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Optimal transport, Fall semester

EPFL, Mathematics section, Dr. Xavier Fernández-Real

Remark: Any reference made to equations or statements (theorems, propositions, lemmas, etc)

in the series of exercises refer to the book followed by this course:

A. Figalli, F. Glaudo, An Invitation to Optimal Transport, Wasserstein Distances

and Gradient Flows.

The notion of convex function is fundamental in the course, since one of the main results of the

theory represents optimal transport maps as gradients of convex functions, under suitable assumptions.

For this reason, we devote the first exercise sheet to deduce useful properties of convex functions.

Definition 1. A function f : Rd → R ∪ {+∞} is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀λ ∈ [0, 1].

We recall hereafter some basic properties of convex functions. They should be known to the students

from bachelor courses in analysis and may be taken from granted.

� Let f : Rn → R ∪ {+∞} be a convex function. Then, for every finite collection of points

x1, . . . , xn ∈ Rd, and any choice of λ1, . . . , λn ∈ [0, 1] with λ1 + · · ·+ λn = 1, we have:

f(λ1x1 + · · ·+ λnxn) ≤ λ1f(x1) + · · ·+ λnf(xn).

� f : Rd → R ∪ {+∞} is convex if and only if its epigraph {(x, y) ∈ Rd+1 : y ≥ f(x)} is convex.

� f : Rd → R∪{+∞} is convex if and only if it can be written as the supremum of affine functions1.

� If f : Rd → R is convex, then it satisfies the monotonicity of difference quotients, namely: for

any triple of pairwise distinct points x, y, z ∈ Rd such that y ∈ {(1− λ)x+ λz : λ ∈ [0, 1]}, we
have

f(y)− f(x)

|y − x|
≤ f(z)− f(x)

|z − x|
≤ f(z)− f(y)

|z − y|
.

In particular, if f is C1, then, for every direction e ∈ Sd−1, ∂ef is non-decreasing in direction e.

� A C2 function f : Rd → R is convex if and only if, for every x ∈ Rd, D2f(x) is a nonnegative

definite matrix.

1If you did not see this fact before, you can prove it with the following hint: By the assumption and the first bullet,
we know that the epigraph of φ is convex. We need to show that, for any point (x, y) with y < f(x), there is a line
passing through (x, y) and which lies below x. To this end, take the point at minimal distance to (x, y) in the epigraph
(why does it exist?) and consider the plane passing from (x, y) and perpendicular to the segment which realizes the
minimal distance.
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Exercise 1.1 (Convex functions are locally Lipschitz). Let f : Rd → R∪{+∞} be a convex function.

Let D := {f < +∞} be its finiteness domain. Show that f is locally Lipschitz in the interior of D.

More precisely, for each ball BR(x0) compactly contained in int(D) show the following:

(i) f is bounded in BR(x0).

(ii) For every 0 < r < R and for every x, y ∈ Br(x0),

|f(x)− f(y)| ≤
supBR(x0) f − infBR(x0) f

R− r
|x− y|.

Hints: For (i), you may assume without loss of generality that the hypercube Q2R(x0) with side

length 2R centered in x0 is compactly supported in int(D). Deduce from the finiteness of f in the

vertices of Q2R(x0) that f is bounded from above in BR(x0). The bound from below follows from

a characterization described before the exercise. To prove (ii) use appropriately the monotonicity of

difference quotients.

Solution:

(i) Assume without loss of generality that the hypercube Q2R(x0) is compactly contained in

int(D) and call {vk}Nk=1 its vertices (N = 2d). Then clearly M := maxk=1,...,N |f(vk)| < +∞
as the cube is compactly contained in int(D). Note that any point x ∈ BR(x0) can be

written as a convex combination of {vk}Nk=1, i.e. there are {λk}Nk=1 with λk ∈ [0, 1], such

that
∑N

k=1 λk = 1 and x =
∑N

k=1 λkvk. Now, since f is convex,

f(x) = f

(
N∑
k=1

λkvk

)
≤

N∑
k=1

λkf(vk) ≤ M.

