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Definition 1 (Middle point). Given two probability measures µ0, µ1 ∈ P(Rd), let C(µ0, µ1) be the

infimum of the Kantorovich problem with respect to the quadratic cost

C(µ0, µ1) := inf
γ∈Γ(µ0,µ1)

∫
Rd×Rd

|x− y|2

2
dγ(x, y).

Let µ0, µ1 ∈ P(Rd) be two probability measures with compact support. A probability measure µ 1
2

is a middle point of µ0 and µ1 if C(µ0, µ 1
2
) = C(µ1, µ 1

2
) = 1

4C(µ0, µ1).

Exercise 10.1. For any ρ ∈ P(Rd), it holds

C(µ0, ρ) + C(ρ, µ1) ≥
1

2
C(µ0, µ1).

Moreover, if equality holds, then there is an optimal plan γ ∈ Γopt(µ0, µ1) such that (x+z
2 )#γ = ρ

(here, x, z denote the first and second coordinate of Rd × Rd).

Hint: See the proof of Theorem 3.1.5. Try to prove the inequality without directly using the triangular

inequality for the Wasserstein distance.

Solution: Let γ0 ∈ Γ(µ0, ρ) and γ1 ∈ Γ(ρ, µ1) be two optimal plans from µ0 to ρ and from ρ

to µ1, respectively. The gluing lemma (see the proof of Theorem 3.1.5) ensures the existence of

γ̃ ∈ P(Rd × Rd × Rd) such that (here, x, y, z denote the coordinates of Rd × Rd × Rd)

(x, y)#γ̃ = γ0 and (y, z)#γ̃ = γ1.

Let γ := (x, z)#γ̃. It follows directly from the properties of γ̃ that γ is an admissible plan from

µ0 to µ1. Therefore it holds

C(µ0, µ1) ≤
1

2

∫
Rd×Rd

|x− z|2 dγ(x, z) = 1

2

∫
Rd×Rd×Rd

|x− z|2 dγ̃(x, y, z)

≤ 1

2

∫
Rd×Rd×Rd

(
2|x− y|2 + 2|y − z|2

)
dγ̃(x, y, z)

=

∫
Rd×Rd

|x− y|2 dγ0(x, y) +
∫
Rd×Rd

|y − z|2 dγ1(y, z) = 2 (C(µ0, ρ) + C(ρ, µ1)) .

If equality holds, then all the inequalities we have applied must be equalities. Hence (consider

the first inequality of the chain) γ has to be an optimal plan and (consider the second inequality)

|x− z|2 = 2|x− y|2 + 2|y − z|2 has to be true γ̃-almost everywhere. The latter identity implies

that γ̃-almost everywhere it holds y = x+z
2 , thus

ρ = y#γ̃ = (x+z
2 )#γ̃ = (x+z

2 )#γ,
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as desired.

Exercise 10.2. Thanks to the previous Exercise, show that a measure µ 1
2
is a middle-point if and

only if

µ 1
2
is a middle-point ⇔ C(µ0, µ 1

2
) ≤ 1

4
C(µ0, µ1) and C(µ1, µ 1

2
) ≤ 1

4
C(µ0, µ1). (1)

Solution: Indeed these two inequalities, together with C(µ0, µ 1
2
) + C(µ 1

2
, µ1) ≥ 1

2C(µ0, µ1) (this

inequality follows from the triangle inequality for W2, since C = 1
2W

2
2 ), imply that C(µ0, µ 1

2
) =

C(µ1, µ 1
2
) = 1

4C(µ0, µ1).

Exercise 10.3. Let µ0, µ1 ∈ P(Rd) be two probability measures with compact support. A probability

measure µ 1
2
is a middle point of µ0 and µ1 if C(µ0, µ 1

2
) = C(µ1, µ 1

2
) = 1

4C(µ0, µ1).

