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EPFL, Mathematics section, Dr. Xavier Fernández-Real

Exercise 2.1. Determine the measure T#µ for the map T = ∇φ : R2 → R2, where the function

φ : R2 → R2 is given by φ(x1, x2) =
1
3(x

3
1 + x32), for the following choices of µ:

(i) µ = δ(0,0) + δ(1,2);

(ii) µ = L 2 [0, 1]2.

Consider the Monge problem with the cost function c(x, y) = |x−y|2
2 . Is the map T optimal from µ to

T#µ, for µ as in (i)?

Solution:

(i) Note that T (x1, x2) = (x21, x
2
2). Let φ : R2 → R2 be a bounded Borel function, then∫

R2

φd(T#µ) =

∫
R2

φ ◦ T dµ = φ(T (0, 0)) + φ(T (1, 2))

= φ(0, 0) + φ(1, 4) =

∫
R2

φd(δ(0,0) + δ(1,4)).

Thus, T#µ = δ(0,0) + δ(1,4).

(ii) In a similar way, with φ : R2 → R2 a bounded Borel function,∫
R2

φd(T#(1[0,1]2L
2)) =

∫
R2

φ ◦ T d(1[0,1]2L
2)

=

∫
[0,1]2

φ(T (x1, x2)) dL
2(x1, x2)

=

∫
[0,1]2

φ(T (
√
u,

√
v))

∣∣∣∣∣det
(

1
2
√
u

0

0 1
2
√
v

)∣∣∣∣∣ dL 2(u, v)

=

∫
[0,1]2

φ(u, v)
1

4
√
uv

dL 2(u, v),

where we used the change of variables formula. Thus, T#µ = 1[0,1]2
1

4
√
xy

L 2.

(iii) Consider the case µ = δ(0,0) + δ(1,2). From the first point we have that T#µ = δ(0,0) + δ(1,4).

For the Monge problem each competitor T̃ : R2 → R is such that T̃#µ = δ(0,0) + δ(1,4) which

implies that T̃ ((0, 0)) = (0, 0),

T̃ ((1, 2)) = (1, 4).
or

T̃ ((0, 0)) = (1, 4),

T̃ ((1, 2)) = (0, 0).
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In the first case, the cost of T̃ is clearly the same as the cost of T , because T and T̃ coincide

in the support of µ. In the second case we can explicitly compute∫
R2

c(x, T̃ (x))dµ =
|(1, 4)− (0, 0)|2

2
+

|(0, 0)− (1, 2)|2

2
= 11 > 2 =

∫
R2

c(x, T (x))dµ.

Hence T is optimal for the Monge problem.

Exercise 2.2. Let us introduce the following notation for the Monge problem:

MP (µ, ν, c) := inf

{∫
X
c(x, T (x))dµ(x) : T#µ = ν

}
.

(i) Give a cost function c : R2 × R2 → [0,∞) of the form c(x, y) = f(|x − y|) for some Lipschitz

function f : [0,∞) → [0,∞) and a measure µ for which the identity is not an optimal map for

the problem MP (µ, µ, c). More precisely, give a cost function c as above, a measure µ and a

map T such that T#µ = µ and∫
R2

c(x, T (x))dµ(x) <

∫
R2

c(x, x)dµ(x).

(ii) Let c : Rn × Rn → [0,∞) be a measurable cost function such that c(x, y) = f(|x − y|) for a

measurable f : [0,∞) → [0,∞). What is a necessary and sufficient condition on the cost function

c in such a way that the identity is an optimal map for MP (c, µ, µ) for any µ ∈ P(Rn)?

Solution:

(i) Consider c(x, y) = max{0, 12 − |x− y|}, µ = 1B(0,1)\B(0,1/2) and T (x) = Rπ(x), where Rπ is

the rotation map of an angle π namely

Rπ =

(
−1 0

0 −1

)

We let the reader verify that (Rπ)#µ = µ and

0 =

∫
R2

c(x,Rπ(x))dµ(x) <

∫
R2

c(x, x)dµ(x) =
1

2
.