This proves that f is bounded from above in BR(x0). To prove the bound from below, notice

that since f can be written as the supremum of affine functions, in particular there must

exist c ∈ R and v ∈ Rn such that

f(x) ≥ c+ ⟨v, x⟩.

Now, clearly the affine function on the right-hand side is bounded below in BR(x0) by some

constant m ∈ R. We conclude that m ≤ f ≤ M on BR(x0).

(ii) Without loss of generality assume that f(x) < f(y). Let z be the intersection between the

half line starting at x passing through y and ∂BR(x0). By the monotonicity of difference

quotients, we have
f(y)− f(x)

|x− y|
≤ f(z)− f(x)

|z − x|
.

Since z ∈ ∂BR(x0) and x ∈ Br(x0), |z − x| > R − r. In addition, f(z) ≤ supBR(x0) f , and

f(x) ≥ infBR(x0) f . Therefore we conclude that

f(y)− f(x) ≤
supBR(x0) f − infBR(x0) f

R− r
|x− y|.
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By the previous exercise and the Rademacher’s Theorem stated below, we deduce that convex

functions are almost everywhere differentiable on their finiteness domain. This fact will be used in

the course, for instance to give a meaning to Brenier theorem.

Theorem 1 (Rademacher). Let f : Rd → R be a locally Lipschitz function. Then the set of points

where f is not differentiable is negligible for the Lebesgue measure.

Second differentiability results are also known. In fact, for a general convex function f : Rd → R it can

be proven that f is almost everywhere twice differentiable (Alexandrov’s Theorem), moreover, in the

sense of distributions, D2f turns out to be a matrix-valued nonnegative measure. This complementary

material won’t be proved during the course, but the interested student is invited to ask for a proof of

these results in the form of a guided exercise.

Definition 2. Given f : Rd → R ∪ {+∞} convex, we define the subdifferential of f at x ∈ Rd as

∂f(x) = {y ∈ Rd : f(z) ≥ f(x) + ⟨y, z − x⟩ ∀z ∈ Rd}.

Exercise 1.2. Let f : Rd → R∪{+∞} be a convex function, D = {f < +∞} be its finiteness domain

and x0 ∈ int(D).

(i) Show that ∂f(x0) is not empty.

(ii) Show that ∂f(x0) is a closed convex set.

(iii) Compute the subdifferential of the following functions defined on R2:

f1(x, y) =
√
x2 + y2, f2(x, y) = |x− 1|+ |x+ 1|

2
.

(iv) Give an example of a nonconvex function f : R → R whose subdifferential is empty at every

point x ∈ R. Can you make it C1?

Hint: To prove point (i) it may be useful to recall the Hahn-Banach Theorem (first geometric form):

Let A,B ⊂ Rn be two disjoint convex sets, with A open. Then there exists an hyperplane which

separates A and B. More precisely, there exists a vector v ∈ Rn and a number α ∈ R for which

⟨v, x⟩ ≤ α ≤ ⟨v, y⟩ for every x ∈ A and every y ∈ B.

To show the existence of an element in the subdifferential, choose appropriately A and B!

Solution:

(i) Let us start proving that ∂f(x0) is not empty. Define A = {(x, y) ∈ int(D)× R : y > f(x)}
which is clearly convex and open, since f is convex and hence continuous in int(D). Notice

that (x0, f(x0)) ̸∈ A, and therefore by the first geometric form of the Hahn-Banach theorem,

there is a hyperplane that separates A and (x0, f(x0)). Now we need to exclude the case

where the hyperplane is of the form {(x, y) ∈ Rd × R : ⟨w, x⟩Rd = c} for some w ∈ Rd \ {0}
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and c ∈ R (that is, it is vertical). Let us argue by contradiction. Assume that it does take

this form. Since int(D) is open, there is r > 0 such that Br(x0) ⊂ int(D). Then there are

x1, x2 ∈ Br(x0) for which

⟨w, x1⟩Rd < c and ⟨w, x2⟩Rd > c.

