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Searching for adequate stochastic models which
describe dynamics of the prices

As on finite probability spaces the theory on the fundamental theorems of asset pricing

in continuous time lead to an important but quite abstract theory about “absence of

arbitrage” and about complete markets, a notion being closely related to hedging.

However, one of the key topics in both theory of mathematical finance and practice of

financial trading consists in realizing which process simulate the prices S respectively

S̃.
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In the discrete case we have considered e.g. the trinomial model (incomplete market)

and in particular the CRR (complete market) model.

In the continuous case we have already discussed the Black–Scholes (complete

market) model for the concrete behaviour of share price processes.
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Recall that the Black–Scholes model

St = S0e
(µ− 1

2σ
2)t+σBt , i.e. dSt = St(µdt+ σdBt)

with a constant volatility σ has the weakness that really observable data tells us that σ

is NOT a constant (volatility skew, volatility smile, non-constant volatility surface).

Figure 1 – Source: Bloomberg
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Figure 2 – Source: Bloomberg

1st Correction σ  σ(t) (R. Merton, 1973)

2nd Correction σ(t) σ(t, St) (B. Dupire, 1994) .
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More concretely, in the framework of models with nonstochastic volatility, one can

obtain smile effects by assuming σ = σ(t, x) for a deterministic function σ.

Then consider

dSt = µStdt+ Stσ(t, St)dBt ,

for which the advanced theory of existence and uniqueness of strong and weak

solutions is developed.

Annoying circumstance: The prices and volatility turn out to be perfectly correlated and

this contradicts statistical observations showing that the correlation should be negative

but not equal to−1.
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For the intuition. . .

Figure 3 – Source: Bloomberg
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Also natural is to go further, i.e. to assume that volatility depends (and reflects) not only

on t and St but also on all preceding values Su, u ≤ t (the history), i.e. consider

dSt = Stµdt+ Stσ(t;Su, u ≤ t)dBt ,

σ(t;xu, u ≤ t).

— markets are complete

— study of these models is not advanced because of analytical difficulties (some results

concerning existence of solutions are given in Ch. 4 in R. Sh. Liptser

A. N. Shiryaev, Statistics of Random Processes (2001)).
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Classic stochastic volatility models

Assume the volatility to be itself “volatile”, i.e. that the volatility is generated by a source

of randomness which is different from the driving BM B.

In the framework of “Brownian models” another Brownian motion B̃, with

d〈B, B̃〉t = ρ dt ,

for suitable ρ ∈ (−1, 1).

As to the volatility σ(t), it is convenient to assume that

σ(t) = f(Yt) ,

where f(y) is a nonnegative function, e.g. ey or
√
|y| and Y is a diffusion which

satisfies

dYt = a(t, Yt)dt+ b(t, Yt)dB̃t .
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Or even one could assume that Y belongs to the larger class of Itô-processes

dYt = a(t, ω)dt+ b(t, ω)dB̃t ,

with a(t, ω) and b(t, ω) being Ft-measurable functions for every t and such that a.s.∫ t

0

|a(s, ω)|ds <∞ ,

∫ t

0

b2(s, ω)ds <∞ , t > 0 .

Some difficulty arises: The coefficients a(t, ω) and b(t, ω) must be “adjusted” to the

behavior of volatility, which is not directly observable.

Nevertheless, indirect observations can allow one to make important conclusions about

properties of volatility itself. Perhaps most important: mean reversion, that is, return of

the process towards the mean.
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Simplest process with mean reversion: Ornstein-Uhlenbeck process satisfying

dYt = (α− βYt)dt+ γdB̃t , Y0 = y ∈ R , (1)

and α > 0, β > 0, γ > 0.

This process takes values in R. One can take σ(t) equal f(Yt), where e.g.

f(y) = ey .

An example of models, where Y has mean reversion and is nonnegative, is given by

the Cox-Ingersoll-Ross model

dYt = (α− βYt)dt+ γ
√
YtdB̃t , Y0 > 0 ,

α > 0, β > 0, γ > 0.
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Assume e.g. that the price S satisfies

dSt = µStdt+ σ(t)StdBt ,

where σ(t) = eYt and Y being an OU-process (which satisfies (1)).