(ii) We claim that the necessary and sufficient condition on c(x, y) = f(|x− y|) is that

f(0) = min
x∈[0,∞)

f(x).

It is a sufficient condition: we have that∫
Rn

c(x, x)dµ(x) =

∫
Rn

f(0)dµ(x) ≤
∫
Rn

f(|x− T (x)|)dµ(x),
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for any µ ∈ P(Rn) and any map T : Rn → Rn.

It is a necessary condition: suppose by contradiction that the identity is an optimal map of

the problem MP (µ, µ, c) for any µ ∈ P(Rn) and there exists y > 0 such that f(y) < f(0),

then we define µ = 1
2δ0 +

1
2δye1 , where e1 is the first vector of the standard basis of Rn. Fix

a map T : Rn → Rn such that T (0) = ye1 and T (ye1) = 0. Such a map satisfies T#µ = µ

and ∫
Rn

c(x, T (x))dµ(x) <

∫
Rn

c(x, x)dµ(x)

which contradicts the minimality of the identity map.

Exercise 2.3. Find the unique monotone map T : [0, 1] → [0,∞) such that T#µ = ν, where the

measures µ, ν ∈ P(R) are given by µ = L 1 [0, 1] and ν = e−xL 1 [0,∞).

Solution: We are looking for the transport map between two absolutely continuous measures on

the real line. In particular, T : [0, 1] → [0,∞) is a monotone increasing function. This, coupled

with the transport condition forces

µ([0, x]) = ν(T ([0, x])) = ν([0, T (x)])

for all x ∈ [0, 1]. That is,

x =

∫ T (x)

0
e−t dt = 1− e−T (x) ⇔ T (x) = − log(1− x).

So the map we are looking for is T (x) = − log(1−x). Alternatively, one can directly use monotone

rearrangement (see Section 1.4.1) to deduce the desired result.

The next three exercises are devoted to the derivation of some properties of the Knothe transport

map. Given f, g : R2 → R two positive functions with integral 1, we define

F (x1) =

∫
R
f(x1, x2) dx2, G(x1) =

∫
R
g(x1, x2) dx2.

Let T1 : R → R be the monotone map which sends F (x1) dx1 to G(x1) dx1, namely (T1)#(F (x1) dx1) =

G(x1) dx1. For every x1 ∈ R, let T2(x1, ·) be the monotone map which sends f(x1, x2)/F (x1) dx2 to

g(T1(x1), x2)/G(T1(x1)) dx2. The Knothe’s map T : R2 → R2 is defined as

T (x1, x2) = (T1(x1), T2(x1, x2)).

Exercise 2.4. Show that the Knothe’s map T (x1, x2) = (T1(x1), T2(x1, x2)) transports the measure

µ = f(x1, x2) dx1dx2 to ν = g(x1, x2) dx1dx2.
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Solution: For any φ : R2 → R Borel and bounded, we have∫
R2

φ(y1, y2) dν(y1, y2) =

∫
R2

φ(y1, y2)g(y1, y2) dy1dy2

=

∫
R

(∫
R
φ(y1, y2)

g(y1, y2)

G(y1)
dy2

)
︸ ︷︷ ︸

: =Ψ(y1)

G(y1) dy1

=

∫
R
Ψ(y1)G(y1) dy1

=

∫
R
Ψ(T1(x1))F (x1) dx1

=

∫
R

(∫
R
φ(T1(x1), y2)

g(T1(x1), y2)

G(T1(x1))
dy2

)
F (x1) dx1

=

∫
R

(∫
R
φ(T1(x1), T2(x1, x2))

f(x1, x2)

F (x1)
dx2

)
F (x1) dx1

=

∫
R

∫
R
φ(T1(x1), T2(x1, x2))f(x1, x2) dx2dx1

=

∫
R
(φ ◦ T )(x1, x2) dµ(x1, x2),

where we used

(T1)#(F (x1) dx1) = G(x1) dx1 and T2(x1, ·)#
(
f(x1, ·)
F (x1)

dx2

)
=

g(T1(x1), ·)
G(T1(x1))

dy2.