But then the hyperplane strictly separates (x1, f(x1)+1) and (x2, f(x2)+1), although both

belong to A. This gives a contradiction. Hence the hyperplane separating A and (x0, f(x0))

is not vertical and takes the form {(x, y) ∈ Rd × R : ⟨w, x⟩Rd + y = c} for some w ∈ Rd.

Since (x0, f(x0)) is in the closure of A,

⟨w, x0⟩Rd + f(x0) = c ≤ ⟨w, x⟩Rd + y for every (x, y) ∈ A. (1)

Taking x ∈ int(D) and y = f(x) + ϵ, for an arbitrary ϵ > 0 in the formula above we get

f(x) ≥ f(x0) + ⟨w, x− x0⟩Rd − ϵ for every ϵ > 0,

from which we deduce that w ∈ ∂f(x0).

(ii) The convexity of ∂f(x0) follows from a simple computation. Let y, z ∈ ∂f(x) and t ∈ [0, 1].

Then for all x′ ∈ Rd we have

f(x′) = (1− t)f(x′) + tf(x′) ≥ (1− t)(f(x) + ⟨y, x′ − x⟩) + t(f(x) + ⟨z, x′ − x⟩)

= f(x) + ⟨(1− t)y + tz, x′ − x⟩.

Hence (1 − t)y + tz ∈ ∂f(x0). The closedness of ∂f(x0) is deduced immediately from the

definition of subdifferential and the fact that the scalar product is continuous.

(iii) We have

∂f1(x, y) =


{(

x√
x2+y2

, y√
x2+y2

)}
if (x, y) ̸= (0, 0);

{(x, y) ∈ R2 : x2 + y2 ≤ 1} if (x, y) = (0, 0),

and

∂f2(x, y) =



{(−3
2 , 0)} if x < −1;

[−3
2 ,−

1
2 ]× {0} if x = −1;

{(−1
2 , 0)} if − 1 < x < 1;

[−1
2 ,

3
2 ]× {0} if x = 1;

{(32 , 0)} if x > 1.

(iv) Take f(x) = −x2. Let x0 be arbitrary and assume for a contradiction that there is v such

that v ∈ ∂f(x0), then

v(x− x0) ≤ x20 − x2 = (x0 − x)(x0 + x) ∀x ∈ R,

so that for x > x0, we get v ≤ −(x0 + x). Letting x → ∞, we deduce a contradiction. We
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conclude that the subdifferential is empty at every point.

Exercise 1.3 (Monotonicity of the subdifferential). Let f : Rd → R be a convex function. Show the

following facts:

(i) For every x1, x2 ∈ Rd and every ξ1 ∈ ∂f(x1), ξ2 ∈ ∂f(x2) we have2:

⟨ξ2 − ξ1, x2 − x1⟩ ≥ 0.

(ii) For every collection of points x1, . . . , xn ∈ Rd, given any ξ1 ∈ ∂f(x1), . . . , ξn ∈ ∂f(xn), and any

permutation σ of {1, . . . , n}, we have

n∑
i=1

⟨ξi, xi⟩ ≥
n∑

i=1

⟨ξσ(i), xi⟩.

Solution:

(i) By the definition of subdifferential, we have

f(x2) ≥ f(x1) + ⟨ξ1, x2 − x1⟩,

f(x1) ≥ f(x2) + ⟨ξ2, x1 − x2⟩.

Summing the two inequalities above and rearranging terms we get precisely the monotonicity

condition ⟨ξ2 − ξ1, x2 − x1⟩ ≥ 0.

(ii) Let us first assume that σ is a cycle, that is to say

{1, . . . , n} = {σ(1), σ2(1), . . . , σn(1)}.

By the definition of subdifferential we know that

f(xσi(1)) ≥ f(xσi+1(1)) + ⟨ξσi+1(1), xσi(1) − xσi+1(1)⟩ for every i ∈ {1, . . . , n}.

Summing the above inequalities over i ∈ {1, . . . , n} we get

n∑
i=1

⟨ξσi+1(1), xσi+1(1)⟩ ≥
n∑

i=1

⟨ξσi+1(1), xσi(1)⟩,

which, using the fact that σ is a cycle, can also be rewritten as

n∑
i=1

⟨ξi, xi⟩ ≥
n∑

i=1

⟨ξσ(i), xi⟩.

