-measure. Fix ϵ > 0. By Lusin’s Theorem, there exists a continuous map T̃ : Rn → Rn such that

µ({T̃ ̸= T}) < ϵ. Let us then consider the continuous bounded test function φ : Rn × Rn → R
defined as

φ(x, y) := min{|y − T̃ (x)|, 1}.

By the change of variables formula and the narrow convergence,∫
Rn

min{|Tj(x)− T̃ (x)|, 1}dµ =

∫
Rn×Rn

φdπj →
∫
Rn×Rn

φdπ

=

∫
Rn

min{|T (x)− T̃ (x)|, 1}dµ ≤ µ({T ̸= T̃}) < ϵ.

1By standard measure theory arguments one can easily prove that whenever Tj converges to T in µ-measure, there is
a subsequence jk ↗ ∞ such that Tjk converge to T pointwise µ-almost everywhere.
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Thus if j is large enough we have∫
Rn

min{|Tj(x)−T (x)|, 1}dµ ≤
∫
Rn

min{|Tj(x)− T̃ (x)|, 1}dµ+

∫
Rn

min{|T (x)− T̃ (x)|, 1}dµ < 2ϵ.

Finally, given any δ > 0, using Markov’s inequality, we get, for j large enough:

µ({|Tj − T | > δ}) ≤ 1

δ

∫
Rn

min{|Tj(x)− T (x)|, 1}dµ ≤ 2ϵ

δ
,

and the thesis follows from the arbitrariness of ϵ.
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