Exercises Martingales in Financial Mathematics: Aspects
of Brownian Motion and Barrier Options (Solutions)

Week 7, 2025

Exercise 1: Reflection principle

Let (W) be a standard Brownian motion and (F;) the corresponding Brownian filtration (as
introduced in the lecture course). Let M; be the corresponding running maximum, i.e. M; =
sup,<; Ws. Derive by a heuristic argument or by a proof that for w < m, m >0

P(My; > m, W, <w) =P(W, >2m —w).!

A heuristic argument: Fix a positive level m and a positive time t. In order to “count” /
“understand” the Brownian motion paths that reach level m at or before time t note that there
are two types of such paths: those that reach level m prior to t but at time t are at some level
w below m, and those that exceed level m at time t (there are also Brownian motion paths that
are exactly at level m at time t, but the probability of these paths is vanishing, i.e. we may ignore
this possibility). For each Brownian motion path that reaches level m prior to time t but is at
a level w below m at time t, there is a “reflected path” that is at level 2m — w at time t, where
this reflected path is constructed by switching the up and down moves of the Brownian motion
from time T,,, = inf{t : Wy = m} onward (it is recommendable to draw a picture). Of course, the
probability that a Brownian motion path ends at exactly w or at exactly 2m — w s zero. Hence,
in order to have nonzero probabilities consider the paths that reach level m prior to time t and are
at or below level w at time t, and consider their reflections, which are at or above 2m — w at
time t. This leads to the key reflection equality

P(T,, <t,W; <w)=PW; >2m —w).

By noticing that the events {T,, < t} coincides with {M; > m} for m > 0 we end up with the
claim.

More formally: Let S,, = inf{t : W, > m} be the first time that the Brownian motion (W) is
greater than m > 0. This is an (F;)-stopping time and note that {S,, < t} = {M; > m} where
by the continuity of Brownian motion paths

Sy = Ty = inf{t : W, = m}

"Hints for a proof: For a proof use the fact that for a stopping time 7 with P(7 < oo) > 0 we have that
conditionally on {7 < oo} the process (Wi, — W, t > 0) is a (Fr4+)-Brownian motion independent of F. and
that for positive m Sy, = inf{t : Wi > m} = inf{t : Wy = m} =: T,,, is/are a.s. finite stopping time(s) (you
are not expected to proof that, the interested student is referred e.g. to Revuz and Yor, Continuous Martingales
and Brownain Motion, Sec. 3, Ch. II and Sec. 3, Ch. III; or for a rather elementary proof of the strong Markov
Property to Th. 32 in P. E. Protter, Stochastic Integral and Differential Equations (Version 2.1) and for T, to be
a stopping time to Th. 4 in the same book).
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and Wp, =m. Thus,

P(M; > m, W, <w)=P(T,, <t, W, <w)=P(T,, <t, Wy —Wr, <w—m)
= E(Tw,—wr, <w-mIr,<t) = E(Iz, < B(Tw,—wy, <w-m|Tm)) = E(Iz,,<c0(Tw)) »

where, by the corresponding Proposition discussed in the lecture course and by the hint,
90('7:) = E(]IWt_zgwfm) ’

where (W) = (Wr, +s — Wr s > 0) is a Brownian motion independent of Fr, . Since (—W,) is
also a Brownian motion we have that

90(1‘) = ]E(]IWt,zgw—m) = E(]I(—Wt,gg)gw—m) - E(]IWt,ZZm—w> :

Hence,

E(1z,,<t¢p(Tn)) = E(lz, < E(Tw,—wy,, >m—w|Tm)) = P(Tr, <t, W, = W, > m — w)
:]P)<Mt Zm,Wt Z 2m—'l,U)

Thus, by summing up we obtain
P(My; > m, W, <w) =P(W, > 2m —w, M; > m) =P(W, > 2m —w),

where the last equality is obtained by noticing that w < m implies m < 2m — w.

Exercise 2: Joint distribution of W, and M,

For a ¢ > 0, find the joint probability density function of M; = supcpy Ws and Wy for w < m,
m > 0.
Hint: Use Exercise 1.

By Exercise 1 we have P(M; > m, W, < w) = P(W; > 2m — w) for m > 0, w < m.
Furthermore, we will immediately see that a density exists, so that we also have that

]P’(Mth,thw):/oo/w f(z,y)dydx ,

.2
e2 dz=1-—

\/ 27t Jom—w v 27t

e2t dz .

Hence,

flx,y)dyde =1 — e dz
m —00 Vv 2mt

being differentiable in m. Differentiating with respect to m yzelds

[ fompy = -
- m, - - € t )
oo y)ey 2mt

being differentiable in w. Differentiating with respect to w then yields, up to a sign, the joint
density for m >0, w <m, i.e.

~ flm,w) = - 2C0 W) et

152 v/ 27t



Remark: Observe that from the reflection principle it also follows that for m >0, w < m

P(M; <m W <w) =PW; <w) —P(M; >m,W; <w)
:P(thw)—IP’(Wt22m—w):/\/<%) —N(w}fm). (1)

Furthermore, note that for 0 < m < w we get by using M; > W,
]P(Mt Sm,Wt Sw) :]P)(Mt S m,Wt Sm) :]P)(Mt Sm),
and by substituting w = m in (1) we end up (for 0 < m < w) with

P(Mtgm,thw):}P’(Mtgm)zj\/'(%)—N(%), 2)

while for m < 0 we have M; > My = 0. We finally conclude that for m < 0 we have
P(M; <m ,W; <w)=0.