Once we have proven the result for cyclic permutations, the general case can be obtained by

noticing that each permutation is the union of disjoint cycles.

2This property can also be restated by saying that the multi-valued function ∂f is “monotone”.

5



Exercise 1.4 (A characterization of differentiability). Let f : Rd → R be a convex function. Prove

the following facts:

(i) If f is differentiable at a point x, then ∂f(x) = {∇f(x)}.

(ii) (,) If ∂f(x) is a singleton, then f is differentiable at x.

Hint: To prove (ii) you can assume that x = 0, f(0) = 0 and ∂f(0) = {0}. Then argue by contradic-

tion: suppose that f is not differentiable at 0 and find some direction along which f grows linearly.

Then use the Hahn-Banach Theorem to obtain a non-zero element in the subdifferential.

Solution:

(i) Remember the definition of differentiability: f is differentiable at x if there exists a vector

∇f(x) ∈ Rd such that

|f(x+ v)− f(x)− ⟨∇f(x), v⟩|
|v|

→ 0 as |v| → 0.

The above condition can be rewritten in a compact form as

f(x+ v) = f(x) + ⟨∇f(x), v⟩+ o(|v|),

where we recall that the “little-o notation” g = o(h) stands for |g|/h → 0. Suppose that f is

differentiable at x. Then, for every y ̸= x and t ∈ (0, 1), from the monotonicity of difference

quotients:

f(y)− f(x) ≥ f(x+ t(y − x))− f(x)

t|y − x|
|y − x| = ⟨∇f(x), y − x⟩+ o(1) as t → 0+.

Hence, sending t to 0 we get f(y) ≥ f(x)+⟨∇f(x), y−x⟩ for every y ∈ Rd, which means that

∇f(x) ∈ ∂f(x). Now we want to prove that indeed ∂f(x) = {∇f(x)}. Given ξ ∈ ∂f(x), by

definition of subdifferential for every v ∈ Rd,

f(x) + ⟨ξ, v⟩ ≤ f(x+ v) = f(x) + ⟨∇f(x), v⟩+ o(|v|).

Rearranging terms we get

⟨ξ −∇f(x), v⟩ ≤ o(|v|).

Choosing v = t(ξ −∇f(x)) for t > 0 we obtain

t|ξ −∇f(x)|2 ≤ o(t) as t → 0+

which implies that ξ = ∇f(x).

(ii) Up to a translation and the subtraction of the affine function f(x) + ⟨ξ, ·⟩, we may assume

that x = 0, f(0) = 0 and ∂f(0) = {0}, so that we need to prove that

f(y)

|y|
→ 0 as y → 0.
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Suppose by contradiction that there exists a sequence yj ̸= 0, such that yj → 0 and

f(yj)

|yj |
≥ ϵ > 0 for every j ∈ N.

Up to subsequences we may assume that yj/|yj | → e ∈ Sd−1. By the monotonicity of

difference quotients, for every r > 0 and every j large enough we have

f(ryj/|yj |)
r

≥ f(yj)

|yj |
≥ ϵ,

and sending j to infinity, by the continuity of f we deduce

f(re) ≥ rϵ for every r > 0.

This means that the open convex set

A := {(y, t) ∈ Rd × R : t > f(y)}

and the convex set

B := {(re, rϵ) : r > 0}

are separated in Rd×R. Now the geometric form of Hahn-Banach Theorem provides us with

an hyperplane touching A from below and containing B. This contradicts the fact that 0 is

the unique element in the ∂f(0), since ϵ > 0, thus concluding the proof.

Exercise 1.5 ((,) Boundedness and continuity of the subdifferential). Given a convex function f :

Rd → R and a set E ⊂ Rd, we call

∂f(E) :=
⋃
x∈E

∂f(x).

(i) Prove that if f, g : Rd → R are convex functions and Ω ⊂ Rd is a bounded open set such that

f = g on ∂Ω and f ≤ g in Ω, then

∂g(Ω) ⊆ ∂f(Ω).

