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Remarks on the theory of arbitrage for continuous-time
models

Very roughly speaking the Fundamental Theorem of Asset Pricing states that,

essentially, a model of a financial market is free of arbitrage if and only if there is a

probability measure Q, equivalent to the original real-world measure P (i.e. P and Q

vanish on the same events), such that the discounted asset price processes are

martingales under Q.

Measure Q is then called equivalent martingale measure. In this case taking

discounted expectations with respect to Q in order to price contingent claims yields the

arbitrage-free pricing rules, where Q runs through all equivalent martingale measures.

2



If furthermore Q is unique, then the discounted expected (with respect to Q) payoff

yields the unique arbitrage-free price.

This theorem was proved by Harrison and Krebs (1979)/Harrison and Pliska (1981) for

the case where the underlying probability space is finite (we have discussed that in the

first lectures).

The Fundamental Theorem of Asset pricing has different formulations depending on

the level of generality. It paves the way for using martingale methods in mathematical

finance.
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It turned out that in the continuous time setting, a very simple no-arbitrage condition

does not guarantee the existence of an equivalent martingale measure and not even of

a more general equivalent local martingale measure.

Due to this fact certain, at first glance economically not completely unreasonable

modifications of the no-arbitrage property have been introduced by Delbaen and

Schachermayer 1994 in order to guarantee at least the existence of an even more

general equivalent σ-martingale measure, see Delbaen and Schachermayer 1998.

Recent work by Platen and other researchers indicate, however, that in continuous time

market models the modifications due to Delbaen and Schachermayer exclude some

models with economically very interesting properties, which are not excluded under

other definitions of absence of arbitrage.
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Continuous time financial markets: Basics

Uncertainty in the market is usually modelled by a filtered probability space

(Ω,F, (Ft)t∈T,P), where T = [0, T ], for fixed T > 0, or T = R+ = [0,∞).

In view of the possibility to embed different time sets into R+, the following definitions

and results are stated for R+.
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The filtration Ft, t ≥ 0, being an increasing family of sub-σ-algebras, is assumed to

satisfy the “usual conditions” of

— right continuity (Ft =
⋂
s>t Fs) and

— completeness (F0 contains all P-null sets of F).

The role of the filtration is to describe the information available at any time t.

A stochastic process X on (Ω,F, (Ft)t≥0,P) is a collection of R- or Rn-valued

random variables (vectors) X = (Xt)t≥0.

The process X is said to be adapted if Xt is Ft measurable for each t, i.e. Xt is

known if Ft is known.

Processes with sample paths being a.s. right-continuous with left limits are called

càdlàg.
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A map τ : Ω 7→ [0,∞] is a stopping time if {τ ≤ t} ∈ Ft for all t ≥ 0. The stopping

time σ-algebra Fτ is defined as

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0} .

Intuitively, Fτ represents the events known at time τ .

For a stochastic process X , and a stopping time τ , the process Xτ defined by

Xτ
t = Xt∧τ , t ≥ 0, is the stopped process (at τ ), where a ∧ b = min(a, b) for a,

b ∈ R.
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Of particular interest in finance are martingales, recall that these are real-valued,

adapted stochastic processes M = (Mt)t≥0, where Mt is integralbe for all t ≥ 0,

and E(Mt|Fs) = Ms a.s. for all s ≤ t.

An adapted process M is called a local martingale if there exists an a.s. increasing

sequence (τk)∞k=1 of stopping times such that τk →∞ a.s. and, for each k ≥ 1, the

stopped process Mτk is a martingale.

A process (At)t≥0 is of bounded variation, if

sup
0≤t0<···<tn≤t

n∑
i=1

|Ati −Ati−1
| <∞ a.s., for each t <∞ .
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An Rn-valued process M = (M1, . . . ,Mn) is said to be a (local) martingale if

M1, . . . ,Mn are one-dimensional (local) martingales. An Rn-valued process

A = (A1, . . . , An) is of bounded variation, if its components are of bounded

variation.

For τ1 ≤ τ2 being two stopping times, [[τ1, τ2]] denotes the set

{(t, ω) : t ∈ T, ω ∈ Ω and τ1(ω) ≤ t ≤ τ2(ω)}

(other stochastic intervals are defined in an analogous way).

