Serie 1
Optimal transport, Fall semester
EPFL, Mathematics section, Dr. Xavier Fernandez-Real

Remark: Any reference made to equations or statements (theorems, propositions, lemmas, etc)

in the series of exercises refer to the book followed by this course:

A. Figalli, F. Glaudo, An Invitation to Optimal Transport, Wasserstein Distances
and Gradient Flows.

The notion of convex function is fundamental in the course, since one of the main results of the
theory represents optimal transport maps as gradients of convex functions, under suitable assumptions.

For this reason, we devote the first exercise sheet to deduce useful properties of convex functions.

Definition 1. A function f : R? — R U {+o0} is said to be convex if
Oz + (1 =ANy) <Af(z)+ (1 =Nfly)  vAc[0,1].

We recall hereafter some basic properties of convex functions. They should be known to the students

from bachelor courses in analysis and may be taken from granted.

e Let f: R" - RU {400} be a convex function. Then, for every finite collection of points
r1,...,2, € RY and any choice of \i,...,\, € [0,1] with \; 4+ --- 4+ \,, = 1, we have:

Fazr+ -4+ Axn) < Aif(xn) + -+ A f(zn).

e f:RY = RU{+o0} is convex if and only if its epigraph {(z,y) € R¥*! :y > f(z)} is convex.
e f:R% = RU{+oo} is convex if and only if it can be written as the supremum of affine function

o If f:R? — R is convex, then it satisfies the monotonicity of difference quotients, namely: for
any triple of pairwise distinct points z,y, z € R? such that y € {(1 — N)xz 4+ Az : X € [0,1]}, we

) = ) _ ()= f@) _ )= f)

ly—= — |z—2 T |z—y]

have

In particular, if f is C', then, for every direction e € S !, 9, f is non-decreasing in direction e.

e A C? function f : RY — R is convex if and only if, for every x € RY, D?f(z) is a nonnegative

definite matrix.

f you did not see this fact before, you can prove it with the following hint: By the assumption and the first bullet,
we know that the epigraph of ¢ is convex. We need to show that, for any point (z,y) with y < f(z), there is a line
passing through (x,y) and which lies below z. To this end, take the point at minimal distance to (x,y) in the epigraph
(why does it exist?) and consider the plane passing from (z,y) and perpendicular to the segment which realizes the
minimal distance.



Exercise 1.1 (Convex functions are locally Lipschitz). Let f : R? — RU{+o00} be a convex function.
Let D := {f < 400} be its finiteness domain. Show that f is locally Lipschitz in the interior of D.
More precisely, for each ball Br(xo) compactly contained in int(D) show the following:

(i) f is bounded in Br(zo).
(ii) For every 0 < r < R and for every z,y € B,(xg),

SUPB, (20) / — By (o) f

|f(z) = f(y)] < -

lz —yl.

Hints: For (i), you may assume without loss of generality that the hypercube Qar(zo) with side
length 2R centered in z( is compactly supported in int(D). Deduce from the finiteness of f in the
vertices of Qar(zp) that f is bounded from above in Br(zp). The bound from below follows from
a characterization described before the exercise. To prove (ii) use appropriately the monotonicity of

difference quotients.

Solution:

(i) Assume without loss of generality that the hypercube Qar(zo) is compactly contained in
int(D) and call {v;}2_, its vertices (N = 24). Then clearly M := maxx—_1,__n |f(vx)| < 400
as the cube is compactly contained in int(D). Note that any point © € Bpg(zp) can be
written as a convex combination of {vi}Y_,, i.e. there are {A\;}_, with A\; € [0,1], such

that Zivzl A =1and z = Ei\;l Aevg. Now, since f is convex,

N N
flx) =1 (Z /\k'Uk> <> Mef (o) < M.
k=1
This proves that f is bounded from above in Br(zg). To prove the bound from below, notice

that since f can be written as the supremum of affine functions, in particular there must
exist ¢ € R and v € R” such that

f(@) = ¢+ (v, ).

Now, clearly the affine function on the right-hand side is bounded below in Br(zg) by some
constant m € R. We conclude that m < f < M on Bgr(x).

