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Searching for adequate stochastic models which
describe dynamics of the prices

As on finite probability spaces the theory on the fundamental theorems of asset pricing
in continuous time lead to an important but quite abstract theory about “absence of

arbitrage” and about complete markets, a notion being closely related to hedging.

However, one of the key topics in both theory of mathematical finance and practice of

financial trading consists in realizing which process simulate the prices S respectively

~

S.



In the discrete case we have considered e.g. the trinomial model (incomplete market)
and in particular the C'R R (complete market) model.
In the continuous case we have already discussed the Black—Scholes (complete

market) model for the concrete behaviour of share price processes.



Recall that the Black—Scholes model

Sy = Soe(“’_%UQ)H"Bt , e dS;=Si(udt + odBy)

with a constant volatility o has the weakness that really observable data tells us that o
is NOT a constant (volatility skew, volatility smile, non-constant volatility surface)
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Figure 2 — Source: Bloomberg

1st Correction o ~» o(t) (R. Merton, 1973)
2nd Correction o (t) ~» o(t, S¢) (B. Dupire, 1994).



More concretely, in the framework of models with nonstochastic volatility, one can

obtain smile effects by assuming o = o(t, x) for a deterministic function o.

Then consider

dSt = /Lstdt -+ StO'(t, St)dBt ,

for which the advanced theory of existence and uniqueness of strong and weak
solutions is developed.

Annoying circumstance: The prices and volatility turn out to be perfectly correlated and
this contradicts statistical observations showing that the correlation should be negative

but not equal to —1.



For the intuition. ..
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Also natural is to go further, i.e. to assume that volatility depends (and reflects) not only

on t and S; but also on all preceding values S, © < t (the history), i.e. consider
dS; = Sipdt + Sio(t; Sy, u < t)dBy ,

o(t;zqy,u < t).

— markets are complete

— study of these models is not advanced because of analytical difficulties (some results
concerning existence of solutions are given in Ch. 4 in R. Sh. Liptser
A. N. Shiryaev, Statistics of Random Processes (2001)).



Classic stochastic volatility models

Assume the volatility to be itself “volatile”, i.e. that the volatility is generated by a source

of randomness which is different from the driving BM B.

In the framework of “Brownian models” another Brownian motion é with
d(B, B); = pdt,
for suitable p € (—1,1).
As to the volatility o (), it is convenient to assume that
o(t) = f(Y2),

where f(y) is a nonnegative function, e.g. e¥ or v/ |y| and Y is a diffusion which
satisfies
dY, = a(t,Y;)dt + b(t,Y;)dB, .



Or even one could assume that Y belongs to the larger class of It6-processes
dY; = a(t,w)dt + b(t,w)dB; ,

with a (¢, w) and b(¢, w) being F;-measurable functions for every ¢ and such that a.s.
/\a,sw|d5<oo / (s,w)ds < oo, t>0.

Some difficulty arises: The coefficients a(t,w) and b(¢, w) must be “adjusted” to the
behavior of volatility, which is not directly observable.

Nevertheless, indirect observations can allow one to make important conclusions about
properties of volatility itself. Perhaps most important: mean reversion, that is, return of

the process towards the mean.
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Simplest process with mean reversion: Ornstein-Uhlenbeck process satisfying
dY, = (o — BY})dt +vdB,, Yy=y€R, (1)

anda > 0,8 >0,v > 0.

This process takes values in R. One can take o (%) equal f(Y;), where e.g.

fly) =ev.

An example of models, where Y has mean reversion and is nonnegative, is given by
the Cox-Ingersoll-Ross model

dY; = (o — BYy)dt +y\/YedBy, Yy >0,

a>0,8>0~v>0.
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Assume e.g. that the price .S satisfies
dSt — ,uStdt + a(t)StdBt ,

where o (t) = e¥* and Y being an OU-process (which satisfies (1)).
Then
d(S, o) = o(t)>Siyd(B, B); .

From this we see that to have negative correlation between prices and volatility (often
observed) we must assume that the driving Brownian motions are also negatively
correlated, so that d{B, B); = pdt, where p < 0.

In practice the Heston Model is quite popular, which is based on CIR, with f(y) = /¥.

(Extensions of) the Ornstein-Uhlenbeck and CIR processes are also used in order to
model the short-rates (7).c[o, 7] in simple stochastic interest rate models, where the

risk-less asset is then given by S;g = exp(fg rsds),t € (0,T].
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The characteristic feature of these models is that they were constructed based on an
integral representation of the type
o-B.
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Main models based on Brownian motion

— Exponential INTEGRAL Brownian model

t t
S: = Sp exp (/ LLsdsS +/ asdBS> .
0 0

— Exponential TIME-CHANGED Brownian model
St = So exp (,UT(t) T BT(t)) 3

i.e. (BT(t)) is a time change in a (standard) Brownian motion.
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Random Change of Time

Consider a filtered probability space or stochastic basis (§2,§ , (S¢)o>0, P)

(satisfying the usual conditions).