(ii) Prove that ∂f is locally bounded, that is to say, for every bounded set E ⊂ Rd, ∂f(E) is also

bounded.

(iii) Given a sequence xj ∈ Rd and ξj ∈ ∂f(xj), assume that xj → x. Prove that up to subsequences,

ξj → ξ, for some ξ ∈ ∂f(x).

(iv) Prove that f is C1 if and only if ∂f(x) is a singlet for every x ∈ Rd.

Hints: For i) take any hyperplane touching g from below at some point x ∈ Ω and translate it down

vertically until it touches f from below for the first time. For ii) compare f locally with a suitably

chosen convex paraboloid and use point i).
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Solution:

(i) Let x ∈ Ω. Take any ξ ∈ ∂g(x). We wish to prove that ξ ∈ ∂f(z) for some z ∈ Ω. For every

number α ∈ R, we consider the α-translation of the affine function f(x) + ⟨ξ, · − x⟩,

φα(y) := f(x) + ⟨ξ, y − x⟩+ α.

Notice that by the local boundedness of convex functions, for α small enough, φα < f in Ω.

Hence, it is well-defined the minimum α for which φα touches f from below on Ω, i.e.

α0 := sup{α ∈ R : φα < f in Ω}.

Notice that since φ0 touches g from below and g ≥ f in Ω, we must have α0 ≤ 0. Let x0 ∈ Ω

be a point at which φα0(x0) = f(x0). If x0 ∈ Ω, then ξ ∈ ∂f(x0) and we are done. Suppose

instead that x0 ∈ ∂Ω. Then, since f(x0) = g(x0), it must be the case that α0 = 0 and φ0

touches also f from below at x, which means that ξ ∈ ∂f(x) concluding again.

(ii) Consider the convex paraboloid φ(x) = α + β|x− x0|2, for some α ∈ R and β > 0. Since f

is locally bounded above and below in B2r(x0), we may choose α small enough and β large

enough so that f < φ in Rd \ B2r(x0) and f > φ in Br(x0). In particular the open set

Ω := {f > φ} satisfies 
Br(x0) ⊂ Ω ⊂ B2r(x0),

f = φ on ∂Ω,

f > φ in Ω.

Thus, from point i) we deduce that ∂f(Br(x0)) ⊂ ∂φ(B2r(x0)) = B4βr(0).

(iii) Since xj is a bounded sequence, by point ii) also ξj is bounded, and so, up to subsequences

ξj → ξ. We only need to show that ξ ∈ ∂f(x). Now, since ξj ∈ ∂f(xj), we have

f(y) ≥ f(xj) + ⟨ξj , y − xj⟩ for every j and every y ∈ Rd.

Sending j to ∞, and using the convergences xj → x, ξj → ξ and f(xj) → f(x) we get

f(y) ≥ f(x) + ⟨ξ, y − x⟩ for every y ∈ Rd

which means that ξ ∈ ∂f(x), as desired.

(iv) If f ∈ C1, in particular it is differentiable at each point, thus, from a previous exercise,

∂f(x) = {∇f(x)} for every x ∈ Rd. Conversely, if ∂f(x) is a singlet for every x ∈ Rd, then

f is differentiable at each point and ∂f(x) = {∇f(x)}, so that we only need to prove that

∇f is a continuous function, but this easily follows from point iii).

Exercise 1.6 ((,) Extended gradient and descending slope). Let f : Rd → R be a convex function.

(i) Prove that for every x ∈ Rd there exists a unique vector ξ ∈ ∂f(x) with minimal norm. Such
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vector is often called the “extended gradient” of f at x. In this exercise we will denote it by

∇f(x).

(ii) Prove that x is a minimum of f if and only if ∇f(x) = 0.

(iii) Prove that the modulus of the extended gradient equals the so called “descending slope” of f :

|∇f(x)| = sup
y ̸=x

[f(x)− f(y)]+

|y − x|
,

where the superscript “+” stands for the positive part, i.e. a+ := max{a, 0}. Deduce from it

that the map x 7→ |∇f(x)| is lower semi-continuous.