(ii) Without loss of generality assume that f(z) < f(y). Let z be the intersection between the
half line starting at = passing through y and 0BRr(zp). By the monotonicity of difference

quotients, we have

F) -~ £(x) _ ()~ )
-yl T |z—xf
Since z € 0BRr(wo) and x € By(x9), [z — x| > R —r. In addition, f(z) < supp, (4, [, and

f(z) > infp, () f. Therefore we conclude that

SupBR($0) f - lnfBR(xo) f

f(y)—f(w)ﬁ R—1r

|z —yl.




By the previous exercise and the Rademacher’s Theorem stated below, we deduce that convex
functions are almost everywhere differentiable on their finiteness domain. This fact will be used in

the course, for instance to give a meaning to Brenier theorem.

Theorem 1 (Rademacher). Let f : R — R be a locally Lipschitz function. Then the set of points

where f is not differentiable is negligible for the Lebesgue measure.

Second differentiability results are also known. In fact, for a general convex function f : R* — R it can
be proven that f is almost everywhere twice differentiable (Alexandrov’s Theorem), moreover, in the
sense of distributions, D? f turns out to be a matrix-valued nonnegative measure. This complementary
material won’t be proved during the course, but the interested student is invited to ask for a proof of

these results in the form of a guided exercise.

Definition 2. Given f : R? — R U {+o00} convex, we define the subdifferential of f at x € R? as

Of(x) = {y e RY: f(2) > f(x) + (y, 2 — x) Vz € R},

Exercise 1.2. Let f : R? — RU{+o00} be a convex function, D = {f < +oco} be its finiteness domain
and zo € int(D).

(i) Show that df(xo) is not empty.
(ii) Show that df(xo) is a closed convex set.
(iii) Compute the subdifferential of the following functions defined on R:

z+1
filey) = VP falwy) = e~ 1]+ 1L

(iv) Give an example of a nonconvex function f : R — R whose subdifferential is empty at every

point € R. Can you make it C'?

Hint: To prove point (i) it may be useful to recall the Hahn-Banach Theorem (first geometric form):
Let A, B C R" be two disjoint convex sets, with A open. Then there exists an hyperplane which

separates A and B. More precisely, there exists a vector v € R and a number o € R for which
(v,2) < a < (v,y) forevery z € A and every y € B.

To show the existence of an element in the subdifferential, choose appropriately A and B!

Solution:

(i) Let us start proving that df(z¢) is not empty. Define A = {(z,y) € int(D) xR :y > f(z)}
which is clearly convex and open, since f is convex and hence continuous in int(D). Notice
that (zo, f(z0)) € A, and therefore by the first geometric form of the Hahn-Banach theorem,
there is a hyperplane that separates A and (xg, f(xg)). Now we need to exclude the case

where the hyperplane is of the form {(z,y) € R x R : (w, 2)ga = ¢} for some w € R4\ {0}




and ¢ € R (that is, it is vertical). Let us argue by contradiction. Assume that it does take
this form. Since int(D) is open, there is r > 0 such that B,(z¢) C int(D). Then there are
x1,x2 € By(x0) for which

(w,x1)ga < ¢ and  (w,x2)pa > cC.

But then the hyperplane strictly separates (x1, f(z1)+ 1) and (z2, f(z2) + 1), although both
belong to A. This gives a contradiction. Hence the hyperplane separating A and (xo, f(z¢))
is not vertical and takes the form {(z,y) € R? x R : (w,z)ga +y = ¢} for some w € R

Since (xo, f(z0)) is in the closure of A,
(W, xo)pe + f(20) = ¢ < (w,z)pa +y for every (z,y) € A. (1)
Taking x € int(D) and y = f(z) + €, for an arbitrary € > 0 in the formula above we get
f(x) > f(zo) + (w,x — xg)ga — € for every e > 0,

from which we deduce that w € df(x).

(ii) The convexity of Of(x¢) follows from a simple computation. Let y,z € df(z) and t € [0, 1].

Then for all z € R% we have

f@) =1 =) f@@) +tf(@") > A =)(f(x) + (y,2" —x)) +t(f(z) + (2,2 — x))
= f(x)+ {1 —t)y +tz, 2’ — ).

