

Exercises Martingales in Financial Mathematics: The CRR model (Solutions)

Week 2, 2025

Exercise 1: Cox Ross Rubinstein model

There is only one risky asset in the CRR model with price S_n at n until N along with a risk-less asset with risk-free interest rate r for every time period, i.e. $S_n^0 = (1 + r)^n$. The risky asset is modelled as follows. Between two consecutive periods the price changes by a factor $1 + a$ or $1 + b$

$$S_{n+1} = \begin{cases} S_n (1 + a) \\ S_n (1 + b) \end{cases}$$

where $-1 < a < b$.

Suppose that the initial stock price is given by S_0 and define the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega = \{1 + a, 1 + b\}^N$, $\mathcal{F} = \mathcal{P}(\Omega)$, and \mathbb{P} a probability measure such that $\mathbb{P}(\omega) > 0$ for every atom ω . For $n = 1, \dots, N$ the σ -algebra \mathcal{F}_n is generated by the random variables S_1, \dots, S_n , i.e. $\mathcal{F}_n = \sigma(S_1, \dots, S_n)$ ($\mathcal{F}_0 = \{\Omega, \emptyset\}$). We define the random variables $T_n = S_n / S_{n-1}$, with possible values $1 + a$ and $1 + b$, respectively.

1. Show that in order to end up with a viable market it is necessary that $r \in]a, b[$.

The market is viable if and only if there is a probability measure \mathbb{Q} equivalent to \mathbb{P} under which the discounted asset price sequences are martingales. Hence, under \mathbb{Q} we have $\mathbb{E}^{\mathbb{Q}}[\tilde{S}_{n+1} | \mathcal{F}_n] = \tilde{S}_n$. Thus, $\mathbb{E}^{\mathbb{Q}}[T_{n+1} (1+r)^{-1} | \mathcal{F}_n] = 1$. Since T_i takes values in $\{1+a, 1+b\}$ where both values have strictly positive probability, we end up with the result.

2. Find examples for violation of the assumption of absence of arbitrage if $r \notin]a, b[$.

Consider the case $r \leq a$. We can borrow the amount S_0 at $t = 0$ and buy a share of the risky asset. At N we sell the risky asset and we pay back $S_0(1+r)^N$. The gain is $S_N - S_0(1+r)^N$ being strictly positive with a non-vanishing probability since the events $\{S_N = S_0(1+b)^N\}$ etc. have strictly positive probability. Furthermore, $S_N \geq S_0(1+a)^N \geq S_0(1+r)^N$. Hence, we end up with an arbitrage opportunity. Analogous considerations yield an arbitrage possibility for the case $r \geq b$ (arbitrage is obtained by selling the risky asset etc.).

3. Now let $r \in]a, b[$ and denote $p^* = (b - r) / (b - a)$. Show that (\tilde{S}_n) is a martingale under \mathbb{Q} if and only if the random variables T_1, T_2, \dots, T_N are i.i.d. and $\mathbb{Q}[T_1 = 1 + a] = p^* = 1 - \mathbb{Q}(T_1 = 1 + b)$.

Note that for the given deterministic S_0 we have $S_n = S_0 \prod_{i=1}^n T_i$ and $\mathcal{F}_n = \sigma(T_1, \dots, T_n)$ for $n \geq 1$. For T_i being i.i.d. Bernoulli random variables with $\mathbb{Q}[T_i = 1 + a] = p^$ we have $\mathbb{E}^{\mathbb{Q}}[T_{n+1} | \mathcal{F}_n] = \mathbb{E}^{\mathbb{Q}}[T_{n+1}] = 1 + r$. Hence, \mathbb{Q} is a martingale measure.*

Conversely, if there exists a probability measure \mathbb{Q} such that (\tilde{S}_n) is a martingale under \mathbb{Q} we have that $\mathbb{E}^{\mathbb{Q}}[T_{n+1} | \mathcal{F}_n] = 1 + r$. Hence, we can write

$$1 + r = \mathbb{E}^{\mathbb{Q}}[T_{n+1} | \mathcal{F}_n] = (1 + a) \mathbb{E}^{\mathbb{Q}}[\mathbb{I}_{T_{n+1}=1+a} | \mathcal{F}_n] + (1 + b) \mathbb{E}^{\mathbb{Q}}[\mathbb{I}_{T_{n+1}=1+b} | \mathcal{F}_n].$$

Furthermore, we have

$$\mathbb{E}^{\mathbb{Q}}[\mathbb{I}_{T_{n+1}=1+a} | \mathcal{F}_n] + \mathbb{E}^{\mathbb{Q}}[\mathbb{I}_{T_{n+1}=1+b} | \mathcal{F}_n] = 1.$$

Thus, we conclude that $\mathbb{E}^{\mathbb{Q}}[\mathbb{I}_{T_{n+1}=1+a} | \mathcal{F}_n] = \mathbb{Q}[T_{n+1} = 1 + a | \mathcal{F}_n] = p^*$. By recursion we obtain for all $x_i \in \{1 + a, 1 + b\}$

$$\mathbb{Q}(T_1 = x_1, \dots, T_n = x_n) = \prod_{i=1}^n p_i$$

where $p_i = p^*$ if $x_i = 1 + a$ and $p_i = 1 - p^*$ if $x_i = 1 + b$. This proves that the T_i are independent and identically distributed under \mathbb{Q} and verifies that $\mathbb{Q}(T_i = 1 + a) = p^*$.