The σ-algebra generated by all stochastic intervals of the form [[0, τ ]] where τ is a

stopping time, is called the predictable σ-algebra. a The predictable σ-algebra is

denoted by P. Any process which is measurable with respect to P is called

predictable. The σ-algebra P on Ω× R+ is also generated by the left-continuous

(Ft)-adapted processes.

a. To be precise, when F0 is not trivial, we also have to include the sets of the form {0}×A, where A runs through

F0.
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Continuous time financial markets: Asset prices

The process of traded asset prices S = (St0, St1, . . . , Stn)t≥0, where (St0)t≥0

often stands for a money market account, is usually assumed to be an Rn+1-valued

semimartingale defined over and adapted to the filtered probability space

(Ω,F, (Ft)t≥0,P).

In general, a n-dimensional càdlàg process X , is called a semimartingale if it admits a

decomposition

Xt = X0 +At +Mt , t ≥ 0 , (1)

where (At)t≥0 is a n-dimensional adapted process of bounded variation, (Mt)t≥0 is

a n-dimensional local martingale, and A0 = M0 = 0.

A semimartingale X is a special semimartingale if a decomposition of this form exists

with A being also predictable. If such a decomposition exists, it is unique. In particular

this is the case for continuous semimartingales.
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The use of semimartingales in mathematical finance is justified by several reasons. The

main among them might be, firstly, that this class is wide enough, and secondly, that for

semimartingales the theory of stochastic integration is well developed which suits fine

for the construction of arbitrage theory.
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For formulating the Fundamental Theorem of Asset Pricing in the continuous time

higher-dimensional setting, integrals with respect to vector-valued semimartingales

have to be constructed (for integrable H , assumed to be predictable). The first quite

tricky construction a of the sufficiently general so-called vector (not vector-valued)

stochastic integrals denoted by

H ·X = (H ·X)t =

∫ t

0

〈Hs, dXs〉 , t ≥ 0 ,

has been provided by Jacod (1980). An explicit approach to the vector stochastic

integral and a discussion of its application in the context of the (First and Second)

Fundamental Theorem of Asset Pricing has been provided by Cherny and

Shiryaev (2002), based on (1998).

a. To get closedness of the space of integrals is the difficult point.
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If the componentwise stochastic integral
∑n
i=1(Hi ·Xi)t, t ≥ 0, of one-dimensional

stochastic integrals exists, see e.g. Barndorff-Nielsen and Shiryaev (2015) or Jacod

and Shiryaev (2003), then the vector stochastic integral also exists and the integrals

coincide. However, it may happen that the componentwise stochastic integral does not

exist, while the vector stochastic integral is well defined.

For an example, showing the necessity of using vector stochastic integral rather than

componentwise in the context of the Fundamental Theorem of Asset Pricing, see again

Cherny and Shiryaev (2002).
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A semimartingale X = (Xt1, . . . , Xtn)t≥0 is a σ-martingale if there exists an

Rn-valued local martingale M and a process H = (Ht1, . . . ,Htn)t≥0 such that for

each i, Hi is Mi-integrable and Xi = X0i +Hi ·Mi.

Note that every càdlàg martingale is a local martingale (take τn = n). Furthermore, a

local martingale is a σ-martingale. The converse is not true. The archetype of a local

martingale which fails to be a martingale is the inverse Bessel (3) process, see

e.g. Delbaen and Schachermayer Ex. 7.2.8. For an example of a σ-martingale not

being a local martingale, see Émery (1980).
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A self-financing strategy π is a pair (x,H), where x ∈ R and predictable process

H = (Ht1, . . . ,Htn)t≥0 is S̃-integrable, i.e. there exists a vector stochastic integral

H · S̃, where S̃ stands for the discounted price processes of the risky assets, i.e.

St0 = Bt (assumed to be a.s. strictly positive), t ≥ 0,

S̃t =
(St1
Bt

, . . . ,
Stn
Bt

)
, t ≥ 0 .
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The discounted capital process of the strategy π = (x,H) is given by

V πt = x+ (H · S̃)t , t ≥ 0 ,

where (H · S̃)t, t ≥ 0, represents the discounted return of the strategy π over time t

(note in order to simplify the notation V stands here for the discounted return).

