Exercises Martingales in Financial Mathematics: Static and
semi-static hedging (Solutions)

Week 9, 2025

We assume a risk-neutral Black—Scholes setting, i.e. we have a risk-less bond with price process
By =¢",t€[0,T], r >0 and a risky asset with a price process satisfying

dSt = TStdt + O'Stth s

where o > 0 and (W;)cjo,7] is a standard Brownian motion (with respect to Q).

Exercise 1: Forward price

Recall that a forward contract is an agreement to pay a specified delivery price k at a maturity
date T" > 0 for the asset whose price at time ¢ is .5;.

The T-forward price F} 1 of this asset at time ¢ € [0, 7] is the value of k that makes the forward
contract have no-arbitrage price zero at time ¢. Describe the process Fi r, t € [0,T].

For k the payoff at time T will be (Sp — k) = (Sp — k)4 — (k — St)4+ where the l.h.s. is the
difference of two non-negative (and square-integrable) payoff functions. Hence, we can apply the
usual risk-neutral valuation formula (along with linearity of conditional expectations) in order to
compute the price at time t of the forward contract for a delivery price k

6_(T_t)r]EQ[(ST o k)’f;g] _ ertEQ[e—rTST‘JT_'t] o e—(T—t)rk, _ 6rtgt . 6—(T—t)rk _ St o 6_(T_t)rk,

where (S't)te[oj] stands for the discounted asset price process being a Q martingale. In order for
this to be zero, k must be given by

Fop=S8e ™Y telo,T].
Note that this process satisfies
dFt,T = Ft,TUth )
under Q.

Exercise 2: European put-call symmetry

Show that in the Black—Scholes case the European put-call symmetry holds, which can be ex-
pressed by the property that for arbitrary k& > 0

e T OBG[(Frmr — k)4 | F] = e B [(Fur — k) + | 7]
—r(T—t) k FtQT
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where 1,7 = e’éﬁ(T*tHU(WT’Wt), t € [0,TY, so that F} pn, = S under Q, i.e. we obtain a relation
between European call and put prices (often this relation is only formulated for ¢ = 0, i.e. for the
random variable Sr).
Hint: Write the Balck—Scholes formulas in terms of Fj 7.

From the lecture course we know that

Cy = e "I IEG[(Sp — k)| F] = SN (dy) — ke " TN (d_),
P, = e "I OEG[(k — Sp) 4| F] = ke "TTON(=d_) — SN (—d.),
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where Fyr is Fi-measurable. On the other hand we have
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where Fy 1 is Fi-measurable, i.e. we end up with the put formula for a put with “strike” F,r and a
“forward” price k, c.f. also the derivation of the Black—Scholes formula, so that we obtain the first
equality. The second equality is simply obtained by the positive homogeneity of payoff functions
of calls and puts.

Note that for Fyr = k the European put-call symmetry coincides with the relation obtained
from European put-call parity. However, it is essential to stress that the parity holds for most
models (up to some problems related to bubble modelling / problems with strict local martingales)
while the put-call symmetry is a much more model dependent property.

Exercise 3: Semi-static hedge of a down-and-out call

Semi-static hedging strategies are often defined to be replicating strategies where trading is no
more needed than two times after inception. Assume that there is a barrier H, a strike k satisfying
H < k, where Sy > H, and assume that there are no carrying costs. The down-and-out call is
knocked-out if H is hit any time before maturity. Otherwise pays (Sp — k)., i.e.

Xdoc - (ST - k)+]ISz>H vtel0,T] -
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Assume that European calls and puts are available for arbitrary strikes. Use the European put-call
symmetry in order to derive a semi-static hedging strategy (use without proof that the put-call
symmetry from Exercise 2 also holds for [0, T]-valued stopping times).

Remark: That the European put-call symmetry from Ezercise 2 also holds for [0, T]-valued
stopping times is a consequence of the strong Markov property of Brownian motion.
We apply the following replication: Buy a FEuropean call with strike k and sell KH™' puts with
strike H*k~1.

o If the barrier is avoided we have in particular that St > H, so that H*/k — Sy < 0 (since
H < k). Hence, the puts expire worthless while the call replicates the contract.

e If the barrier is hit we have by the sample path continuity of (S¢)icjo,r that S = H on
{7 < T}, for the stopping time 7 =7 AT, 7 =inf{t : S; = H}. Furthermore, we have for
vanishing carrying costs that Sy = Fyr for all t € [0,T] so that by applying the European
put-call symmetry for [0, T|-valued stopping times (along with the positive homogeneity of
the payoff functions of calls and puts) we see that the long and the short position have the
same price at T on the event {7 < T}, i.e. we can close our position at zero costs. In
formulas we have on {7 <T%} (r=20)
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where F, = {A € F : An{r < t} € F;, for allt} is the stopping time o-algebra; i.e
intuttively F. represents the events known at time 7.

