Serie 2
Optimal transport, Fall semester
EPFL, Mathematics section, Dr. Xavier Fernandez-Real

Exercise 2.1. Determine the measure T for the map T' = Vo : R? — R?, where the function
¢ : R? = R? is given by (21, 22) = %(:U‘Z’ + 3), for the following choices of u:
(1) p= 00,0y +9(1,2);
(ii) p=2%L][0,1]2
_ Ja—yl?
2

Consider the Monge problem with the cost function ¢(z,y) . Is the map T optimal from p to

Typ, for p as in

Solution:

(i) Note that T'(x1,z2) = (22, 73). Let ¢ : R? = R? be a bounded Borel function, then

L odTum = [ oo du=o(T0.0) +¢(T(1,2)
=¢(0,0) + ¢(1,4) = /R2 @ d(b0,0) +0(1,9))-
Thus, T#,u = (5(070) + (5(174).

(i) In a similar way, with ¢ : R? — R? a bounded Borel function,

[ edTeon2®) = [ eoTditop2?)

= /[O 1]2 (p(T(xl, 1'2)) d.ﬁ/ﬂ2(l’1, 1'2)
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where we used the change of variables formula. Thus, Ty u = 1jg )2
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(iii) Consider the case j1 = (g ) + J(1,2)- From the first point we have that Ty u = (9 0) + d(1,4)-

For the Monge problem each competitor T : R? — R is such that T#u = 9(0,0) 1 0(1,4) which
implies that
T((0,0)) = (070)7 T((an)) = (174)7

or

T((1,2)) = (1,4). T((1,2)) = (0,0).




In the first case, the cost of T is clearly the same as the cost of T, because T' and T coincide

in the support of u. In the second case we can explicitly compute

~ _ 2 _ 2
/]12{2 c(x, T(x))du = 14, 4) 2(070” + 1(0,0) 2(1’2)‘ =11>2= /R2 c(z, T (z))dp.

Hence T is optimal for the Monge problem.

Exercise 2.2. Let us introduce the following notation for the Monge problem:

MP(u,v,c) := inf {/Xc(x,T(:c))du(x) Typ = y} .

(i) Give a cost function ¢ : R? x R? — [0,00) of the form ¢(z,y) = f(Jx — y|) for some Lipschitz
function f : [0,00) — [0,00) and a measure u for which the identity is not an optimal map for
the problem M P(u,u,c). More precisely, give a cost function ¢ as above, a measure p and a

map 1" such that Ty p = p and
/ (. T(@))dpu() < / o(z, 2)du(z).
R2 R2

(ii) Let ¢ : R™ x R™ — [0,00) be a measurable cost function such that c¢(z,y) = f(|x — y|) for a
measurable f : [0,00) — [0,00). What is a necessary and sufficient condition on the cost function

¢ in such a way that the identity is an optimal map for M P(c, u, u) for any p € 2 (R™)?

Solution:

(i) Consider c(z,y) = max{0,3 — [z —y|}, p = 1B0,1)\B(0,1/2) and T'(z) = R (z), where R is

the rotation map of an angle 7 namely

We let the reader verify that (Rr)xpu = p and
1
0= [ elo Rela)duta) < [ el a)dn(o) = .
R2 R2 2

(ii) We claim that the necessary and sufficient condition on ¢(z,y) = f(|z — y|) is that

f(0) :wen[%)igo)f(w)-

It is a sufficient condition: we have that

/ e(w,2)dp(e) = [ FO)du(z) < / F(le = T@))dp(z),




for any p € Z(R™) and any map 7' : R" — R".

It is a necessary condition: suppose by contradiction that the identity is an optimal map of
the problem M P(u, p1,c) for any p € &(R") and there exists y > 0 such that f(y) < f(0),
then we define y = %59 + %(53,61, where e is the first vector of the standard basis of R". Fix
amap T : R" — R" such that T'(0) = ye; and T'(ye;) = 0. Such a map satisfies Ty = i

and

/ e, T(a))du(x) < / el 2)du(x)

which contradicts the minimality of the identity map.

Exercise 2.3. Find the unique monotone map 7" : [0,1] — [0,00) such that T u = v, where the
measures i, € Z(R) are given by u = £L[0,1] and v = e 2L [0, 00).

Solution: We are looking for the transport map between two absolutely continuous measures on
the real line. In particular, T : [0,1] — [0,00) is a monotone increasing function. This, coupled

with the transport condition forces

([0, 2]) = v(T([0,2])) = v([0, T (2)])

for all z € [0,1]. That is,
T(z)
x = / etdt=1-¢T@ o T(z)=—log(l —x).
0

So the map we are looking for is T'(z) = — log(1 —x). Alternatively, one can directly use monotone

rearrangement (see Section 1.4.1) to deduce the desired result.