It is convenient, when defining the notion of “change of time” to distinguish between the

“old” (physical, calendar) 0-time and a “new” (operational, business) ¢-time.

The following definition is useful if we need to construct, starting from the initial process
X = (Xy)o>0 (adapted to the filtration (Fy)), a new process X = (X;);>0
evolving in t-time and having certain desired properties.
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Definition 1. A family of random variables T' = (T'(t))¢>¢ is said to be a random
change of time, if
(a) (T'(t))t>0 is a nondecreasing (in the terminology of stochastic analysis—increasing),
right-continuous family of [0, oo]-valued random variables T'(t),t > 0;
(b) for allt > 0 the random variables T’ (t) are stopping times with respect to the filtration
(FQ)QZ(), Ie.
{T(t)<0}eFy, t>0,0>0.
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One out of others exceptional roles of Brownian motion is the possibility to represent a
wide class of processes (in fact, semimartingales) X in the form X Y BoT
(perhaps on different probability spaces) for a certain Brownian motion B and change
of time I'. (This is “Monroe’s theorem”, Monroe (1978)).

A particularly nice subfamily of semimartingales is given by the well-known Lévy

processes.
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Lévy Processes

A Lévy process L = (Lt)tzo is a cadlag process with independent and stationary

increments, Ly = 0, which is continuous in probability 2.

Kolmogorov-Lévy-Khinchin’s formula (often Lévy-Khinchin’s formula) for characteristic
functions
2

Ee'“lt = exp {t(z’ub - %c + / (e® =1 —duh(x))F (dfl?))}

where the classical “truncation” function is h(z) = x1|,<; and

— F(dx) is ameasure on R \ {0} such that [ min(1,2*)F(dz) < oo,

— beRandc > 0,

— (b, c, I ) is the Lévy triplet (or the triplet of local characteristics) of L (characterizes

the Lévy process).

a. i.e.foreverye > 0, lims—¢ P(|Ls — Lt¢| > ¢) = 0.
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The Lévy-It6 representation for trajectories of L = (Ly)¢>0 is

Lt:bt—i—L,er/Ot/h(fI;)d( — V) //a:— ))dp

— (as bt) L€ is a continuous component of L (the continuous martingale component
of L), LY = /cW}, where W is a Wiener process;;
— 1 is the measure of jumps: for A € B(R \ {0})

where

1(w; (0,1] x A) Z]IAAL (AL; =L, — Ls_);

— v is the compensator of the measure of jumps (1 :

V((0,1] x A) = tF(A) = Elu(-, (0.£] x A)], F(A) = /A F(dz).
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Examples of Lévy processes

— Brownian motion.

— Poisson process: A process (IN;);>0, is a Poisson process with intensity parameter
A if it is a counting process with Vg = 0 a.s., stationary and independent
increments, where [V; is Poisson-distributed with parameter At.

— compound Poisson process defined by

where
— (N¢)¢>0 is a Poisson process,
— (&k)k>1 is a sequence of independent and identically distributed random

variables and also independent of (/V;). Furthermore, g = 0.
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Hyperbolic Lévy processes

In connection with financial econometrics Hyperbolic Lévy processes are of great
interest, because they model well the really observable processes H = (Hy)¢>q for

many underlying financial instruments (exchange rates, stocks, etc.).

The credit of developing the theory of such processes and their applications is due to
E. Halphen, O. Barndorff-Nielsen, E. Eberlein.

We will construct these processes, following mostly Chapters 9 and 12 of the
monograph: O. Barndorff-Nielsen and A. Shiryaev, Change of Time and Change of
Measures, 2nd Edition (2015).
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For a Lévy process (H});>( we have
E(ééth) _ (Eeiqu)t .