- Derive that the viable market obtained in 3 is complete (see Slides 52 and 53) and give a formula for the price of a claim with payoff H in the form of a conditional expectation with respect to \mathbb{Q} .

We have seen that (\tilde{S}_n) is a \mathbb{Q} -martingale determining the law of (T_1, T_2, \dots, T_N) under \mathbb{Q} , and hence, the measure \mathbb{Q} itself in a unique way. Hence, the market is viable and complete.

In view of that the price of a claim is given by $p(n, H) = (1 + r)^{-(N-n)} \mathbb{E}^{\mathbb{Q}}[H | \mathcal{F}_n]$.

Exercise 2: Pricing of options

Continue with the notation and assumptions in the previous exercise. Furthermore, denote by C_n (P_n , respectively) the value at n of a European call (put) option with strike K and maturity N (both being written on the risky asset).

- “Rediscover” the European put-call parity based on Point 4 of the previous exercise, i.e. derive

$$C_n - P_n = S_n - K (1 + r)^{-(N-n)}.$$

In view of the previous exercise we have

$$\begin{aligned} C_n - P_n &= (1 + r)^{-(N-n)} \mathbb{E}^{\mathbb{Q}}[(S_N - K)^+ - (K - S_N)^+ | \mathcal{F}_n] \\ &= (1 + r)^{-(N-n)} \mathbb{E}^{\mathbb{Q}}[S_N - K | \mathcal{F}_n] \\ &= S_n - K (1 + r)^{-(N-n)}, \end{aligned}$$

where for the last equality we have used that (\tilde{S}_n) is a martingale under \mathbb{Q} .

- Show that $C_n = c(n, S_n)$, where c is a function which can be expressed with the help of K , a , b , r and p^* .

We know that $S_N = S_n T_{n+1} \dots T_N$. Hence,

$$C_n = (1 + r)^{-(N-n)} \mathbb{E}^{\mathbb{Q}}[(S_n T_{n+1} \dots T_N - K)^+ | \mathcal{F}_n].$$

Since under \mathbb{Q} , the variables T_{n+1}, \dots, T_N are independent of \mathcal{F}_n and furthermore, S_n is \mathcal{F}_n -measurable, we conclude by using one of the properties of conditional expectations that $C_n = c(n, S_n)$ where c is a function being defined by

$$\begin{aligned} c(n, x) &= \frac{\mathbb{E}^{\mathbb{Q}} (x \prod_{i=n+1}^N T_i - K)^+}{(1+r)^{N-n}} \\ &= \frac{1}{(1+r)^{N-n}} \sum_{j=0}^{N-n} \frac{(N-n)!}{(N-n-j)!j!} p^{*j} (1-p^*)^{N-n-j} (x(1+a)^j (1+b)^{N-n-j} - K)_+ . \end{aligned} \quad (1)$$

3. Show that

$$c(n, x) = \frac{p^*}{1+r} c(n+1, x(1+a)) + \frac{1-p^*}{1+r} c(n+1, x(1+b)), \quad n = 0, \dots, N-1 .$$

By conditioning on (T_{n+2}, \dots, T_N) in (1) we obtain

$$\frac{c(n, x)}{(1+r)^{-(N-n)}} = p^* \mathbb{E}^{\mathbb{Q}} (x(1+a) \prod_{i=n+2}^N T_i - K)^+ + (1-p^*) \mathbb{E}^{\mathbb{Q}} (x(1+b) \prod_{i=n+2}^N T_i - K)^+ .$$

4. Show that the perfect hedging strategy of a European call at n is defined by a quantity $H_n = \Delta(n, S_{n-1})$ representing the investment in the risky asset, where the Δ is a function, which can be expressed in terms of the function c .

Denote by H_n^0 the quantity invested in risk-less asset in the replication portfolio of a call. Then we have

$$H_n^0 (1+r)^n + H_n S_n = c(n, S_n) .$$

Since H_n^0 and H_n are \mathcal{F}_{n-1} -measurable, they are only functions of S_1, \dots, S_{n-1} and S_n is equal to $S_{n-1}(1+a)$ or $S_{n-1}(1+b)$ so that

$$\begin{aligned} H_n^0 (1+r)^n + H_n S_{n-1}(1+a) &= c(n, S_{n-1}(1+a)), \\ H_n^0 (1+r)^n + H_n S_{n-1}(1+b) &= c(n, S_{n-1}(1+b)) . \end{aligned}$$

By subtraction we end up with

$$\Delta(n, x) = \frac{c(n, x(1+b)) - c(n, x(1+a))}{x(b-a)} .$$