Hence (1 —t)y 4+ tz € df(xp). The closedness of 0f(zp) is deduced immediately from the

definition of subdifferential and the fact that the scalar product is continuous.

(iii) We have

> y if (x .
ofi(z,y) = KWW)} f (z,y) # (0,0);
{(wy) eR?:2? +y> <1} if (z,y) = (0,0),

and .
{(—%,O)} if x < —1;
—3,-1x {0} ifz=-1;
dfa(z,y) = ¢ {(-3,0)} if —l<z<l;
L)X {0} et
{(3,0)} if x> 1.
(iv) Take f(x) = —z%. Let xo be arbitrary and assume for a contradiction that there is v such

that v € 0f(xo), then
v(x — o) < 25 — 2* = (o — 2)(x0 +2) Vr €R,

so that for z > zo, we get v < —(z¢ + z). Letting x — oo, we deduce a contradiction. We




conclude that the subdifferential is empty at every point.

Exercise 1.3 (Monotonicity of the subdifferential). Let f : R? — R be a convex function. Show the

following facts:

(i) For every z1,x2 € R? and every & € 0f(x1),& € Of (z2) we hav

(&2 — &1, 29 — 1) > 0.

(ii) For every collection of points x1,...,z, € R?% given any & € df(x1),...,& € Of(xy,), and any

permutation o of {1,...,n}, we have
Z (G i) > Z (Eofiys Ti)-
i=1
Solution:

(i) By the definition of subdifferential, we have

(z1) + (§1, 72 — 71),

f
f(z2) + (2,21 — x2).

Summing the two inequalities above and rearranging terms we get precisely the monotonicity
condition (&2 — &1, 2 — x1) > 0.

(ii) Let us first assume that o is a cycle, that is to say

{1,...,n} = {o(1),0%(1),...,0™(1)}.

By the definition of subdifferential we know that

f(l‘gi(l)) > f(iUUiJrl(l)) + (fgwl(l), $oi(1) - $0i+1(1)> for every 1€ {1, cee ,n}.

Summing the above inequalities over i € {1,...,n} we get
n n
Z<§O’i+1 U“Ll(l Z ga“Ll )>a
i=1 i=1

which, using the fact that ¢ is a cycle, can also be rewritten as

D (Gmi) =) {Cop i),
=1 =1

Once we have proven the result for cyclic permutations, the general case can be obtained by

noticing that each permutation is the union of disjoint cycles.

2This property can also be restated by saying that the multi-valued function df is “monotone”.



Exercise 1.4 (A characterization of differentiability). Let f : R? — R be a convex function. Prove

the following facts:
(i) If f is differentiable at a point z, then 0f(x) = {V f(z)}.
(i) (¢) If Of(z) is a singleton, then f is differentiable at .

Hint: To prove (ii) you can assume that z =0, f(0) =0 and 9f(0) = {0}. Then argue by contradic-
tion: suppose that f is not differentiable at 0 and find some direction along which f grows linearly.

Then use the Hahn-Banach Theorem to obtain a non-zero element in the subdifferential.

Solution:

(i) Remember the definition of differentiability: f is differentiable at z if there exists a vector
Vf(x) € R? such that

[f(@+v) = fz) = (Vf(z),0)]

[l

—0 as|v]—=0.

The above condition can be rewritten in a compact form as

[z +v) = f(x) + (Vf(x),v) + of|v]),

where we recall that the “little-o notation” g = o(h) stands for |g|/h — 0. Suppose that f is
differentiable at x. Then, for every y # x and ¢ € (0, 1), from the monotonicity of difference

quotients:

flz+tly —=x) - fz)

tly — x| ly—a| = (Vf(x),y—x)+o(l) ast— 0"

fy) = f(z) >

Hence, sending ¢ to 0 we get f(y) > f(z)+(Vf(x),y—x) for every y € R%, which means that
Vf(x) € 0f(x). Now we want to prove that indeed d0f(z) = {Vf(x)}. Given £ € df(x), by

definition of subdifferential for every v € R%,

f(x) + (& v) < flz+v) = flx) +(Vf(z),0) +o(lv]).

Rearranging terms we get

(€= Vf(x),v) <offv]).