Then

d〈S, σ〉t = σ(t)2Stγd〈B, B̃〉t .

From this we see that to have negative correlation between prices and volatility (often

observed) we must assume that the driving Brownian motions are also negatively

correlated, so that d〈B, B̃〉t = ρdt, where ρ < 0.

In practice the Heston Model is quite popular, which is based on CIR, with f(y) =
√
y.

(Extensions of) the Ornstein-Uhlenbeck and CIR processes are also used in order to

model the short-rates (rt)t∈[0,T ] in simple stochastic interest rate models, where the

risk-less asset is then given by St0 = exp(
∫ t

0
rs ds), t ∈ [0, T ].
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The characteristic feature of these models is that they were constructed based on an

integral representation of the type

σ ·B .
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Main models based on Brownian motion

— Exponential INTEGRAL Brownian model

St = S0 exp

(∫ t

0

µsds+

∫ t

0

σsdBs

)
.

— Exponential TIME-CHANGED Brownian model

St = S0 exp
(
µT (t) +BT (t)

)
,

i.e. (BT (t)) is a time change in a (standard) Brownian motion.
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Random Change of Time

Consider a filtered probability space or stochastic basis (Ω ,F , (Fθ)θ≥0,P)

(satisfying the usual conditions).

It is convenient, when defining the notion of “change of time” to distinguish between the

“old” (physical, calendar) θ-time and a “new” (operational, business) t-time.

The following definition is useful if we need to construct, starting from the initial process

X = (Xθ)θ≥0 (adapted to the filtration (Fθ)), a new process X̂ = (X̂t)t≥0

evolving in t-time and having certain desired properties.
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Definition 1. A family of random variables T = (T (t))t≥0 is said to be a random

change of time, if

(a) (T (t))t≥0 is a nondecreasing (in the terminology of stochastic analysis–increasing),

right-continuous family of [0,∞]-valued random variables T (t), t ≥ 0 ;

(b) for all t ≥ 0 the random variables T (t) are stopping times with respect to the filtration

(Fθ)θ≥0, i.e.

{T (t) ≤ θ} ∈ Fθ , t ≥ 0 , θ ≥ 0 .
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One out of others exceptional roles of Brownian motion is the possibility to represent a

wide class of processes (in fact, semimartingales) X in the form X
law
= B ◦ T

(perhaps on different probability spaces) for a certain Brownian motion B and change

of time T . (This is “Monroe’s theorem”, Monroe (1978)).

A particularly nice subfamily of semimartingales is given by the well-known Lévy

processes.
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Lévy Processes

A Lévy process L = (Lt)t≥0 is a càdlàg process with independent and stationary

increments, L0 = 0, which is continuous in probability a.

Kolmogorov-Lévy-Khinchin’s formula (often Lévy-Khinchin’s formula) for characteristic

functions

EeiuLt = exp

{
t
(
iub− u2

2
c+

∫ (
eiux − 1− iuh(x)

)
F (dx)

)}
where the classical “truncation” function is h(x) = x1I|x|≤1 and

— F (dx) is a measure on R \ {0} such that
∫

min(1, x2)F (dx) <∞,

— b ∈ R and c ≥ 0,

— (b, c, F ) is the Lévy triplet (or the triplet of local characteristics) of L (characterizes

the Lévy process).

a. i.e. for every ε > 0, lims→t P(|Ls − Lt| > ε) = 0.
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The Lévy-Itô representation for trajectories of L = (Lt)t≥0 is

Lt = bt+ Lct +

∫ t

0

∫
h(x)d(µ− ν) +

∫ t

0

∫
(x− h(x))dµ ,

where

— (as bt) Lc is a continuous component of L (the continuous martingale component

of L), Lct =
√
cWt, where W is a Wiener process ;

— µ is the measure of jumps: for A ∈ B(R \ {0})

µ(ω; (0, t]×A) =
∑

0<s≤t

1IA(∆Ls) (∆Ls = Ls − Ls−) ;

— ν is the compensator of the measure of jumps µ :

ν((0, t]×A) = tF (A) = E[µ(·, (0, t]×A)] , F (A) =

∫
A

F (dx) .
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Examples of Lévy processes

— Brownian motion.

