
Exercises Martingales in Financial Mathematics: Aspects
of Brownian Motion and Barrier Options (Solutions)

Week 7, 2025

Exercise 1: Reflection principle

Let (Wt) be a standard Brownian motion and (Ft) the corresponding Brownian filtration (as
introduced in the lecture course). Let Mt be the corresponding running maximum, i.e. Mt =
sups≤tWs. Derive by a heuristic argument or by a proof that for w ≤ m, m > 0

P(Mt ≥ m,Wt ≤ w) = P(Wt ≥ 2m− w) .1

A heuristic argument: Fix a positive level m and a positive time t. In order to “count” /
“understand” the Brownian motion paths that reach level m at or before time t note that there
are two types of such paths: those that reach level m prior to t but at time t are at some level
w below m, and those that exceed level m at time t (there are also Brownian motion paths that
are exactly at level m at time t, but the probability of these paths is vanishing, i.e. we may ignore
this possibility). For each Brownian motion path that reaches level m prior to time t but is at
a level w below m at time t, there is a “reflected path” that is at level 2m − w at time t, where
this reflected path is constructed by switching the up and down moves of the Brownian motion
from time Tm = inf{t : Wt = m} onward (it is recommendable to draw a picture). Of course, the
probability that a Brownian motion path ends at exactly w or at exactly 2m − w is zero. Hence,
in order to have nonzero probabilities consider the paths that reach level m prior to time t and are
at or below level w at time t, and consider their reflections, which are at or above 2m−w at
time t. This leads to the key reflection equality

P(Tm ≤ t,Wt ≤ w) = P(Wt ≥ 2m− w) .

By noticing that the events {Tm ≤ t} coincides with {Mt ≥ m} for m > 0 we end up with the
claim.

More formally: Let Sm = inf{t : Wt ≥ m} be the first time that the Brownian motion (Wt) is
greater than m > 0. This is an (Ft)-stopping time and note that {Sm ≤ t} = {Mt ≥ m} where
by the continuity of Brownian motion paths

Sm = Tm = inf{t : Wt = m}
1Hints for a proof: For a proof use the fact that for a stopping time τ with P(τ < ∞) > 0 we have that

conditionally on {τ < ∞} the process (Wt+τ −Wτ , t ≥ 0) is a (Fτ+t)-Brownian motion independent of Fτ and
that for positive m Sm := inf{t : Wt ≥ m} = inf{t : Wt = m} =: Tm is/are a.s. finite stopping time(s) (you
are not expected to proof that, the interested student is referred e.g. to Revuz and Yor, Continuous Martingales
and Brownain Motion, Sec. 3, Ch. II and Sec. 3, Ch. III; or for a rather elementary proof of the strong Markov
Property to Th. 32 in P. E. Protter, Stochastic Integral and Differential Equations (Version 2.1) and for Tm to be
a stopping time to Th. 4 in the same book).
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and WTm = m. Thus,

P(Mt ≥ m,Wt ≤ w) = P(Tm ≤ t,Wt ≤ w) = P(Tm ≤ t ,Wt −WTm ≤ w −m)

= E(1IWt−WTm≤w−m1ITm≤t) = E(1ITm≤tE(1IWt−WTm≤w−m|Tm)) = E(1ITm≤tϕ(Tm)) ,

where, by the corresponding Proposition discussed in the lecture course and by the hint,

ϕ(x) = E(1IW̃t−x≤w−m) ,

where (W̃s) = (WTm+s −WTm , s ≥ 0) is a Brownian motion independent of FTm. Since (−W̃s) is
also a Brownian motion we have that

ϕ(x) = E(1IW̃t−x≤w−m) = E(1I(−W̃t−x)≤w−m) = E(1IW̃t−x≥m−w) .

Hence,

E(1ITm≤tϕ(Tm)) = E(1ITm≤tE(1IWt−WTm≥m−w|Tm)) = P(Tm ≤ t,Wt −WTm ≥ m− w)

= P(Mt ≥ m,Wt ≥ 2m− w) .

Thus, by summing up we obtain

P(Mt ≥ m,Wt ≤ w) = P(Wt ≥ 2m− w,Mt ≥ m) = P(Wt ≥ 2m− w) ,

where the last equality is obtained by noticing that w ≤ m implies m ≤ 2m− w.

Exercise 2: Joint distribution of Wt and Mt

For a t > 0, find the joint probability density function of Mt = sups∈[0,t]Ws and Wt for w ≤ m,
m > 0.
Hint: Use Exercise 1.

By Exercise 1 we have P(Mt ≥ m,Wt ≤ w) = P(Wt ≥ 2m − w) for m > 0, w ≤ m.
Furthermore, we will immediately see that a density exists, so that we also have that

P(Mt ≥ m,Wt ≤ w) =

∫ ∞
m

∫ w

−∞
f(x, y)dydx ,

P(Wt ≥ 2m− w) =
1√
2πt

∫ ∞
2m−w

e
−z2
2t dz = 1− 1√

2πt

∫ 2m−w

−∞
e
−z2
2t dz .

