

Exercises Martingales in Financial Mathematics: Model CRR and towards Black Scholes (Solutions)

Week 5, 2025

Exercise 1: Model CRR

The Cox Ross Rubinstein (binomial) model is sometimes used in order to price American options. Recall that there is only one risky asset with price S_n at n for all $n \in \{0, 1, \dots, N\}$ along with a risk-less asset. The risk-free interest rate for each time period is given by r . The price process (S_n) can be modeled by the relative variations of the quotes over the time subperiods, being denoted by a and b with $-1 < a < b$, i.e.

$$S_{n+1} = \begin{cases} S_n (1+a) \\ S_n (1+b) \end{cases}.$$

For our example we fix $N = 3$, $r = 0.02$, $b = 0.1$, $a = -0.1$, and $S_0 = 100$.

1. Is this particular market viable? Is it complete?

Yes, this particular market is viable since $-0.1 < 0.02 < 0.1$, i.e. $a < r < b$, see Exercise 1, Week 2. We have also seen that in such a viable case, the corresponding market is also complete, see again Exercise 1, Week 2.

2. Describe the martingale measure \mathbb{Q} .

A short calculation shows $p^ = \mathbb{Q}[S_{n+1}/S_n = 1 + a | \mathcal{F}_n] = 0.4$.*

3. Draw a graph of the tree representing the possible values of S_n .

Cf. the attached file.

4. We intend to derive the price of an American put, where the maturity is represented by N and where the strike is given by $K = 95$. Draw a graph of the tree with the possible payoffs at n , i.e. with the used notation visualize Z_n for each possible value of S_n .

Cf. the attached file.

5. Starting at $n = N$, construct the Snell envelope of Z_n .

Cf. the attached file.

Exercise 2: The SDE of a GBM

We are interested in the following equation

$$S_t = x_0 + \mu \int_0^t S_s ds + \sigma \int_0^t S_s dW_s, \quad t \in [0, T]. \quad (1)$$

1. Assume

$$S_t = x_0 e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t}.$$

By using the Itô formula, show that (S_t) is a solution of (1).

Consider S_t as a function in t and W_t

$$S(t, x) = x_0 e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma x}.$$

The first two derivatives with respect to x and the first one with respect to t are given by

$$\begin{aligned} \frac{\partial S}{\partial x}(t, x) &= \sigma S(t, x), \\ \frac{\partial^2 S}{\partial x^2}(t, x) &= \sigma^2 S(t, x), \\ \frac{\partial S}{\partial t}(t, x) &= \left(\mu - \frac{\sigma^2}{2}\right) S(t, x). \end{aligned}$$

By applying the Itô formula we end up with

$$S_t = x_0 + \int_0^t \left(\mu - \frac{\sigma^2}{2}\right) S_s ds + \int_0^t \sigma S_s dW_s + \frac{1}{2} \int_0^t \sigma^2 S_s ds,$$

i.e. with a solution for the SDE (1).

2. Show that (Z_t) defined by $Z_t = x_0/S_t$ solves

$$Z_t = 1 + \mu' \int_0^t Z_s ds + \sigma' \int_0^t Z_s dW_s,$$

where μ' and σ' are constants, which have to be identified.

As before

$$Z_t = 1 - \int_0^t \left(\mu - \frac{\sigma^2}{2}\right) Z_s ds - \int_0^t \sigma Z_s dW_s + \frac{1}{2} \int_0^t \sigma^2 Z_s ds.$$

Hence, $\sigma' = -\sigma$ and $\mu' = -\mu + \sigma^2$.

3. Assume that (Y_t) is another solution of the SDE (1). Show that $d(Y_t Z_t) = 0$. Derive the uniqueness of the solution of (1). In finance, the unique solution of this equation is called Black and Scholes model.

The integration by parts formula yields

$$d(Y_t Z_t) = Z_t dY_t + Y_t dZ_t + d\langle Y, Z \rangle_t.$$

With a little calculation we now end up with $d(Y_t Z_t) = 0$. We conclude $Y_t Z_t = Y_0 Z_0$. Hence, (S_t) is the unique solution of the SDE.