— Poisson process: A process (Nt)t≥0, is a Poisson process with intensity parameter

λ if it is a counting process with N0 = 0 a.s., stationary and independent

increments, where Nt is Poisson-distributed with parameter λt.

— compound Poisson process defined by

Lt =

Nt∑
k=0

ξk ,

where

— (Nt)t≥0 is a Poisson process,

— (ξk)k≥1 is a sequence of independent and identically distributed random

variables and also independent of (Nt). Furthermore, ξ0 = 0.
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Hyperbolic Lévy processes

In connection with financial econometrics Hyperbolic Lévy processes are of great

interest, because they model well the really observable processes H = (Ht)t≥0 for

many underlying financial instruments (exchange rates, stocks, etc.).

The credit of developing the theory of such processes and their applications is due to

E. Halphen, O. Barndorff-Nielsen, E. Eberlein.

We will construct these processes, following mostly Chapters 9 and 12 of the

monograph: O. Barndorff-Nielsen and A. Shiryaev, Change of Time and Change of

Measures, 2nd Edition (2015).
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For a Lévy process (Ht)t≥0 we have

E(eiuHt) = (EeiuH1)t .

The properties of Lévy’s processes imply that the random variable h = H1 is infinitely

divisible, i.e., for any n one can find i.i.d. r.v.’s ξ1, . . . , ξn such that

Law(h) = Law(ξ1 + · · ·+ ξn) .

We will look for the infinitely divisible r.v.’s h having the from

h = µ+ βσ2 + σε ,

where ε is a standard Gaussian random variable, ε ∼ N (0, 1), σ = σ(ω) is the

“volatility” (which does not depend on ε), for whose square, σ2, we will construct a

special distribution

GIG – Generalized Inverse Gaussian distribution.
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Strikingly, this distribution (on R+) is infinitely divisible and also the distribution of

h = µ+ βσ2 + σε (on R) is infinitely divisible. Due to that, there exist a Lévy

processes T = (T (t))t≥0 and H∗ = (H∗t )t≥0 such that

Law(T (1)) = Law(σ2) and Law(H∗1 ) = Law(h) .

As a realization of H∗ = (H∗t )t≥0 one can take

Ht = µt+ βT (t) +BT (t) ,

where the “time change” T = (T (t))t≥0 and the Brownian motion B = (Bθ)θ≥0 are

independent.

In the sequel, we do not distinguish between the processes H and H∗.

This process H , remarkable in many respect, bears the name

L(GH)–Generalized Hyperbolic Lévy process.
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The construction of the GIG-distributions for σ2 is as follows.

Let W = (Wt)t≥0 be a Wiener process (standard Brownian motion). For A ≥ 0,

B > 0 introduce

TA(B) = inf{s ≥ 0 : As+Ws ≥ B} .

The formula for the density pTA(B)(s) = dP(TA(B) ≤ s)/ds is well known

pTA(B)(s) =
B

s
ϕs(B −As) , ϕs(x) =

1√
2πs

e−x
2/(2s) . (2)

Letting b = B2 > 0 and a = A2 ≥ 0, we find from (2) the following formula for

p(s; a, b) = pT
√
a(
√
b)(s) :

p(s; a, b) = c1(a, b)s−3/2e−(as+b/s)/2 , c1(a, b) =

√
b

2π
e
√
ab .

The distribution with density p(s; a, b) is named

IG = IG(a, b) – Inverse Gaussian distribution .
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Next important step: one defines ad hoc the function

p(s; a, b, ν) = c2(a, b, ν)sν−1e−(as+b/s)/2 , (3)

where the parameters a, b, ν ∈ R are chosen in such a way that p(s; a, b, ν) is a

probability density on R+.

a ≥ 0 , b > 0 , ν < 0

a > 0 , b > 0 , ν = 0

a > 0 , b ≥ 0 , ν > 0

⇓∫ ∞
0

sν−1e−(as+b/s)/2ds <∞ .
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It is well known that Kν(y) = 1
2

∫∞
0
sν−1e−y(s+1/s)/2ds is the third-kind Bessel

function of order ν, which for y > 0 solves

y2f ′′(y) + yf ′(y)− (y2 + ν2)f(y) = 0 .