Choosing v = t(§ — Vf(z)) for t > 0 we obtain
tle = Vf(x)? <o(t) ast—0F

which implies that £ = Vf(x).

(ii) Up to a translation and the subtraction of the affine function f(x) + (&,-), we may assume
that x =0, f(0) = 0 and 9f(0) = {0}, so that we need to prove that
/()

—= =0 asy—0.
||




Suppose by contradiction that there exists a sequence y; # 0, such that y; — 0 and

f(y))
|y

>e>0 foreveryjeN.

Up to subsequences we may assume that y;/|y;| — e € S9%1. By the monotonicity of

difference quotients, for every r > 0 and every j large enough we have

FCry/lyil) o Fy;)
oyl

> €

and sending j to infinity, by the continuity of f we deduce
f(re) > re for every r > 0.
This means that the open convex set
A:={(y,t) R xR:t> f(y)}

and the convex set
B :={(re,re) : r > 0}

are separated in R% x R. Now the geometric form of Hahn-Banach Theorem provides us with
an hyperplane touching A from below and containing B. This contradicts the fact that 0 is
the unique element in the 9f(0), since € > 0, thus concluding the proof.

Exercise 1.5 ((¢) Boundedness and continuity of the subdifferential). Given a convex function f :
R? - R and a set E C R?, we call

of(E) = | Jof ().

zeE

(i) Prove that if f,g : R? — R are convex functions and Q C R? is a bounded open set such that
f=gondQ and f < gin €, then
dg(1) C If(Q).

(ii) Prove that Of is locally bounded, that is to say, for every bounded set E C R? 9f(E) is also
bounded.

(iii) Given a sequence x; € R? and & € 0f(x;), assume that x; — x. Prove that up to subsequences,
& — &, for some & € Of ().

(iv) Prove that f is C' if and only if df(z) is a singlet for every z € RY.

Hints: For i) take any hyperplane touching g from below at some point x € Q and translate it down
vertically until it touches f from below for the first time. For ii) compare f locally with a suitably

chosen convex paraboloid and use point i).



Solution:

(i) Let z € Q. Take any £ € dg(x). We wish to prove that £ € 9f(z) for some z € Q. For every

number « € R, we consider the a-translation of the affine function f(x)+ (§,- — z),

0a(y) = flx) +(§y —2) +

Notice that by the local boundedness of convex functions, for o small enough, ¢, < f in Q.

Hence, it is well-defined the minimum « for which ¢, touches f from below on €, i.e.
ag :=sup{a € R: ¢, < fin Q}.

Notice that since (g touches g from below and g > f in 2, we must have ag < 0. Let g € Q
be a point at which ¢q,(z0) = f(x0). If 29 € Q, then £ € Jf(zp) and we are done. Suppose
instead that z¢g € 9. Then, since f(xo) = g(zp), it must be the case that ap = 0 and g

touches also f from below at x, which means that £ € df(z) concluding again.

(ii) Consider the convex paraboloid () = a + B|z — x¢|?, for some a € R and 3 > 0. Since f
is locally bounded above and below in Bg,(xp), we may choose « small enough and f large
enough so that f < ¢ in R?\ By, (x0) and f > ¢ in B,.(zo). In particular the open set
Q= {f > p} satisfies

B, (z9) C Q C Bay(x0),
f=¢ on o,
f>¢ in Q.
Thus, from point i) we deduce that df(B,(x¢)) C dp(Bar(x0)) = Basr(0).

(iii) Since z; is a bounded sequence, by point ii) also &; is bounded, and so, up to subsequences
& — & We only need to show that £ € df(x). Now, since §; € 0f(x;), we have

fly) > f(zj) + &,y —x;) for every j and every y € R

Sending j to oo, and using the convergences x; — z, §; — § and f(x;) = f(z) we get

fly) > f(x) + (&, y —x) for every y € R?

which means that £ € 9f(x), as desired.

(iv) If f € C%, in particular it is differentiable at each point, thus, from a previous exercise,
Of(x) = {Vf(z)} for every x € R%. Conversely, if df(x) is a singlet for every x € RY, then
f is differentiable at each point and 0f(x) = {Vf(z)}, so that we only need to prove that

V f is a continuous function, but this easily follows from point iii).