Remark (side notes): Note that (2) also implies for a fized t the well known fact that

(0 <) = N () = N () = B, < m) — BOY; < —m) = B(Wi| < ).

Furthermore, by changing variables the joint density of M; and Y; = My — W, can be easily
derived. Since this density shows that (M, Y;) is exchangeable it follows that M; ~ Y.

Exercise 3: Brownian motion with drift

Let (W3)icp,m be a standard Brownian motion defined on (€2, F, Q) and let W = (at + Wi)iepor
for a given real «, i.e. the Brownian motion (Wt) has drift o under Q. We further define My =
SUPg<;<T W,. Show that for m > 0, w < m, the joint density function of (MT, WT) under Q is
given by

- 2(2m — w)

fimw) = = ot

aWt—%QQ

_la2p L —w)2
oW 50°T— 5= (2m—w) ) (3)

Hint: Use Girsanov for the density Z, = e~ “ and the result from Exercise 2.

Following the hint define the exponential martingale
Zt — 670{Wt7%a2t — efaWt“F%aQt, 0 S t S T’

and use Zy in order to define a new probability measure P by
P(A) = / ZrdQ  for all Ae F,
A

i.€. % = Zr (being sampled from a “true” martingale). From Girsanov’s Theorem we know that

(VAVt)Ais a Brownian motion (with zero drift) under P. Hence, Ezercise 2 yields the joint density
of (Mp, Wr) under P, which is

R 22m —w) _em-w?
m,w) = ————>=¢ 2T
A ) T\3/ 2nT



forw < m, m >0 (and vanishing otherwise). Hence, by changing measure
Q(Mr <m, Wr < w) =Eg(Ty . yirmew)
1
= ]EP |:Z ]IMT<m ,WT<w:|

aWTf—OzQT
E |: I[MT<TTL WT<’LUi|

/ / w=30° {0 y)dady

Therefor for m > 0 and w < m the density of (MT , WT) under Q is
f(m,w) = e =37 f(m,w),

i.e. (3) (while otherwise the density is vanishing).

Exercise 4: Value of a up-and-out call

With the usual notation, price (at ¢ = 0) the following so-called up-and-out call being defined by

h = (St — k) +Ls,<p weo,n]

where we assume that Sy < b and 0 < k < b (otherwise, the option must be knocked out in order
to be in the money and hence, could only pay off zero).
Since h is a square integrable Fr-measurable random variable the price Vo at t = 0 is given by

VO = e_TTE@((ST - k)+]lst<b ,Vte[O,T]) 5
with 1
Sy = Spexp((r — 39 Nt + oW,;) = Spe”™ |

where Wt = at + W4,

o= %(T — 302)
Hence, with Ezercise 3 and with the notation
l;:—log(go) l%z—log(sﬁo)
Vo=e"E [(SerWT - k)]Ik<Soe”WT<b]IS()e"Wt<b, Vte[O,T]]
— —TT/ /er e —k (;m—\/—_;)e p (aw — %O&QT— %(Qm w)?)dmdw

aw—La2T b
—rT w € 2 2(2m B ’LU) — 2m w)
=e Soe’? — e * dmdw
/fc ( ) V21T w4 T

aw—%erT

b -
_ T ow € — L (2m—w)?\|b
=e Spe®” — k)———(—¢" 2T dw
/,;( AN s

b e—rT—&—ozw——aQT—ﬁw2 b e—rT—l—aw—%aQT—%(ﬁ;—w)Q
= / (Spe”™ — k) dw — / (Spe” — k) dw
k 2nT k 2n’T

- S()Il - k[g - 50[3 + k’[4,




where

[ 1
! V27T k-
I - 1
? 27T k-
I3 =
V27T Ji
B 1
27T k-
1, =

V27T i

Jw rT+awf§a2Tf—w dw
_ 1. 27 1
rT+aw— oa T w dw

oW rT+aw——a2T——(2b w)Qd

_ _ 127202 | 2bw  w?
ocw—rT+aw S T T+ <7 2T dw

2
—rT+aw——a2T—%+2b—w—;’—wa

Observe that each of these z'ntegmls are of the form

b w2 o2
V2 27T Ji:
By substituting y = \;%T we obtain
2 i2T+p 2L
Prr—ET gy = & /ﬁ e dy
VorT Jk V2T bt

—= 6%72T+ﬁ

e37V°T+8

= 6572T+,8

)

N <log (5 03; wT) Y <log (5503/; fyaT)) |

It 1s efficient to introduce the following notation

6i (S) =

For I, we have that = —rT —
Hence,

1.2 _ 1
a°T and v = a + o so that 5

log(s) + (r £ 30°

)T
ovT ‘

YT+ 3 =0 and yo =1+ 30°.

(o (3)) (e ()

For I, we have p = —rT —
Therefore,

Iy

L2

For I3, we obtain 3 = —rT —

2

vyol' =

1,2 _ 1.2 _ _ 1
s0°T and v = «. Hence, 37°T + = —rT and yo = r — 50

—rT SO _ &
(o (7))~ (- ()]
%andv—a+a+2—b, so that

1
T+ =

2

(—% — 1) log (%)

1, b
(r + 39 )T+210g(80)
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In view of that we have

(3 b () ()]

It remains I, where we have = —rT — %aQT — % and v = o + 2—", so that

So

b)

1 b
voT = (r — =o*)T + 2log (&) -
2 So

e (8 o () (e (2))]

By summing up we end up with the price of a up-and-out call (under the stated parameter restric-

s e (3) s ()]
(e () (e ()]
() o () (- ()]

e (3) 7 oo () (- ()]

1 2
§’YQT+B:—TT+(—O_T 1)lg(

Hence,