The constant in (3) has the from c2(a, b, ν) = (a/b)ν/2

2Kν(
√
ab)

.

The distribution on R+ with density

p(s; a, b, ν) =
(a/b)ν/2

2Kν(
√
ab)

sν−1e−(as+b/s)/2

s > 0, bears the name

GIG – Generalized Inverse Gaussian distribution .
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Important properties of GIG-Distributions (for σ2)

(A) This distribution is infinitely divisible.

(B) The density p(s; a, b, ν) is unimodal with mode

m =

b/[2(1− ν)] , if a = 0 ,

[(ν − 1) +
√
ab+ (ν − 1)2]/a , if a > 0 .

(C) The Laplace’s transform L(λ) =
∫∞

0
e−λsp(s; a, b, ν)ds is given by

L(λ) =
(
1 +

2λ

a

)−ν/2Kν(
√
ab(1 + 2λ/a))

Kν(
√
ab)

.
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Particularly important SPECIAL CASES of GIG-distributions are

(i) a ≥ 0, b > 0, ν = −1/2 in this case GIG(a, b,−1/2) = IG(a, b)

Inverse Gaussian distribution.

Density : p(s; a, b) = c1(a, b)s−3/2e−(as+b/s)/2, c1(a, b) =
√

b
2π e
√
ab,

Density of Lévy’s measure : f(y) =
√

b
2π

e−ay/2

y3/2
.

(ii) a > 0, b = 0, ν > 0 in this case GIG(a, 0, ν) = Gamma(a/2, ν)

Gamma distribution.

Density : p(s; a, 0, ν) = (a/2)ν

Γ(ν) s
ν−1e−as/2,

Density of Lévy’s measure : f(y) = y−1νe−ay/2.

(iii) a > 0, b > 0, ν = 1

Density : p(s; a, b, 1) =

√
a/b

2K1(
√
ab)
e−(as+b/s)/2, is the

PH – Positive Hyperbolic distribution, or H+-distribution.
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Since a GIG-distribution is infinitely divisible we have that if one takes it as the

distribution of σ2,

Law(σ2) = GIG ,

then one can construct a nonnegative, nondecreasing Lévy process T = (T (t))t≥0

(a subordinator) such that

Law(T (1)) = Law(σ2) = GIG .

In the subsequent constructions, this process plays the role of

change of time, operational time, business time.

As was explained above, the next step is the construction of the (normal) log of the

normalised asset price process H = (Ht)t≥0.
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From the variable h = µ+ βσ2 + σε, where Law(ε) = N (0, 1), and from the

independence of σ2 and ε it follows that the distribution of h is a mixture of normal

distributions, i.e., the density ph(x) of h is of the form

ph(x) =

∫ ∞
0

1√
2πy

exp

{
− (x− (µ+ βy))2

2y

}
pGIG(y)dy .

This can be rewritten as (where ph(x) is denoted by p∗(x; a, b, µ, β, ν))

p∗(x; a, b, µ, β, ν) = c3(a, b, β, ν)
Kν−1/2(α

√
b+ (x− µ)2)

(
√
b+ (x− µ)2)1/2−ν

eβ(x−µ) ,

where α =
√
a+ β2 and c3(a, b, β, ν) = (a/b)ν/2α

1
2
−ν

√
2πKν(

√
ab)

.
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The obtained distribution Law(h) with density p∗(x; a, b, µ, β, ν) bears the name

Generalised Hyperbolic distribution, GH = GH(a, b, µ, β, ν).
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Some properties of GH-distribution (for h)

(A∗) This distribution is infinitely divisible

(B∗) If β = 0, then the distribution is unimodal with mode m = µ (in the general

case m is determined as a root of a certain transcendental equation.)

