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Outline of the Lecture Course

1. Martingales and the Fundamental Theorem(s) of Asset Pricing on finite probability

spaces (including binomial and trinomial model).

2. The Snell envelope, optimal stopping, and American options on finite probability

spaces (supermartingales and martingales).

3. Geometric Brownian motion and a martingale approach to the Black–Scholes

formula (including exotic options).

4. Practical aspects of the Black–Scholes model.

5. On the theory of (no-)arbitrage in continuous time

(local- and σ-martingales).

6. Selected topics on local- and stochastic volatility models ; Lévy driven models.

Perhaps(?) : Selected topics on interest rate modelling. New trends in financial

mathematics, deep hedging.
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Outline of Chapter I

(1) Introduction

(2) Discrete time models

(a) Martingales and arbitrage opportunities

(b) Complete markets

(c) Cox, Ross and Rubinstein model
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Introduction

Frequently considered questions in mathematical finance

— Investments in portfolios (optimisation)

— Valuation of financial assets and instruments (pricing)

— Risk management (e.g. hedging, solvency risks)
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Selected historical remarks

— Bachelier (1901)

— Markowitz (1954)

— Black, Scholes and Merton (1973)

and

— Harrison and Pliska (1981)

— Dalang, Morton, Willinger (1990)

— Delbaen and Schachermayer (1998)

— Karatzas and Kardaras (2007) ; Platen and co-authors

Ongoing developments: Several new trends.
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Mathematical modelling and analysis

— Probability theory (in particular stochastic calculus and martingale theory)

— Statistic

— Numerical analysis

— Machine learning

We will focuss on the first point.
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One starting point: Balance sheet of a company

Assets Liabilities and Owners’ Equity

— current assets

— liquid assets

— accounts receivables

— fixed assets

— financial assets

— tangible assets

— other fixed assets

— liabilities

— short-term liabilities

— long-term liabilities (e.g. cor-

porate bonds, . . .)

— equity

(e.g. common stock, . . .)

As an investor we can invest in bonds or in shares of the company.
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As an investor we can invest in

— Bonds: Liabilities (for the company)⇒ the compensation is usually given by a fixed coupon

(based on a fixed interest rate).

— Shares: Is a share of the equity⇒ the compensation is given by dividends

(share of the profit).

— Hybrid instruments also exist.

Note

— Fixed income instruments are also issued by the Federal Government, the so-called

government bonds.

— Swiss government bonds can be considered as being risk-free

(free of counterparty risk).
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Valuation, a classical approach: Discount future
cash flows

The Net Present Value (NPV) approach is rather popular

-
t0 1 2 3 4 5

CF0 CF1 CF2 CF3 CF4 CF5 . . .

NPV =
N∑
t=0

CFt
(1 + it)t

,

— t date of the corresponding cash flow (CF),

— it interest rate, which reflects the cost of tying up capital / risks,

— CFt net cash flow at t.

This approach is sometimes used for valuating bonds (but there exist also much more

sophisticated approaches). It is often used for valuation of real estate and for the

analysis of investment opportunities etc.
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Financial derivatives

A financial derivative is an instrument whose value depends on, or is derived from, the

value of another asset (underlying asset(s), sometimes simply called underlying(s) for

short).

Examples for underlyings

— Shares

— Indices

— Currencies

— Interest rates

— Bonds

— Commodities

— Electricity

— Etc.
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Share quotes etc. go up and down. . .

Figure 1 – Goldman Sachs-quotes (shares). Source: Bloomberg
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Figure 2 – Credit Suisse. Source: Bloomberg
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Figure 3 – S&P 500 index. Source: Bloomberg
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Figure 4 – Euro quotes. Source: Bloomberg
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Figure 5 – Swiss government bond. Source: Bloomberg
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Figure 6 – Yields. Source: SNB
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Figure 7 – Swiss Sovereign yield curve. Source: Bloomberg
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Figure 8 – Swiss Sovereign yield curve (previous year). Source: Bloomberg
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Mathematically speaking we can often define a derivative by a function f on a quote

ST in the future (f : R+ → R), or by a functional F on the price process.

-

6

(St)

tT
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�A ST (ω1)

S0

Payoff of the derivative at maturity T > 0: f(ST ) resp. F ((St)t∈[0,T ]).

Typical examples

— Forward f(ST (ω)) = ST (ω)− k,

— European call option f(ST (ω)) = max(ST (ω)− k, 0), k ≥ 0,

— European put option f(ST (ω)) = max(k − ST (ω), 0), k ≥ 0 .
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Reminder: Discounting cash flows

-
t0 1 2 3 4 5

CF0 CF1 CF2 CF3 CF4 CF5 . . .