Hints: In point iii), to prove the ≤ inequality it may be a good idea to use the Hahn-Banach Theorem

as follows. Call m the descending slope of f at x and prove that the following convex subsets of Rd×R
are disjoint:

A := {(y, r) ∈ Rd × R : r < −m|y − x|}, B := {(y, r) ∈ Rd × R : f(y)− f(x) ≤ r}.

Deduce that there exists an hyperplane in Rd × R which separates A and B. Finally, find a vector

ξ ∈ ∂f(x) such that |ξ| ≤ m.

Solution:

(i) ∇f(x) is simply obtained as the unique projection of 0 on the closed convex set ∂f(x).

(ii) It is enough to notice that x is a minimum point for f if and only if 0 ∈ ∂f(x).

(iii) We prove the stated formula. The fact that x 7→ |∇f(x)| is lower semi-continuous then

follows from its representation as the supremum of continuous functions. First notice that,

by ∇f(x) ∈ ∂f(x), for every y ̸= x,

f(x)− f(y) ≤ ⟨−∇f(x), y − x⟩ ≤ |∇f(x)||y − x|.

Hence

sup
y ̸=x

[f(x)− f(y)]+

|y − x|
≤ |∇f(x)|.

Now we wish to prove the opposite inequality. Call

m := sup
y ̸=x

[f(x)− f(y)]+

|y − x|
.

We want to prove that there exists an element ξ ∈ ∂f(x) such that |ξ| ≤ m. Observe that

by definition of m we have

f(y)− f(x) ≥ −m|y − x| for every y ∈ Rd.

Thus, the open convex set

A := {(y, r) ∈ Rd × R : r < −m|y − x|}
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and the closed convex set

B := {(y, r) ∈ Rd × R : f(y)− f(x) ≤ r}

are disjoint in Rd × R. From the geometric form of Hahn-Banach theorem, we deduce that

there exist an hyperplane in Rd × R separating A and B. In particular, there exist ξ ∈ Rd

and α ∈ R such that

f(y)− f(x) ≥ ⟨ξ, y⟩+ α ≥ −m|y − x| for every y ∈ Rd.

Now, taking y = x in the formula above, we derive α = −⟨ξ, x⟩. Therefore, from the first

and the second inequality we respectively get, for every y ∈ Rd:

f(y)− f(x) ≥ ⟨ξ, y − x⟩,

⟨ξ, y − x⟩ ≥ −m|y − x|.

The first implies that ξ ∈ ∂f(x), while choosing y = x − ξ in the second we get |ξ| ≤ m.

This concludes the proof.

Exercise 1.7. Let f : R → R be a convex function in one space dimension. Then there exists a

countable set Z ⊂ R such that f is differentiable at x for every x ∈ R \ Z.

Hint: Consider the map that associates to each point x ∈ R the length of ∂f(x).

Solution: For every x ∈ R, ∂f(x) is a non-empty bounded closed convex subset of R, hence

∂f(x) = [a(x), b(x)]

for some b(x) ≥ a(x). The result is proven if we show that a(x) = b(x) out of a countable set, as

in each such point ∂f(x) = {a(x)} which implies that f is differentiable at x thanks to a previous

exercise. From the monotonicity of ∂f we know that

a(x) ≤ b(x) ≤ a(y) ≤ b(y) for every x < y,

thus, in particular

int(∂f(x)) ∩ int(∂f(y)) = ∅ for every x ̸= y.

Define the function ϕ : R → R as

ϕ(x) = L 1(∂f(x)) = b(x)− a(x).

For every n ∈ N we consider the following sets

Zn := {x ∈ R : ∂f(x) ⊂ (−n, n), ϕ(x) > 1/n}
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and we call Z their union

Z :=
⋃
n∈N

Zn.

Observe that a(x) = b(x) for every x ∈ R \ Z, therefore we only need to prove that each Zn is

finite. Indeed, we claim that #Zn < 2n2. In fact, if x1, . . . , xN are pairwise distinct points in Zn,

2n = L 1((−n, n)) ≥ L 1

(
N⋃
i=1

int(∂f(xi))

)
=

N∑
i=1

L 1 (int(∂f(xi))) > N/n.
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