Remark: Semi-static hedges are also known for many other barrier options. However, usually,
the hedges are more complicated. Furthermore, unlike in many other situations, generalisations
to non-vanishing carrying costs are non-trivial but possible (based on a “quasi-symmetry”). The
resulting hedge is then still of the European type but usually needs to be decomposed in more
liquidly traded instruments (see Exercise J for the corresponding idea).

Exercice 4: Decomposition of European payoff functions

Assume that a payoff function f: R, — R is two times continuously differentiable. Show that
for a € Ry

fa) = F@ + P =)+ [ W =R+ [ w0 0.,

and give an economic interpretation.

In what follows, we use the convention f; flz)dz = — fba f(z)dz. Furthermore, recall that for
ACR, f: A— R is differentiable of a certain order on A if f can be extended to a differentiable
function of the same order on an open set U D A. By the fundamental theorem of calculus, by



integration by parts, and by the formula x f'(x) = f; xf"(t)dt + xf'(a), we have, for any a € Ry

@)= 50+ | "Rk = fla) + 2 f'(x) — af'(a) - / "k (k) dk

a
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We arrive at
F@) = F@+ P =)+ [ e Rdi+ [ w0 =,

x € Ry. The economical interpretation of this representation is that if we let a be the current
forward price, we have a static hedge with bonds, forwards, and lots of options (where the options
are out of and at the money in a certain sense).

Remark: If the integrals are Lebesque integrals we cannot drop the continuity assumption on
the second derivative without assuming that the first derivative is absolutely continuous. However,
the representation can be extended to functions which are the difference of two convex functions
with ezisting and finite right derivative at 0, by e.g. applying the Lebesgue-Stieltjes integral (so
that the hedges are given by Lebesgue-Stieltjes measures). This representation can even be gener-
alised to functions which are the difference of two continuous (at 0 this is not guaranteed) convex
functions, however, the corresponding measures do not necessarily satisfy that they are finite on
any compact sets. It can also be shown that the representable payoff functions are e.g. dense in
L'. However, it is probably worth to mention that in the ewisting corresponding literature there
are many problematic statements as far as boundary anomalies at O are concerned.

Exercise 5: Implicit distribution

Consider a risk-neutral setting where Sy is sampled from a martingale and assume for simplicity
that the strictly positive random variable St is absolutely continuous with continuous density
q. Show that either the prices of European calls or European puts for arbitrary strikes uniquely
determine the distribution of Sp.!

Consider the non-discounted prices of all Furopean call options with strike k > 0 and use the
existence of the continuous density along with the European put-call parity in order to see that

k
Eo(St — k)y = See’ —k + Eg(k — Sr)y = Soe’” — k + / (k —x)q(z)dz.
0

Since the integrand is continuous, we have that this expression is differentiable in k (and since
continuous functions are integrable over compact sets we can also split the integral in the sum of
two integrals) so that by computing the derivative with respect to k we obtain

k k
Si(Ee(Sr =0 = =1+ [ atado + kak) — ko) = <1 + [ a(o)is.

!This result is obviously interesting in its own right but has also some consequences for the caracterisation of
random variables satisfying European put-call symmetry.
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being again differentiable in k. Hence, by again differentiating with respect to k we end up with

O (Ba(Sr — k)2) = alh).

for arbitrary k > 0. Hence, the prices of all European calls (and obviously alternatively the prices
of all European puts) determine the density and hence, the law of St under Q.

Remark: This result also holds in not necessarily absolutely continuous settings. Often this is
not proved in the financial literature. A general careful proof (with multivariate extensions) for
integrable St can e.g. be found (after a slight economic reinterpretation) in K. Mosler, Multivariate
Dispersion, Central Regions and Depth. Volume 165 of Lect. Notes Statist., Springer 2002.



