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Exercise 11.1. Given a probability measure u € P;(R%), let us denote by z,, € R? its barycenter
(that is, ¥, := [@du(z)). Show that, for any pair of probability measures y,v € P;(R?) and any
p > 1, it holds

Wp(p,v) > |z, — x|

In particular, among all measures with fixed barycenter Z, which is one that minimizes the W),-distance

from a fixed delta 657

Solution: Observe that, by Holder’s inequality, for any p > 1 we have, on the one hand

/de |z — yldy(z,y) < (/de l — y|pd7(x’y)> »

On the other hand, we have

/de |z — yldy(z,y) = I/RM(x - y)d'y(x,y)' = ‘/de xdy(z,y) — /de yd’y(a:,y)' = |z, — ],

where in the last step we used that [p.q zdy(x,y) = [ga zdp(z) = x,. Taking the infimum among
transport plans v we reach the desired result.

Finally, observe that when p and v are both deltas (4 = 6;, and v = d,, ) the equality holds
for any p > 1, so among measures with fixed barycenter, one that minimizes the distance to a
fixed delta is a delta.

Exercise 11.2. Given a probability measure p € Pp(RY) and a point xg € R?, compute W, (11, Iz, )-

Solution:

Claim: v = p® 9z, (indeed I'(p, 05,) = {t® 0z, }). To show the claim we compute v(B), where
B = A1 x Ay, A1 C Q and Ay C Q. Tt suffices to consider sets of this form since the o-algebra A
on Q x Q is generated by these sets (indeed A is the smallest o-algebra that contains these sets).

We distinguish two cases:

o :L'0¢A2:
M®5$0(B):/Bd(:u®5xo):/A /A d(;xod:u:/A Oduz()
1V Az 1

We used Fubini in the second passage to separate the integral. For ~:




V(B) = 7(A1 X AQ) < 7(9 X AQ) = 53:0(A2) =0
Since + is a welldefined positive measure we can conclude v(B) = 0, hence v = pu ® dy,.

e 1) € As:

v(B) = (A1 x Ag) < y(A1 x Q) = u(Ar) / dp = / ldp
Aq A1

Fubini
= / / doz,dp = / d(pt ® 6z) = pt ® 624(B)
Ay JAs B

Hence v(B) < p®04,(B). Consider now u(Q2\ A1) = 1—pu(Ap). Following the same reasoning
as above: Y((2\ A1) x A2) < u(Q\ A1) = p®34,((2\ A1) x Az). Therefore again by Fubini:

—7(A1 X Ag) = y((2\ A1) x A2) < 1 ® 00 (2 A1) X A2) =1 — pp® b5 (A1 x A2)

Now we can conclude the inverse inequality v(B) > pu ® 65, (B), which finishes the proof.

Now we can use the claim to compute W),(u, 0z, ):

= ([ o) ([ - i)
Fubini (//Ix—y\ ddgq (y)dp(z > e (/ |z — @o[Pdu( )> = |l — zoll;

Where the norm of  — x¢ is defined since p € Pp,(2).

3=

Exercise 11.3. Let f: RY — R be a \-Lipschitz function and let u,v € P;(R?). Prove that

/Rd fdu—/Rd Fdv < AWy (p,v).

Solution:

Lipschitz

N W (p, ) 7 O /Q e yldrte) 2 / (@) — F)ldr(.y)

> [ 6@ - i) [ @) - [ o

Exercise 11.4. Let 1 < p < oo, and let y,v € P,(RY). Consider a family of non-negative mollifiers
(pe)eso C C°(R?) such that

pe(z) == (£> , /]Rd p(x)dr =1, mb(p / |z[Pp(z)dx < 4o0.



Then, if pe := p* p. and v, := v * pEEL show that
(1) Wy(p, pe) < emy(p), and therefore, . converges to p in P,(R?) as ¢ | 0.
(i) Wplpe, ve) < Wy(p,v).

(ill) Wp(pe,ve) = Wp(p,v) as € 1 0.

Solution: Let us show first (i). Let us consider the coupling v. € I'(u, pe) defined by

/ (@, y)dve(a,y) == / (@, 9)pely — ) dy du(z).
R xRd R4 xRd

Notice that indeed ~. € T'(u, ) since

/ o(@)dve(a,y) = / o(x)d(z),
R xRd R4

and

/Rded P(y)dye(w,y) = /Rd(qb % pe) (2)dp(z) = /Rd o(z)d(ps * p1)().

In particular, we have that

e < [ o= aarten) = [ ([ ooty - 2)dy) aute)
= [ e dzaua) =< [ |zpptz)a:

as we wanted to see.

For the second point, (ii), given any coupling v € I'(u, v), let us define ~, as

/Rded o(z,y)dye(w,y) == /Rded /Rd o(r — 2,y — 2)pe(2) dz dy(x, y).

In particular, as before we can check that . € T'(ue, ve):

L s = [ @xp@dran) = [ @cp)@du) = [ sw)dlpe s i),

and the same holds for v. Thus,

WZI;(M& Ve) < /

R4 xR4
= / |l —ylPdy(z,y).
R4 xR4

Taking now the infimum in v € I'(u, v) we reach the desired result.

& — yPdy(z,y) = / & — ylPpe(2) dz dr(z, )
RdxRd JRA

!The convolution of a measure p with a smooth function p is the measure defined as follows:

px p(A) == /A /Rd p(z — y)du(y)dz.



Finally, for point (iii), we combine the previous two points with the triangular inequality.
Indeed,
W, v) < Wp(p, pe) + Wy(pe, ve) + Wy (ve,v) < 2emyp(p) + Wp(pe, ve).-

That is,
Wy, v) = 2emp(p) < Wy(pe, ve) < Wy(p,v)

and the desired result follows.