The next three exercises are devoted to the derivation of some properties of the Knothe transport

map. Given f,g:R? — R two positive functions with integral 1, we define

F(:L‘l):/Rf(ml,xg)dxg, G(xl):/Rg(xl,xg)dxg.

Let T7 : R — R be the monotone map which sends F'(x1) dx1 to G(x1) dx1, namely (1) (F(x1) dx1) =
G(z1)dz;. For every z1 € R, let Ta(x1,-) be the monotone map which sends f(z1,x2)/F(x1)dzs to
g(Ty(x1), 22)/G(T1 (1)) dz2. The Knothe’s map T : R? — R? is defined as

T(x1,22) = (Ty(21), Ta(z1, 72)).

Exercise 2.4. Show that the Knothe’s map T'(x1,x2) = (T1(z1), T2(x1, x2)) transports the measure
p = f(z1,22) drides to v = g(x1, x2) dridas.



Solution: For any ¢: R? — R Borel and bounded, we have

/R2 o(y1,y2) dv(yt, y2) = /R2 ©(y1,y2)9(y1, y2) dy1dy2

:/R(/R@(yl,yz)g(gzj;)dw) G(y1) dipt

1 =V(y1)

= / U (y1)G(y1) dya
R

:/\I/(T1($1))F($1)d$l
R

= [ ([ o, D012 ) i e,

:/R(é@(Tl(xl),Tg(xl,xg))Wdm2> Fz1) doy

://90(T1($1)7T2($1,$2))f($1,962)dw2d$1
R JR

— /(gp o T)(:rl, xg) du($1, $2)7
R

where we used

Y2.

(Tl)#(F(xl) dl‘l) = G(xl) dl‘l and Tg(l'l, -)# <f(x1’ ) d(L‘Q) = M

F(x1) ~ G(T(x1))
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Exercise 2.5. Let T' be a Knothe’s map from p = ﬁ dr to v = ’331’
1

ball and E C R? a bounded open set with smooth boundary. Assuming that 7" is smooth, show that

dy, where By C R? is the unit

(i) For any x € E, it holds |T'(z)| < 1.

(i) det VT = ‘531” in E.

(ifi) divT > 2(det VT)2.

Hint: For and notice that the Jacobian VT of a Knothe’s map T is upper triangular and all

values on the diagonal are non-negative.

Solution:

(i) If x € E, then T(z) € By and thus |T'(z)| < 1.

(ii) Let A C By, so that T71(A) C E. Since Tyu = v, we have

(4) = T ) = [ » 5




On the other hand, using change of variables with y = T'(x) such that dy = | det VT'| dz, we

get
1

1
VA:/d :/ —— | det VT'(z)| dzx.

Since VT is upper triangular and its diagonal elements are nonnegative, det VI' > 0, hence

1 1
dx:/ —— det VT'(z) dx.
/T—l(A) |E| 7-1(4) |B1 (=)

Since A C Bj is arbitrary, we deduce

det VT 1
= — inside E.
| B1| |E|
(iii) First of all note that for any nonnegative numbers z1, ..., x4,
L 1
1) : ! 1 ¢ 1 1
,-1_11 | = Z.l_IlexlD(hn(ﬂcz')) =exp | - ; In(z;) | < - ;exp(ln(xi)) =~ ZZ; zi. (1)

Since VT is upper-triangular, its determinant is given by the product of its diagonal elements.
Hence
1
2 12 2 bl X
divT(z) =) ,Ti(z) =2 (2 2 8Z-Ti(x)> >2 (Hl aﬂ;-(x)> = 2(det VT'(z))2
1= 1=

=1

where the inequality follows from .

Exercise 2.6 (Isoperimetric inequality in R?). Let £ C R? be a bounded open set with smooth
boundary. Show that
Length(0F) > 2|By|?|E|z.

Solution: Denote by vg the outer unit normal to OF and by do the surface measure on OF.
Denote by T' a Knothe’s map from pu to v as defined in Exercise Note that T-vg < |T||vg| <
|T| <1 due to|(i)|in Exercise Therefore, we get

Length(aE):/ ldaZ/ T| dUZ/ T-vgdo
oF oE oF

1

B 2
:/didemzz/(detVT)%dx=2/ <|1|> dx = 2|By|?|E|z,
E E e\ |E|

where we used from Exercise and the divergence theorem.

Remark 2.1. The definition of the Knothe’s map as well as the proof of the three previous exercises

can be carried out in the same way in a general dimension d without many new ideas but at the price



of a heavier notation. The student is invited to try himself to generalize to the d-dimensional case the

definition of Knothe’s map, its properties, and its use in the proof of the Isoperimetric inequality.