Hence, ∫ ∞
m

∫ w

−∞
f(x, y)dydx = 1− 1√

2πt

∫ 2m−w

−∞
e
−z2
2t dz ,

being differentiable in m. Differentiating with respect to m yields

−
∫ w

−∞
f(m, y)dy = − 2√

2πt
e−

(2m−w)2

2t ,

being differentiable in w. Differentiating with respect to w then yields, up to a sign, the joint
density for m > 0, w ≤ m, i.e.

−f(m,w) = −2(2m− w)

t
√

2πt
e−

(2m−w)2

2t .
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Remark: Observe that from the reflection principle it also follows that for m > 0, w ≤ m

P(Mt ≤ m,Wt ≤ w) = P(Wt ≤ w)− P(Mt ≥ m,Wt ≤ w)

= P(Wt ≤ w)− P(Wt ≥ 2m− w) = N
(
w√
t

)
−N

(
w − 2m√

t

)
. (1)

Furthermore, note that for 0 < m ≤ w we get by using Mt ≥ Wt

P(Mt ≤ m,Wt ≤ w) = P(Mt ≤ m,Wt ≤ m) = P(Mt ≤ m) ,

and by substituting w = m in (1) we end up (for 0 < m ≤ w) with

P(Mt ≤ m,Wt ≤ w) = P(Mt ≤ m) = N
(
m√
t

)
−N

(
−m√
t

)
, (2)

while for m ≤ 0 we have Mt ≥ M0 = 0. We finally conclude that for m ≤ 0 we have
P(Mt ≤ m,Wt ≤ w) = 0.

Remark (side notes): Note that (2) also implies for a fixed t the well known fact that

P(Mt ≤ m) = N
(
m√
t

)
−N

(
−m√
t

)
= P(Wt ≤ m)− P(Wt ≤ −m) = P(|Wt| ≤ m) .

Furthermore, by changing variables the joint density of Mt and Yt = Mt −Wt can be easily
derived. Since this density shows that (Mt, Yt) is exchangeable it follows that Mt ∼ Yt.

Exercise 3: Brownian motion with drift

Let (Wt)t∈[0,T ] be a standard Brownian motion defined on (Ω ,F ,Q) and let Ŵ = (αt+Wt)t∈[0,T ]
for a given real α, i.e. the Brownian motion (Ŵt) has drift α under Q. We further define M̂T =
sup0≤t≤T Ŵt. Show that for m > 0, w ≤ m, the joint density function of (M̂T , ŴT ) under Q is
given by

f̃(m,w) =
2(2m− w)

T
√

2πT
eαw−

1
2
α2T− 1

2T
(2m−w)2 . (3)

Hint: Use Girsanov for the density Ẑt = e−αWt− 1
2
α2t and the result from Exercise 2.

Following the hint define the exponential martingale

Ẑt = e−αWt− 1
2
α2t = e−αŴt+

1
2
α2t , 0 ≤ t ≤ T ,

and use ẐT in order to define a new probability measure P by

P(A) =

∫
A

ẐTdQ for all A ∈ F ,

i.e. dP
dQ = ẐT (being sampled from a “true” martingale). From Girsanov’s Theorem we know that

(Ŵt) is a Brownian motion (with zero drift) under P. Hence, Exercise 2 yields the joint density
of (M̂T , ŴT ) under P, which is

f̂(m,w) =
2(2m− w)

T
√

2πT
e−

(2m−w)2

2T
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for w ≤ m, m > 0 (and vanishing otherwise). Hence, by changing measure

Q(M̂T ≤ m, ŴT ≤ w) = EQ(1IM̂T≤m,ŴT≤w)

= EP

[
1

ẐT
1IM̂T≤m,ŴT≤w

]
= EP

[
eαŴT− 1

2
α2T1IM̂T≤m,ŴT≤w

]
=

∫ w

−∞

∫ m

0

eαy−
1
2
α2T f̂(x, y)dxdy .

Therefor for m > 0 and w ≤ m the density of (M̂T , ŴT ) under Q is

f̃(m,w) = eαw−
1
2
α2T f̂(m,w) ,

i.e. (3) (while otherwise the density is vanishing).

Exercise 4: Value of a up-and-out call

With the usual notation, price (at t = 0) the following so-called up-and-out call being defined by

h = (ST − k)+1ISt<b ,∀t∈[0,T ]

where we assume that S0 < b and 0 < k < b (otherwise, the option must be knocked out in order
to be in the money and hence, could only pay off zero).

Since h is a square integrable FT -measurable random variable the price V0 at t = 0 is given by

V0 = e−rTEQ((ST − k)+1ISt<b ,∀t∈[0,T ]) ,

with

St = S0 exp((r − 1

2
σ2)t+ σWt) = S0e

σŴt ,

where Ŵt = αt+Wt,

α =
1

σ
(r − 1

2
σ2) .