(C∗) The Lévy-Khinthchine representation is known. It contains no centered gaussian

term and the Lévy measure has a (quite complicated) density.
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Three important special cases of GH-distributions

(i)’ a ≥ 0, b > 0, ν = −1/2 : In this case GIG(a, b,−1/2) = IG(a, b) is the

Inverse Gaussian distribution. The corresponding GH-distribution is commonly

named

Normal Inverse Gaussian
(notation N ◦ IG).

(ii’) a > 0, b = 0, ν > 0 : In this case GIG(a, 0, ν) = Gamma(a/2, ν) is the

Gamma distribution. The corresponding GH-distribution is named

Normal Gamma distribution
(notation : N ◦ Gamma) or

VG-distribution
(notation : VG [Variance Gamma]).
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(iii’) a > 0, b > 0, ν = 1: In this case GIG(a, b, 1) = H+(a, b) is the Positive

hyperbolic distribution. The corresponding GH-distribution is commonly named

Normal positive hyperbolic distribution
(notation : H) or N ◦ H+.

Density, characteristic function, Lévy-measure can be simplified in the special cases.
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Construction of Lévy processes

Having GIG-distributions for σ2 and GH-distributions for h, we can turn to the

construction of the Lévy process H = (Ht)t≥0 used for modeling the prices

St = S0e
Ht , t ≥ 0.

There are two possibilities

— The fact that h is an infinitely divisible distribution allows one to construct, using the

general theory, the Lévy process H∗ = (H∗t )t≥0 such that

Law(H∗1 ) = Law(h) .

— Using the constructed process T = (T (t))t≥0, one forms the process

H = (Ht)t≥0 :

Ht = µt+ βT (t) +BT (t) ,

where the Brownian motion B and the process T are taken to be independent.

The processes H = (Ht)t≥0 bears the name
L(GH) – Generalized hyperbolic Lévy processes

In the cases (i’), (ii’), and (iii’) mentionned above the corresponding Lévy processes

have the special names
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(i’) L(N ◦ IG)-process,

(ii’) L(N ◦ Gamma)- or L(VG)-process

(iii’) L(N ◦H+)- or L(H)-process.

It is interesting to mention that L(N ◦ IG)- and L(N ◦ Gamma) have the important

property that

Law(Ht) belongs to the same type of distributions as Law(H1).
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Concluding remarks to L(GH)

— Densities of distributions of h(= H1) are determined by FIVE parameters

(a, b, µ, β, ν), that gives a great freedom in determining parameters which would

fit well the empirical data.

— The approach via independently time-changing Brownian motions has advantages

related to simulation.

— In statistics there exist other methods in order to construct densities of distributions

which would also fit well distributions of empirical data. The density

p∗(x; a, b, µ, β, ν) of GH-distribution of (constructively built) variables

h = µ+ βσ2 + σε has the essential advantage that GH-distributions are

infinitely divisible
which enables us to construct processes H = (Ht)t≥0 which describe adequately

the time dynamics of logarithmic return of the prices S = (St)t≥0.
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Other popular Lévy models

Of course also other well-known Lévy processes are applied in mathematical finance.

Among them

— The classical CGMY (Carr, Geman, Madan, Yor) model where we again have no

centered gaussian term and the Lévy measure (describing the jump part(s)) has a

density given by

f(x) =
C

|x|1+Y
e−G|x|1Ix<0 +

C

|x|1+Y
e−M |x|1Ix>0 ,

with C > 0, G > 0, M > 0, Y < 2. For Y = 0 we obtain a different

parametrization of a L(VG)-process.
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— The Meixner process, again without centered gaussian term and the Lévy measure

has again a density given by

f(x) = δ
exp(βx/α)

x sinh(πx/α)

where α > 0,−π < β < π, δ > 0.

To conclude it is important to stress that when working with exponential Lévy models,

integrability of the asset price is not always guaranteed. A corresponding criteria for the

existence of the first (and other) exponential moments can e.g. be derived from K. Sato,

Lévy Processes and Infinitely Divisible Distributions (1999), Theorem 25.17.
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