(i) If µ0 = δp0 and µ1 = δp1 , show that the middle point is unique and µ 1
2
= δ p1+p2

2

.

(ii) Prove that there is always at least one middle point.

(iii) Find two probability measures µ0, µ1 such that they have more than one middle point.

(iv) Show that if the optimal transport plan between µ0 and µ1 is unique, then there is a unique

middle point.

(v) Prove that if µ0, µ1 ≪ Ld, then the middle point is unique and µ 1
2
≪ Ld.

Solution:

Let us consider an optimal plan γ ∈ Γ(µ0, µ1). We claim that µ 1
2
:= (x+z

2 )#γ is a middle-point.

Indeed, since (x, x+z
2 )#γ is an admissible plan from µ0 to µ 1

2
, it holds

C(µ0, µ 1
2
) ≤ 1

2

∫
Rd×Rd

∣∣∣∣x− x+ z

2

∣∣∣∣2 dγ(x, z) = 1

2

∫
Rd×Rd

1

4
|x− z|2 dγ(x, z) = 1

4
C(µ0, µ1).

The same reasoning yields also C(µ1, µ 1
2
) ≤ 1

4C(µ0, µ1) and therefore, thanks to (1), µ 1
2
is a

middle-point.

Hence, given an optimal plan γ we can produce a middle point via the formula (x+z
2 )#γ. Vice

versa, thanks to the lemma above, given a middle point µ 1
2
there is an optimal plan γ such that

(x+z
2 )#γ = µ 1

2
. As an observation, one may be tempted to deduce from these observations that

the map between optimal plans and middle points is an isomorphism. In order to show it, one

should check that if γ, γ′ ∈ Γ(µ0, µ1) are optimal and such that (x+z
2 )#γ = (x+z

2 )#γ
′, then γ = γ′.

Such a statement is true but not straightforward, and we shall not prove it here.

Now we are ready to tackle the statements of the exercise.
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(i) Since there is a unique optimal plan (that is δp0 × δp1) there can be only one middle point

and it must be (x+z
2 )#(δp0 × δp1) = δ p0+p1

2

.

(ii) The existence of a middle point follows directly from the existence of an optimal plan.

(iii) Consider the two probability measures constructed in the solution of Exercise 1.4(b). Since

every plan induces a middle point as explained above, one can check that the two mentioned

probability measures are a good example.

(iv) Let γ ∈ Γ(µ0, µ1) be the unique optimal coupling. Then, thanks to the observations above,

µ 1
2
= (x+z

2 )#γ has to be the unique middle point.

(v) Theorem 2.5.9 asserts that there is a unique optimal map between µ0 and µ1, that we denote

T : Rd → Rd. Thus, our observations imply that µ 1
2
:= (x+T (x)

2 )#µ0 is the unique middle

point. Also, again by Theorem 2.5.9, it holds T = ∇φ where φ : Rd → R is a convex

function. Hence
x+ T (x)

2
=

1

2
∇

(
|x|2

2
+ φ

)
.

We now note that, if X := id+T
2 , then X−1 is 2-Lipschitz. Indeed, observe that for any

x, x′ ∈ Rd,

|X(x)−X(x′)||x− x′| ≥ ⟨X(x)−X(x′), x− x′⟩ = 1

2
|x− x′|2 + 1

2
⟨∇φ(x)−∇φ(x′), x− x′⟩.

Now, observe that the last term is nonnegative, since φ is convex, so that we have

|X(x)−X(x′)| ≥ 1

2
|x− x′|,

from where we deduce X−1 is 2-Lipschitz.

In particular, for any Borel set E ⊂ Rd we have

|X−1(E)| ≤
∫
E
|det(∇X−1)|(y) dy ≤ 2d|E|,

hence
(
x+T (x)

2

)
#
dx ≪ dx, and we conclude that

µ 1
2
=

(
id + T

2

)
#

µ0 ≪
(
id + T

2

)
#

dx ≪ dx.
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