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Definition 1 (Middle point). Given two probability measures ug, i1 € P(RY), let C(uo, it1) be the

infimum of the Kantorovich problem with respect to the quadratic cost
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Let pi0, 11 € P(RY) be two probability measures with compact support. A probability measure 1
2
is a middle point of uy and py ifC(uo,,u%) = C(,ul,,u%) = 1C(po, ).

Exercise 10.1. For any p € P(RY), it holds

C(po, p) +C(p, 1) > 5C(po, pa)-
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Moreover, if equality holds, then there is an optimal plan v € I'op(po, 1) such that ( mgz)#v =y

(here, x, z denote the first and second coordinate of R% x ]Rd).

Hint: See the proof of Theorem 3.1.5. Try to prove the inequality without directly using the triangular

inequality for the Wasserstein distance.

Solution: Let vy € I'(uo,p) and y1 € I'(p, 1) be two optimal plans from g to p and from p
to 1, respectively. The gluing lemma (see the proof of Theorem 3.1.5) ensures the existence of
7 € P(R? x R? x R?) such that (here, x,y, z denote the coordinates of R? x R% x R%)

(LU, y)#;j/ =70 and (ya Z)#’S/ =71

Let v := (z,2)x7. It follows directly from the properties of 4 that v is an admissible plan from
po to p1. Therefore it holds
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If equality holds, then all the inequalities we have applied must be equalities. Hence (consider
the first inequality of the chain) 7 has to be an optimal plan and (consider the second inequality)
|z — z|* = 2|z — y[* + 2|y — 2|* has to be true F-almost everywhere. The latter identity implies

~ . _ +
that §-almost everywhere it holds y = *3#, thus

p=yu¥ = (52)uy = (5E)u,




as desired.

Exercise 10.2. Thanks to the previous Exercise, show that a measure p1 is a middle-point if and
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Solution: Indeed these two inequalities, together with C(uo, p1) + C(ui, pu1) > %C(,uo,ul) (this
2 2
inequality follows from the triangle inequality for Ws, since C = %WQQ), imply that C(ug,p1) =
2
C(p1, p1) = 5C (o, ).

Exercise 10.3. Let p, 11 € P(R?) be two probability measures with compact support. A probability
measure g1 is a middle point of pg and pq if C(po, 1) =C(puy, p1) = %C(,uo,ul).
2 2 2

(i) If po = 0p, and p1 = &p,, show that the middle point is unique and py = Opytps -
2
(ii) Prove that there is always at least one middle point.
ili) Find two probability measures g, ;1 such that they have more than one middle point.
(iif) P y Hos y p

(iv) Show that if the optimal transport plan between o and p; is unique, then there is a unique

middle point.

(v) Prove that if po, u1 < £4, then the middle point is unique and p 1< L4,

Solution:

Let us consider an optimal plan v € I'(ug, f11). We claim that g1 := (££2),~ is a middle-point.
2
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Indeed, since (z, ’”;Z)#V is an admissible plan from g to w1, it holds
2
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The same reasoning yields also C(uq,p1) < %C(,uo,,ul) and therefore, thanks to (1), w1 is a
2 2

middle-point.

£+2) 4. Vice

versa, thanks to the lemma above, given a middle point p1 there is an optimal plan ~ such that
2

Hence, given an optimal plan v we can produce a middle point via the formula (

(”T“)#'y = p1. As an observation, one may be tempted to deduce from these observations that
2

the map between optimal plans and middle points is an isomorphism. In order to show it, one

should check that if 7,7 € T'(po, p11) are optimal and such that (£52)4y = (%32)4/, then v = /.

Such a statement is true but not straightforward, and we shall not prove it here.

Now we are ready to tackle the statements of the exercise.




(i)

Since there is a unique optimal plan (that is d,, X d,,) there can be only one middle point

and it must be (£3%)4(6py X 6p;) = Opgip; -
2

The existence of a middle point follows directly from the existence of an optimal plan.

Consider the two probability measures constructed in the solution of Exercise 1.4(b). Since
every plan induces a middle point as explained above, one can check that the two mentioned

probability measures are a good example.

Let v € T'(uo, 1) be the unique optimal coupling. Then, thanks to the observations above,

1 = (’”TJ’Z)#V has to be the unique middle point.
2

Theorem 2.5.9 asserts that there is a unique optimal map between pg and 1, that we denote
T : R — R? Thus, our observations imply that 1= (%(x))#,uo is the unique middle

point. Also, again by Theorem 2.5.9, it holds 7' = V¢ where ¢ : R? — R is a convex

x+T<x>:1v<W+¢)_

function. Hence
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We now note that, if X = id‘Q"T, then X! is 2-Lipschitz. Indeed, observe that for any
z, 2’ € R?,

1 1
X (z) = X(@)[le — 2’| = (X(2) - X (@), x —2') = Slo - ') + 5(Ve(z) = Ve(a'), z — ).
Now, observe that the last term is nonnegative, since ¢ is convex, so that we have

1
X (z) = X ()] = gl -2,

from where we deduce X ! is 2-Lipschitz.

In particular, for any Borel set E C R% we have

XYE) < / det(VX )| (y) dy < 29|E],
FE

hence (%) 4 dxr < dx, and we conclude that

id+T id+T
# #
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