Note that for every t ≥ 0 we also have

V πt = 〈Ht, S̃t〉+Ht0 ,

where Ht0 is the amount invested in asset 0 at time t (where Bt/Bt = 1 for every

t ≥ 0). The cumulative (discounted) costs up to time t incurred by a (not necessarily

self-financing) strategy is

Ct = V πt − (H · S̃)t .

In the self-financing case it is Ct = x for every t, i.e. a self-financing strategy is

completely described by x and H , determining H0t for every t ≥ 0.
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Arbitrage and all that

Definition 1. A strategy π = (x,H) realises arbitrage if

(i) x = 0 ,

(ii) there exists a constant a ≥ 0 such that

P(V πt ≥ −a for all t ≥ 0) = 1 ,

(iii) the limit V π∞ = limt→∞ V πt exists P-a.s. ,

(iv) V π∞ ≥ 0 P-a.s. ,

(v) P(V π∞ > 0) > 0.

A model satisfies the No-Arbitrage condition (notation NA) if such a strategy does not

exist.
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Definition 2. A sequence of strategies πk = (xk, Hk), k ≥ 0, realises free lunch

with vanishing risk if for all k ≥ 0,

(i) xk = 0 ,

(ii) there exists a constant ak > 0 such that P(V πk
t ≥ −ak for all t ≥ 0) = 1 ,

(iii) the limit V πk
∞ = limt→∞ V πk

t exists P-a.s. ,

(iv) V πk
∞ ≥ − 1

k P-a.s. ,

(v) there exist constants δ1, δ2 > 0 such that P(V πk
∞ > δ1) > δ2 (δ1 and δ2 independent of

k).

A model satisfies the No Free Lunch with Vanishing Risk condition (notation NFLVR)

if such a sequence of strategies does not exist.
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The Fundamental Theorems of Asset Pricing

Theorem 1 ((First) Fundamental Theorem of Asset Pricing). The following assertions

are equivalent for an Rn-valued semimartingale model S̃, of a financial market.

(i) There is a probability measure Q equivalent to P such that S̃ is a σ-martingale

under Q,

(ii) S̃ satisfies NFLVR.

Due to a result by Ansel and Stricker (1994) we have that if the components of S̃ are

nonnegative, NFLVR is equivalent to the existence of an equivalent local martingale

measure (i.e. a measure Q under which S̃ is a local martingale).

Arbitrage results for certain models including transaction costs can be found e.g. in

Kabanov and Safarian (2009).
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The so-called Second Fundamental Theorem of Asset Pricing roughly tells us that an

arbitrage-free model is complete if the equivalent martingale measure is unique, where,

informally speaking, completeness means a possibility to hedge “any” contingent claim.

It should be pointed out that all models employed in “classical mathematical finance”

are free of arbitrage, but only a few of them are complete, while most of the models are

incomplete.
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Definition 3. A model of a market described by the semimartingale S̃ is complete if for

any bounded F-measurable random variable Y one can find a strategy π such that

(i) for some constants a and b

P(a ≤ V πt ≤ b for all t ≥ 0) = 1 ,

(ii) the limit V π∞ = limt→∞ V πt exists P-a.s. ,

(iii) Y = V π∞ P-a.s. .
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Definition 4. Let S̃ = (S̃t1, . . . , S̃tn)t≥0 be a semimartingale given on a filtered

probability space (Ω,F, (Ft)t≥0,Q). One says that a local martingale M given on

this probability space admits S̃-representation if one can find an integrable, predictable

process H = (Ht1, . . . ,Htn)t≥0 such that for all t ≥ 0

Mt = M0 + (H · S̃)t , a.s.
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Theorem 2 (Second Fundamental Theorem of Asset Pricing).

(a) Assume that the family of equivalent σ-martingale measures is nonempty.

