

Serie 7
 Optimal transport, Fall semester
 EPFL, Mathematics section, Dr. Xavier Fernández-Real

Exercise 7.1 (Counterexamples). For any of the following statements, find two probability measures $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ with compact support such that the statement holds (you can choose also the dimension $d \in \mathbb{N}$). Each of the statements should be treated independently.

- (i) There is more than one¹ optimal transport map from μ to ν with respect to the linear cost $|x - y|$.
- (ii) There is more than one optimal transport map from μ to ν with respect to the quadratic cost $\frac{1}{2}|x - y|^2$.
- (iii) There is not an optimal transport plan between μ and ν with respect to the cost $c(x, y) = \lfloor |x - y| \rfloor$ (the floor function² of the distance).
- (iv) There is an optimal transport map from μ to ν with respect to the linear cost, but there is none with respect to the quadratic cost.

Hint: To solve (iii), show that the infimum of the Kantorovich problem for $\mu = \chi_{[0,1]}\mathcal{L}^1$, $\nu = \chi_{[1,2]}\mathcal{L}^1$ is 0 but any transport plan has *strictly* positive cost.

Exercise 7.2. Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ be two compactly supported probability measures invariant under rotations (that is, $\mu(L(E)) = \mu(E)$ and $\nu(L(E)) = \nu(E)$ for any Borel set E and any orthogonal transformation $L \in O(d)$). Assume that $\mu \ll \mathcal{L}^d$, and let T be the unique optimal transport map from μ to ν with respect to the quadratic cost (see Theorem 2.5.9). Show that T can be written as $x \rightarrow \tau(|x|) \frac{x}{|x|}$, where $\tau : [0, +\infty) \rightarrow [0, +\infty)$ is a nondecreasing function.

Hint: The function τ is the monotone transport map between two suitable 1-dimensional measures. Also, one may want to use (and prove) the following lemma:

Lemma 1. Let $\mu^0, \mu^1 \in \mathcal{P}(\mathbb{R}^d)$ be two rotationally invariant probability measures, and let $\Phi(x) := |x|$. If $\Phi_{\#}\mu^0 = \Phi_{\#}\mu^1$ then $\mu^0 = \mu^1$.

Exercise 7.3. Find the optimal transport map for the quadratic cost $c(x, y) = \frac{1}{2}|x - y|^2$ between $\mu = f \cdot \mathcal{L}^2$ and $\nu = g \cdot \mathcal{L}^2$ in \mathbb{R}^2 , where $f(x) = \frac{1}{\pi}\mathbb{1}_{B_1}(x)$ and $g(x) = \frac{1}{8\pi}(4 - |x|^2)\mathbb{1}_{B_2}(x)$.

¹Uniqueness should be understood in the μ -almost everywhere sense.

²Given $t \geq 0$, $\lfloor t \rfloor$ is the largest integer n such that $n \leq t$.

Remark 7.1. We gave in class a counterexample for the following statement: let us fix a cost c lower semicontinuous and $\gamma \in \Gamma(\mu, \nu)$ such that $\text{supp}\gamma$ is c -cyclically monotone, then γ is optimal.

The example is the following: let $\mu = \mathcal{L}$ be the lebesgue measure on the one dimensional torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, $c : \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ be defined as follows

$$c(x, y) = \begin{cases} 1 & \text{if and only if } y = x - \alpha \\ 0 & \text{if and only if } y = x \\ \infty & \text{otherwise,} \end{cases}$$

$\gamma = (Id, T)_{\#}\mu$ and $T(x) = x - \alpha$. We proved in class that $\text{supp}\gamma$ is c -cyclically monotone but γ is not optimal.

Exercise 7.4. (✿) In this exercise we want to go deeper in the understanding of the counterexample in Remark 7.1.

- (i) Find as many points as you can in the proof of the statement “ $\text{supp}\gamma$ is c -cyclically monotone, then γ is optimal for a continuous cost” where it could fail.
- (ii) If we define for any $n \in \mathbb{N}$ the cost

$$c_n(x, y) = \begin{cases} 1 & \text{if and only if } y = x - \alpha \\ 0 & \text{if and only if } y = x \\ n & \text{otherwise,} \end{cases}$$

Is it true that γ is optimal for the cost c_n for any $n \in \mathbb{N}$ (where γ was defined above $\gamma = (Id, T)_{\#}\mu$)?

Find all the $n \in \mathbb{N}$ such that $\text{supp}\gamma$ is c_n -cyclically monotone for the cost c_n ?