The properties of Lévy’s processes imply that the random variable h = H is infinitely

divisible, i.e., for any n one can find i.i.d. r.v.s &1, . . ., &, such that
Law(h) = Law (& + - + &) -
We will look for the infinitely divisible r.v.s h having the from
h=p+ Bo? +oe,

where ¢ is a standard Gaussian random variable, ¢ ~ N (0, 1), 0 = o(w) is the

2

“volatility” (which does not depend on €), for whose square, o<, we will construct a

special distribution

GG = Generalized Inverse Gaussian distribution.
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Strikingly, this distribution (on Ry ) is infinitely divisible and also the distribution of
h=pu-+ 602 + o¢ (on R) is infinitely divisible. Due to that, there exist a Lévy
processes 1" = (1'(t))¢>0 and H* = (H; );>0 such that

Law(7T'(1)) = Law(c?) and Law(Hj) = Law(h).
As a realization of H* = (H} ):>0 one can take
Hy = pt + B8T'(t) + Br

where the “time change” 7' = (7'(¢)) >0 and the Brownian motion B = (Bg)g>0 are
independent.

In the sequel, we do not distinguish between the processes H and H*.

This process H , remarkable in many respect, bears the name

L (GH)—-Generalized Hyperbolic Lévy process.
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2

The construction of the Gl G-distributions for o is as follows.

Let W = (W})>0 be a Wiener process (standard Brownian motion). For A > 0,
B > 0 introduce

T4(B) =inf{s > 0: As + W, > B}.

The formula for the density pra () (s) = dP(T“(B) < s)/ds is well known

B 1
s) = —ps(B—As), gs(x)=
pTA(B)() Sgp( ) 90() \/%

o7/ (2s)

Letting b = B? > 0and a = A% > 0, we find from (2) the following formula for
p(s;a,b) = pT\/E(\/E)(S) :

b
p(sia,b) = c1(a,b)s/2e= @2 | y(a,b) = [ LoV
Vo

The distribution with density p(s; a, b) is named

|G = 1G(a, b) — Inverse Gaussian distribution .
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Next important step: one defines ad hoc the function
p(s;a,b,v) = co(a,b, V)s”_le_(a3+b/3)/2 : (3)

where the parameters a, b, v € R are chosen in such a way that p(s; a, b, v) is a
probability density on R .

a>0, b>0, vr<0
a>0, b>0, v=0
a>0, b>0, v>0

Y
/ Sl/—le—(as—l—b/s)/QdS < 00 .
0
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It is well known that K, (y) = 3 [ s¥"1e™¥(sT1/9)/2 (s s the third-kind Bessel

function of order v/, which for y > 0 solves

vy +uf () — W+ 2 f(y) =0.

v/2
The constant in (3) has the from c3(a, b, V) = 2(;/12)\/%>.

The distribution on R with density

v/2
p(s;a,b,v) = (a/b)"/ gVl (astb/s)/2

2K, (Vab)

s > 0, bears the name
G1G = Generalized Inverse Gaussian distribution .
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Important properties of G|G-Distributions (for o2)
(A) This distribution is infinitely divisible.

(B) The density p(s; a, b, /) is unimodal with mode

b/[2(1 —v)], if a =20,
(v —1)+/ab+ (v —1)?]/a, if a>0.

(C) The Laplace’s transform L(\) = f o0 o= s

0 p(s; a, b, v)ds is given by

%)—V/Q Ku(\/ab(l + 2)\/0,)) .

L()\):(1+a K, (Vab)
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Particularly important SPECIAL CASES of G|G-distributions are

(i) a > 0,b>0,v=—1/2inthis case GIG(a, b, —1/2) = 1G(a, b)
Inverse Gaussian distribution.
Density : p(s; a,b) = c1(a,b)s™3/2e(asF/9)/2 ¢ (a,b) = \/gem,

—ay/2

Density of Lévy’s measure : f(y) = 4/ 21; ey3/2 .
(i) @ > 0,b =0, > 0inthis case GIG(a,0,v) = Gamma(a/2,v)

Gamma distribution.

_ (@/2)" -1

Density : p(s; a,0,v) N e—5/2,

Density of Lévy's measure : f(y) =y~ tve /2,
i)y a>0,b>0v=1

sl (@2 s the

PH — Positive Hyperbolic distribution, or H™ -distribution.

Density : p(s;a,b, 1) =

28



Since a Gl G-distribution is infinitely divisible we have that if one takes it as the
distribution of 02,

Law(c?) = GIG,

then one can construct a nonnegative, nondecreasing Lévy process 1" = (T'(t)):>0
(a subordinator) such that

Law(7T'(1)) = Law(c?) = GIG.

In the subsequent constructions, this process plays the role of
change of time, operational time, business time.