Hence, with Exercise 3 and with the notation

b̃ =
1

σ
log
( b
S0

)
, k̃ =

1

σ
log
( k
S0

)
,

V0 = e−rTEQ[(S0e
σŴT − k)1I

k<S0e
σŴT<b

1I
S0eσŴt<b , ∀t∈[0,T ]]

= e−rT
∫ b̃

k̃

∫ b̃

w+

(S0e
σw − k)

2(2m− w)

T
√

2πT
exp

(
αw − 1

2
α2T − 1

2T
(2m− w)2

)
dmdw

= e−rT
∫ b̃

k̃

(S0e
σw − k)

eαw−
1
2
α2T

√
2πT

∫ b̃

w+

2(2m− w)

T
e−

1
2T

(2m−w)2dmdw

= e−rT
∫ b̃

k̃

(S0e
σw − k)

eαw−
1
2
α2T

√
2πT

(−e−
1
2T

(2m−w)2)
∣∣b̃
w+
dw

=

∫ b̃

k̃

(S0e
σw − k)

e−rT+αw−
1
2
α2T− 1

2T
w2

√
2πT

dw −
∫ b̃

k̃

(S0e
σw − k)

e−rT+αw−
1
2
α2T− 1

2T
(2b̃−w)2

√
2πT

dw

= S0I1 − kI2 − S0I3 + kI4 ,
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where

I1 =
1√
2πT

∫ b̃

k̃

eσw−rT+αw−
1
2
α2T− 1

2T
w2

dw ,

I2 =
1√
2πT

∫ b̃

k̃

e−rT+αw−
1
2
α2T− 1

2T
w2

dw ,

I3 =
1√
2πT

∫ b̃

k̃

eσw−rT+αw−
1
2
α2T− 1

2T
(2b̃−w)2dw

=
1√
2πT

∫ b̃

k̃

eσw−rT+αw−
1
2
α2T− 2b̃2

T
+ 2b̃w

T
−w

2

2T dw

I4 =
1√
2πT

∫ b̃

k̃

e−rT+αw−
1
2
α2T− 2b̃2

T
+ 2b̃w

T
−w

2

2T dw .

Observe that each of these integrals are of the form

1√
2πT

∫ b̃

k̃

eβ+γw−
w2

2T dw =
1√
2πT

∫ b̃

k̃

e−
(w−γT )2

2T
+ γ2T

2
+βdw .

By substituting y = w−γT√
T

we obtain

1√
2πT

∫ b̃

k̃

eβ+γw−
w2

2T dw =
e

1
2
γ2T+β

√
2π

∫ b̃−γT√
T

k̃−γT√
T

e−
1
2
y2dy

= e
1
2
γ2T+β

(
N

(
b̃− γT√

T

)
−N

(
k̃ − γT√

T

))

= e
1
2
γ2T+β

(
1−N

(
−b̃+ γT√

T

)
−

(
1−N

(
−k̃ + γT√

T

)))

= e
1
2
γ2T+β

(
N

(
log
(
S0

k

)
+ γσT

σ
√
T

)
−N

(
log
(
S0

b

)
+ γσT

σ
√
T

))
.

It is efficient to introduce the following notation

δ±(s) =
log(s) + (r ± 1

2
σ2)T

σ
√
T

.

For I1, we have that β = −rT − 1
2
α2T and γ = α + σ so that 1

2
γ2T + β = 0 and γσ = r + 1

2
σ2.

Hence,

I1 = N
(
δ+

(
S0

k

))
−N

(
δ+

(
S0

b

))
.

For I2, we have β = −rT − 1
2
α2T and γ = α. Hence, 1

2
γ2T + β = −rT and γσ = r − 1

2
σ2.

Therefore,

I2 = e−rT
[
N
(
δ−

(
S0

k

))
−N

(
δ−

(
S0

b

))]
.

For I3, we obtain β = −rT − 1
2
α2T − 2b̃2

T
and γ = α + σ + 2b̃

T
, so that

1

2
γ2T + β = (−2r

σ2
− 1) log

(S0

b

)
γσT = (r +

1

2
σ2)T + 2 log

( b
S0

)
.
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In view of that we have

I3 =

(
S0

b

)− 2r
σ2
−1 [
N
(
δ+

(
b2

kS0

))
−N

(
δ+

(
b

S0

))]
.

It remains I4 where we have β = −rT − 1
2
α2T − 2b̃2

T
and γ = α + 2b̃

T
, so that

1

2
γ2T + β = −rT + (−2r

σ2
+ 1) log

(S0

b

)
γσT = (r − 1

2
σ2)T + 2 log

( b
S0

)
.

Hence,

I4 = e−rT
(
S0

b

)− 2r
σ2

+1 [
N
(
δ−

(
b2

kS0

))
−N

(
δ−

(
b

S0

))]
.

By summing up we end up with the price of a up-and-out call (under the stated parameter restric-
tions), i.e.

V0 =S0

[
N
(
δ+

(
S0

k

))
−N

(
δ+

(
S0

b

))]
− e−rTk

[
N
(
δ−

(
S0

k

))
−N

(
δ−

(
S0

b

))]
− b
(
S0

b

)− 2r
σ2
[
N
(
δ+

(
b2

kS0

))
−N

(
δ+

(
b

S0

))]
+ e−rTk

(
S0

b

)− 2r
σ2

+1 [
N
(
δ−

(
b2

kS0

))
−N

(
δ−

(
b

S0

))]
.
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