

Exercises Martingales in Financial Mathematics: Further aspects of discrete time models (Solutions)

Week 4, 2025

Exercise 1: An example for an incomplete model

Consider a one-period model with one risky asset. The spot price of this risky asset is 10. Assume that after the period, i.e. at $n = 1$, $S_1 \in \{9, 10, 12\}$ holds. Furthermore, assume that the risk-free interest rate is vanishing. Finally, let $H(S_1)$ be a European claim written on the risky asset S .

1. Is this market viable?

In order to show that this market is viable it is sufficient to find a risk-neutral probability measure. If we define the vector containing the probabilities of S_1 by $\{\beta, \alpha, \gamma\} = \{1/3, 1/2, 1/6\}$ we end up with $\mathbb{E}^[S_1] = 10$. Hence, there is a risk-neutral probability measure so that this market is viable.*

2. Describe the risk-neutral probabilities.

Again we denote the vector containing the probabilities of S_1 by $\{\beta, \alpha, \gamma\}$ and we assume $0 < \alpha, \beta, \gamma < 1$ and $\alpha + \beta + \gamma = 1$. Then $\mathbb{E}^{(\alpha, \beta, \gamma)}[S_1] = 9\beta + 10\alpha + 12\gamma$. The conditions for the risk-neutral probability measures are now given by $\gamma = \frac{1-\alpha}{3}$ and $\beta = 2\frac{1-\alpha}{3}$, with $0 < \alpha < 1$. From now on we work under a generic risk-neutral probability measure $\mathbb{P}^{(\alpha)}$.

3. Describe a potentially existing replicating strategy for the claim being defined by H and conclude that the strategy exists if and only if $H(12) - 3H(10) + 2H(9) = 0$.

We want to describe the potentially existing strategy. Hence, we have $\phi^0 S_1^0 + \phi S_1 = H(S_1)$. In view of that we can derive

$$\begin{cases} \phi^0 + 9\phi = H(9) \\ \phi^0 + 10\phi = H(10) \\ \phi^0 + 12\phi = H(12) \end{cases}.$$

This system has a solution if and only if $H(12) - 3H(10) + 2H(9) = 0$.

4. Show that the value of an option admitting a replication strategy does not depend on the choice of the risk-neutral probability measure.

It is sufficient to show that $\mathbb{E}^{(\alpha)}[H] = \mathbb{E}^{(\alpha')}[H]$ for $\alpha \neq \alpha'$. Thus, we have

$$\begin{aligned} 2\frac{1-\alpha}{3}H(9) + \alpha H(10) + \frac{1-\alpha}{3}H(12) \\ = 2\frac{1-\alpha}{3}H(9) + \alpha H(10) + \frac{1-\alpha}{3}H(12) - \frac{\alpha' - \alpha}{3}[H(12) - 3H(10) + 2H(9)] \\ = 2\frac{1-\alpha'}{3}H(9) + \alpha' H(10) + \frac{1-\alpha'}{3}H(12). \end{aligned}$$

5. Can the claims satisfying $H(12) - 3H(10) + 2H(9) = 0$ be described?

Yes, the claims are affine linear functions of S_1 ; hence, economically speaking, they are given by multiples of a forward (Week 1, Exercise 1) and an investments in the risk-free asset and/or in the risky asset.

Exercise 2: Doob decomposition

Consider our finite probability space setting. Show that supermartingale (X_n) has the following decomposition

$$X_n = X_0 + M_n - A_n$$

where (M_n) is a martingale null at 0 and (A_n) is a non-decreasing predictable process, null at 0. Furthermore, show that this decomposition is unique.

We start with a sequence (X_n) (where the X_n are automatically integrable in our finite probability space setting). Then

$$\begin{aligned} X_n &= X_0 + \sum_{k=1}^n \Delta X_k \\ &= X_0 + \underbrace{\sum_{k=1}^n \mathbb{E}(\Delta X_k | \mathcal{F}_{k-1})}_{(\hat{A}_n) \text{ predictable with } \hat{A}_0=0} + \underbrace{\sum_{k=1}^n (\Delta X_k - \mathbb{E}(\Delta X_k | \mathcal{F}_{k-1}))}_{(M_n) \text{ martingale with } M_0=0}. \end{aligned}$$

If $X_n = X_0 + M'_n + \hat{A}'_n$ holds for another decomposition of “the same type” we have that

$$\begin{aligned} X_n - X_0 &= \hat{A}'_n + M'_n = \hat{A}_n + M_n, \\ X_{n+1} - X_0 &= \hat{A}'_{n+1} + M'_{n+1} = \hat{A}_{n+1} + M_{n+1}. \end{aligned}$$