As was explained above, the next step is the construction of the (normal) log of the

normalised asset price process H = (H})>o.
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From the variable h = p + 302 + o¢, where Law(g) = N (0, 1), and from the
independence of o2 and ¢ it follows that the distribution of / is a mixture of normal

distributions, i.e., the density py () of h is of the form

pr(z) = /OOO \/2177/ exXp {— i (/12; By))” }pGIG(y)dy-

This can be rewritten as (where py, () is denoted by p*(x; a, b, u, 5, v))

Ku—l/Q(a\/b + (LU o M)Z) eﬁ(m—,u)
(Vb+ (= p)?)H/2 |

where @ = \/a + 2 and c3(a, b, B,v) = (32_2;2(%;.

p*(aj;CL)ba:uaBaV) — CS(a7b767V)
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The obtained distribution Law (k) with density p* (x; a, b, i, 3, V) bears the name
Generalised Hyperbolic distribution, GH = GH(a, b, i1, 5, v).
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Some properties of GH-distribution (for h)

(A*) This distribution is infinitely divisible

(B*) If 8 = 0, then the distribution is unimodal with mode m = p (in the general
case m is determined as a root of a certain transcendental equation.)

(C'*) The Lévy-Khinthchine representation is known. It contains no centered gaussian

term and the Lévy measure has a (quite complicated) density.
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Three important special cases of GH-distributions

iy a>0,b>0,vr=—1/2:Inthis case GIG(a,b, —1/2) = 1G(a, b) is the
Inverse Gaussian distribution. The corresponding GH-distribution is commonly
named

Normal Inverse Gaussian
(notation N o |G).

(i) @ > 0,b=0,v > 0 :Inthis case GIG(a,0,v) = Gamma(a/2, ) is the
Gamma distribution. The corresponding GH-distribution is named

Normal Gamma distribution
(notation : N o Gamma) or

V G-distribution
(notation : VG [Variance Gamma]).
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(i) @ > 0,b > 0, = 1:In this case GIG(a, b, 1) = HT (a, b) is the Positive
hyperbolic distribution. The corresponding GH-distribution is commonly named

Normal positive hyperbolic distribution
(notation : H) or N o HT.

Density, characteristic function, Lévy-measure can be simplified in the special cases.
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Construction of Lévy processes

Having G|G-distributions for 02 and GH-distributions for h, we can turn to the

construction of the Lévy process H = (H});>o used for modeling the prices

S; = Speflt t > 0.

There are two possibilities

— The fact that h is an infinitely divisible distribution allows one to construct, using the
general theory, the Lévy process H* = (H )¢>0 such that

Law(H7{) = Law(h) .

— Using the constructed process 7' = (7'(t))¢>0, one forms the process
H = (Ht)tzo .
Hy = ut + BT(t) -+ BT(t) ;

where the Brownian motion B and the process I’ are taken to be independent.
The processes H = (H});>0 bears the name
L(GH) — Generalized hyperbolic Lévy processes
In the cases (i), (ii’), and (iii’) mentionned above the corresponding Lévy processes

have the special names
35



(") L(N o IG)-process,
(i) L(N o Gamma)- or L(VG)-process
(i) L(N o HT)-orL(H)-process.
It is interesting to mention that L(N o 1G)- and L(N o Gamma) have the important
property that
Law (H;) belongs to the same type of distributions as Law (H7 ).
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Concluding remarks to L(GH)

— Densities of distributions of h(= H1 ) are determined by FIVE parameters
(a, b, u, B, V), that gives a great freedom in determining parameters which would
fit well the empirical data.

— The approach via independently time-changing Brownian motions has advantages
related to simulation.

— In statistics there exist other methods in order to construct densities of distributions
which would also fit well distributions of empirical data. The density
p*(x;a,b, u, B, v) of GH-distribution of (constructively built) variables
h = p + Bo? + oe has the essential advantage that GH-distributions are

infinitely divisible

which enables us to construct processes H = (Ht)tZO which describe adequately

the time dynamics of logarithmic return of the prices S = (St)tzo-
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Other popular Lévy models

Of course also other well-known Lévy processes are applied in mathematical finance.

Among them

— The classical CGMY (Carr, Geman, Madan, Yor) model where we again have no
centered gaussian term and the Lévy measure (describing the jump part(s)) has a

density given by

C

¢ —M|x
f(x):WG S|

—G|z|

withC' > 0,G >0, M >0,Y < 2. ForY = 0 we obtain a different

parametrization of a L(VG)-process.
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— The Meixner process, again without centered gaussian term and the Lévy measure

has again a density given by

exp(fzr/a)

x sinh(mz/«)

flz) =9

wherea > 0, —m < B < m, 6 > 0.

To conclude it is important to stress that when working with exponential Lévy models,
integrability of the asset price is not always guaranteed. A corresponding criteria for the
existence of the first (and other) exponential moments can e.g. be derived from K. Sato,
Lévy Processes and Infinitely Divisible Distributions (1999), Theorem 25.17.

39