Exercise 1.6 ((¢) Extended gradient and descending slope). Let f : R? — R be a convex function.

(i) Prove that for every z € R? there exists a unique vector ¢ € df(z) with minimal norm. Such



vector is often called the “extended gradient” of f at z. In this exercise we will denote it by
V().

(ii) Prove that z is a minimum of f if and only if V f(x) = 0.

(iii) Prove that the modulus of the extended gradient equals the so called “descending slope” of f:

‘vf(x)‘ = sup [f(x) __f(y)]+,
y#xT ’y ‘T|

where the superscript “+” stands for the positive part, i.e. a™ := max{a,0}. Deduce from it
that the map z +— |V f(x)| is lower semi-continuous.

Hints: In point iii), to prove the < inequality it may be a good idea to use the Hahn-Banach Theorem
as follows. Call m the descending slope of f at x and prove that the following convex subsets of R? x R

are disjoint:
A:={(y,r) € RExR:7 < —mly —z|}, B:={(y,r) € RIx R: fly) — f(x) <r}.

Deduce that there exists an hyperplane in R? x R which separates A and B. Finally, find a vector
¢ € 0f(x) such that || < m.

Solution:
(i) Vf(z) is simply obtained as the unique projection of 0 on the closed convex set f(x).
(ii) It is enough to notice that = is a minimum point for f if and only if 0 € 9f(x).

(iii) We prove the stated formula. The fact that x + |V f(x)| is lower semi-continuous then
follows from its representation as the supremum of continuous functions. First notice that,

by Vf(x) € 0f(x), for every y # ,

f@) = f(y) < (=V @),y —2) < [V (@)lly — 2|

Hence

up F @) = FI*

v )
sup )TV < 9 (e)

Now we wish to prove the opposite inequality. Call

m o= sup H B~ TWIT
Y#xT ‘y_x‘

We want to prove that there exists an element £ € df(x) such that |£| < m. Observe that

by definition of m we have
F(y) = f(z) = —mly — x| for every y € RY.
Thus, the open convex set

A= {(y,r)eRde:r<—m\y—x]}




and the closed convex set

B:={(y,r) eR*xR: f(y) — f(z) <r}

are disjoint in R? x R. From the geometric form of Hahn-Banach theorem, we deduce that
there exist an hyperplane in R? x R separating A and B. In particular, there exist £ € R?
and o € R such that

fy) = f(x) > (& y) +a>—mly—z| for every y € RY.

Now, taking y = x in the formula above, we derive a = —(¢, z). Therefore, from the first

and the second inequality we respectively get, for every y € R%:

) = f@) 2 &y — =),
<§,y—[IJ> > —

mly — x|.

The first implies that £ € df(x), while choosing y = x — £ in the second we get |{] < m.
This concludes the proof.

Exercise 1.7. Let f : R — R be a convex function in one space dimension. Then there exists a
countable set Z C R such that f is differentiable at = for every z € R\ Z.
Hint: Consider the map that associates to each point x € R the length of 0f(z).

Solution: For every z € R, df(x) is a non-empty bounded closed convex subset of R, hence

for some b(x) > a(z). The result is proven if we show that a(x) = b(z) out of a countable set, as
in each such point df(z) = {a(x)} which implies that f is differentiable at x thanks to a previous

exercise. From the monotonicity of 0f we know that

a(z) <b(z) <aly) <bly) forevery z <y,

thus, in particular

int(0f (z)) Nint(0f(y)) =0 for every = # y.

Define the function ¢ : R — R as
¢(a) = L1 (0f(x)) = b(x) — a(z).
For every n € N we consider the following sets

Zp:={zx eR:0f(x) C (—n,n),p(x) > 1/n}

10



and we call Z their union

7 = UZn.

neN

Observe that a(x) = b(x) for every € R\ Z, therefore we only need to prove that each Z,, is

finite. Indeed, we claim that #7, < 2n?. In fact, if x1,..

., X are pairwise distinct points in Z,,,

N N
on =L ((—n,n)) > L (Uim(&f@)) = 2" (int(df (x4))) > N/n.
=1 i=1
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