Hence,

$$\hat{A}'_{n+1} - \hat{A}'_n = M_{n+1} - M_n - (M'_{n+1} - M'_n) + (\hat{A}_{n+1} - \hat{A}_n).$$

Thus,

$$\mathbb{E}(\hat{A}'_{n+1} - \hat{A}'_n | \mathcal{F}_n) = \mathbb{E}(M_{n+1} - M_n | \mathcal{F}_n) - \mathbb{E}(M'_{n+1} - M'_n | \mathcal{F}_n) + \mathbb{E}(\hat{A}_{n+1} - \hat{A}_n | \mathcal{F}_n),$$

so that $\hat{A}'_{n+1} - \hat{A}'_n = \hat{A}_{n+1} - \hat{A}_n$. Since $\hat{A}'_0 = \hat{A}_0 = 0$ it follows consecutively that $\hat{A}'_n = \hat{A}_n$ for all n . Furthermore, with $M'_0 = M_0 = 0$ we conclude consecutively that also $M_n = M'_n$ for all n .

Hence,

$$X_n = X_0 + \hat{A}_n + M_n,$$

with (M_n) being a martingale and (\hat{A}_n) being a predictable process, where the decomposition is unique. For a supermartingale (X_n) we use that

$$X_{n+1} - X_n = M_{n+1} - M_n + (\hat{A}_{n+1} - \hat{A}_n),$$

the predictability property of (\hat{A}_n) , and the martingale property of (M_n) in order to conclude that

$$\mathbb{E}(X_{n+1} | \mathcal{F}_n) - X_n = \hat{A}_{n+1} - \hat{A}_n \leq 0.$$

The left hand side of the above equation is non-positive by the supermartingale property of (X_n) and so is the right hand side. Thus, the sequence (\hat{A}_n) is non-increasing so that $(A_n) = (-\hat{A}_n)$ is non-decreasing (clearly unique in this decomposition).

Exercise 3: American call

Let C_n^A, C_n be the price of an American, European option, respectively, at n with payoff being determined by $\{Z_n\}_{0 \leq n \leq N}, Z_N$, respectively.

- Show that for all n $C_n^A \geq C_n$.

The result can be proved by backward induction. Clearly, for the not exercised American claim we have $C_N^A = C_N$ since the payoffs of the American and the European option coincide. Now, at each n we consider the Snell envelope of the sequence $\{Z_n\}_{0 \leq n \leq N}$. Hence, we take the maximum of Z_n and $(1+r)^{-1} \mathbb{E}^{\mathbb{Q}}[C_{n+1}^A | \mathcal{F}_n]$. Hence, given $C_{n+1}^A \geq C_{n+1}$, we have

$$\begin{aligned} C_n^A &= \max \{Z_n, (1+r)^{-1} \mathbb{E}^{\mathbb{Q}}[C_{n+1}^A | \mathcal{F}_n]\} \\ &\geq (1+r)^{-1} \mathbb{E}^{\mathbb{Q}}[C_{n+1}^A | \mathcal{F}_n] \geq (1+r)^{-1} \mathbb{E}^{\mathbb{Q}}[C_{n+1} | \mathcal{F}_n] = C_n. \end{aligned}$$

- Show that $Z_n \leq C_n$ for all n implies $C_n^A = C_n$ for all n .

Assume $C_n \geq Z_n$, for all n . Hence, the sequence (\tilde{C}_n) , which is a martingale under \mathbb{Q} , appears to be a supermartingale under \mathbb{Q} being an upper bound for the sequence (\tilde{Z}_n) so that

$$\tilde{C}_n^A \leq \tilde{C}_n \quad \forall n \in \{0, 1, \dots, N\}.$$

- (Application: American Call) Assume that the risk-free interest rate is positive. Show that the price of an American call is equal to the price of an analogously specified European Call. Note that

$$\begin{aligned} C_n(K, S_n) &= (1+r)^{-(N-n)} \mathbb{E}^{\mathbb{Q}}[(S_N - K)^+ | \mathcal{F}_n] \\ &= (1+r)^n \mathbb{E}^{\mathbb{Q}}[(\tilde{S}_N - K(1+r)^{-N})^+ | \mathcal{F}_n] \\ &\geq (1+r)^n \mathbb{E}^{\mathbb{Q}}[\tilde{S}_N - K(1+r)^{-N} | \mathcal{F}_n] \\ &= (1+r)^n \tilde{S}_n - K(1+r)^{-(N-n)} \\ &= S_n - K(1+r)^{-(N-n)} \geq S_n - K, \end{aligned}$$

along with $C_n(K, S_n) \geq 0$. The claim follows by the above points. Note that up to the last step, where we have used that r is positive, the arguments remain valid in the case of puts.