Then the following conditions are equivalent

(i) the model described by the semimartingale S̃ is complete,

(ii) the family of equivalent σ-martingale measures consists of a single

measure,

(iii) in the family of equivalent σ-martingale measures exists a measure Q

such that any local martingale M , admits the S̃-representation (with respect to this

measure).
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(b) Assume that the components of S̃ are nonnegative and that the family of equivalent local

martingale measures is nonempty. Then the following conditions are equivalent

(i) the model described by the semimartingale S̃ is complete,

(ii) the family of equivalent local martingale measures consists of a single

measure,

(iii) in the family of equivalent local martingales exists a measure Q

such that any local martingale M admits the

S̃-representation (with respect to this measure).

Hence, in case of semimartingales with non-negative components, we in particular

have that the existence of exactly one local martingale measure ensures completeness

of the model. It should be emphasised that Theorem 2 does not hold if the vector

stochastic integrals are replaced by the componentwise stochastic integrals.

Furthermore, a model can be complete, whereas the family of equivalent σ-martingales

is empty.

24



Risk-neutral valuation

The above results can be applied to the so-called risk-neutral valuation.

E.g. consider a finite time horizon T > 0 and a FT -measurable non-negative random

variable C , a so-called (non-discounted) contingent claim, i.e. a payoff at time T , but

the amount to be paid may depend on the whole information contained in FT . Assume

that Y = B−1T C is Q-integrable for some Q being equivalent to P such that all

components of S̃ are Q-martingales, and put

Pt = BtEQ(B−1T C|Ft) , t ∈ [0, T ]. (2)

If we consider (Pt)t∈[0,T ] to be the price process of an asset, then the market

extended with this asset is still free of arbitrage, since the discounted price process of

this asset is a Q-martingale.
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So, (Pt)t∈[0,T ] (satisfying PT = C) is a candidate for a “fair” price process of C .

However, this definition of “fair” depends on the choice of the equivalent martingale

measure.

If there is an equivalent martingale measure the corresponding market satisfies

NFLVR implying NA.

Furthermore, assume that in this arbitrage free market the equivalent martingale

measure is unique in the class of equivalent local martingale measures.

Then, for “suitably defined” (e.g. as in the Second Fundamental Theorem of Asset

Pricing) contingent claims, there exists a self-financing a dynamic hedging strategy

consisting of continuously trading in the assets (including the bond), having value

BtEQ(B−1T C|Ft) , for all t ∈ [0, T ] .

a. Recall that this means that there is only an initial investment.
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In general, contingent claims which can be replicated in this way are often called

attainable.

The advantage of complete markets stems from the fact that it allows the pricing and

hedging of contingent claims in a preference-independent way.

However, completeness is a quite delicate property which is typically destroyed as soon

as one considers even minor modifications of a basic complete model.

For instance, we know that the classical Black–Scholes model based on a

one-dimensional geometric Brownian motion, is complete, but becomes incomplete if

the volatility is influenced by a second stochastic factor or if one adds a jump

component to the model.

If one insists on the preference-free approach under incompleteness, one can study the

range of possible prices for C which are consistent with the absence of arbitrage in a

market.
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Another approach is to introduce subjective criteria according to which strategies the

martingale measures are chosen.

Hence, for a given semimartingale model satisfying NFLVR, the problem of pricing

financial derivatives essentially boils down to choosing an appropriate equivalent

martingale measure and then computing the conditional expectations

BtEQ(B−1T C|Ft) , for all t ∈ [0, T ] .
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During more than the last twenty-five years many different strategies for choosing an

appropriate martingale measure have been developed, e.g. in the sense of minimising

a distance from the measure P (entropic distance, L2-distance, general f -distance,

Hellinger distance, etc., or in the sense of constructing the simplest possible measure,

e.g. steaming from the Esscher transform).

From the practitioners point of view, the choice of this measure should be the result of a

calibration of the model to the market price of plain vanilla options (the corresponding

inverse problems are often ill-posed so that regularization should be used).

Applying an incomplete market model yields for many claims that there are no perfect

hedging strategies by investing solely in the underlying and the cash-bond.
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If certain derivatives of underlyings are traded on the market, it is possible to hold a

dynamic portfolio containing these instruments, typically consisting of cash-bonds, a

position in the univariate underlying, and a collection of calls and puts. If one allows this

dynamic trading in options, the market can be completed in some situations by adding

a suitable collection of derivatives, e.g. European calls or variance swaps, to the liquidly

traded underlying asset.
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