Exercise 2.5. Let T be a Knothe’s map from µ =
1E

|E|
dx to ν =

1B1

|B1|
dy, where B1 ⊆ R2 is the unit

ball and E ⊆ R2 a bounded open set with smooth boundary. Assuming that T is smooth, show that

(i) For any x ∈ E, it holds |T (x)| ≤ 1.

(ii) det∇T =
|B1|
|E|

in E.

(iii) div T ≥ 2(det∇T )
1
2 .

Hint: For (ii) and (iii), notice that the Jacobian ∇T of a Knothe’s map T is upper triangular and all

values on the diagonal are non-negative.

Solution:

(i) If x ∈ E, then T (x) ∈ B1 and thus |T (x)| ≤ 1.

(ii) Let A ⊆ B1, so that T−1(A) ⊆ E. Since T#µ = ν, we have

ν(A) = µ(T−1(A)) =

∫
T−1(A)

1

|E|
dx.
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On the other hand, using change of variables with y = T (x) such that dy = | det∇T | dx, we
get

ν(A) =

∫
A

1

|B1|
dy =

∫
T−1(A)

1

|B1|
|det∇T (x)| dx.

Since ∇T is upper triangular and its diagonal elements are nonnegative, det∇T ≥ 0, hence∫
T−1(A)

1

|E|
dx =

∫
T−1(A)

1

|B1|
det∇T (x) dx.

Since A ⊆ B1 is arbitrary, we deduce

det∇T

|B1|
=

1

|E|
inside E.

(iii) First of all note that for any nonnegative numbers x1, . . . , xd,

(
d∏

i=1

xi

) 1
d

=

(
d∏

i=1

exp(ln(xi))

) 1
d

= exp

(
1

d

d∑
i=1

ln(xi)

)
≤ 1

d

d∑
i=1

exp(ln(xi)) =
1

d

d∑
i=1

xi. (1)

Since∇T is upper-triangular, its determinant is given by the product of its diagonal elements.

Hence

div T (x) =
2∑

i=1

∂iTi(x) = 2

(
1

2

2∑
i=1

∂iTi(x)

)
≥ 2

(
2∏

i=1

∂iTi(x)

) 1
2

= 2(det∇T (x))
1
2

where the inequality follows from (1).

Exercise 2.6 (Isoperimetric inequality in R2). Let E ⊂ R2 be a bounded open set with smooth

boundary. Show that

Length(∂E) ≥ 2|B1|
1
2 |E|

1
2 .

Solution: Denote by νE the outer unit normal to ∂E and by dσ the surface measure on ∂E.

Denote by T a Knothe’s map from µ to ν as defined in Exercise 2.5. Note that T · νE ≤ |T ||νE | ≤
|T | ≤ 1 due to (i) in Exercise 2.5. Therefore, we get

Length(∂E) =

∫
∂E

1 dσ ≥
∫
∂E

|T | dσ ≥
∫
∂E

T · νE dσ

=

∫
E
div T dx ≥ 2

∫
E
(det∇T )

1
2 dx = 2

∫
E

(
|B1|
|E|

) 1
2

dx = 2|B1|
1
2 |E|

1
2 ,

where we used (ii), (iii) from Exercise 2.5 and the divergence theorem.

Remark 2.1. The definition of the Knothe’s map as well as the proof of the three previous exercises

can be carried out in the same way in a general dimension d without many new ideas but at the price
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of a heavier notation. The student is invited to try himself to generalize to the d-dimensional case the

definition of Knothe’s map, its properties, and its use in the proof of the Isoperimetric inequality.
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