NPV =

N∑
t=0

CFt
(1 + it)t

,

— t date of the corresponding cash flow (CF),

— it interest rate, which reflects the cost of tying up capital / risks,

— CFt net cash flow at t.

Could / should we use this approach for deriving values of financial derivatives ?
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Special structure of cash flows (very heuristic)

-

6

(St)

tT
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A�A ST (ω2) -

f(ST (ω1))
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�A
A�
�
�
�A ST (ω1) -

f(ST (ω2))S0

E.g. for payoffs of the form f(ST (ω)), i.e.

Ω:
ST−→ R+ :

f−→ R ,

we have that ST (ω) and f(ST (ω)) depend on the same ω ∈ Ω, where the payoff of

the derivative is given by a deterministic function on ST ⇒ the price of the derivative

and the price of the underlying asset should be in a certain relation.
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Valuation approach for financial derivatives: Exclude
arbitrage opportunities

Arbitrage opportunity : “To make money from nothing without risks”.

The idea for deriving a good price for a new product is :

Fix the price such that no arbitrage opportunity is created

(exclude arbitrage / no-arbitrage assumption (NA)).
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Rough example: Forward price

The payoff at maturity T > 0 is given by

f(ST ) = ST − k .

At t = 0 fix k = F0,T such that no premium is the “price” / payment at t = 0 (i.e.

there are no cash flows at t = 0 / usual situation, also other situations are considered

in the exercises).

Throughout this example we assume that the underlying asset is given by a

non-dividend paying (until maturity T > 0) share. Furthermore, we assume that the

risk-free interest rate (continuous compounding) r is constant.
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Assume F0,T > S0e
rT .

Then follow the following strategy:

At t = 0 CF

(1) Borrow money S0

(2) Buy spot the (cheap) share −S0

(3) Short the forward (short forward) 0

Total Cash flows at t = 0 0

At t = T CF

Sell (2) for F0,T (based on (3)) F0,T

Pay back the money (credit) incl. interest payment (1) −S0e
rT

Total cash flow at t = T F0,T − S0e
rT

Since F0,T − S0e
rT > 0 we have that this is an arbitrage strategy.
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Assume that F0,T < S0e
rT .

Then follow the following strategy:

At t = 0 CF

(1) Sell the (expensive) share (e.g. borrowed from a pension found) S0

(2) Pay the money into an account −S0

(3) Enter into a long position in the forward (long forward) 0

Total cash flow at t = 0 0

At t = T CF

Close your bank account (2) S0e
rT

Buy with the help of (3) a share for F0,T and settle (1) −F0,T

Total cash flow at t = T S0e
rT − F0,T

Since S0e
rT − F0,T > 0 we observe that this is an arbitrage opportunity.
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F0,T < S0e
rT ⇒ arbitrage ⇐ F0,T > S0e

rT

NA

⇓
F0,T = S0e

rT .
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Rough remarks related to the forward example

If r is the expected yield of the share (continuous compounding) under Q (assumed to

exist) and if we consider the price process as being a process indexed by t ∈ {0, T},
we have

(i) EQ[ST ] = S0e
rT ⇒ will not be the “real-world” measure (otherwise risk-neutral

investors would be needed),

(ii) e−rTEQ[ST − F0,T ] = 0⇒ price to be paid at t = 0,

(iii) EQ[ST /e
rT ] = S0⇒ the discounted price process is a martingale.

Note: Pt. (ii) corresponds to the NPV-philosophy, if we replace the CF by the

expectation with respect to Q and if we discount with respect to r.
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Translation of NA in the language of mathematics

There is a general translation of the economic assumption of NA in the language of

mathematics (i.e. there is a result “behind” the observations on the last slide).

Very roughly speaking the Fundamental Theorem of Asset Pricing states that,

essentially, a model of a financial market is free of arbitrage if and only if there is a

probability measure Q, equivalent to the original real-world measure P (i.e. P and Q

vanish on the same events), such that the discounted asset price processes are

martingales under Q.

29



Measure Q is then called equivalent martingale measure.

In this case taking discounted expectations with respect to Q in order to price

contingent claims yields arbitrage-free pricing rules, where Q runs through all

equivalent martingale measures, i.e.

PQ
0 = e−rTEQ[f(ST )] , Q–equivalent martingale measure.

Q is often not unique !

This approach is often called risk-neutral valuation.
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Models for the underlying assets

For pricing the forward in our example the behaviour (how the asset moves) of the price

process until maturity was not important.

For more complex derivatives the situation is different, i.e. we need an asset price

model for the underlying.
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Geometric Brownian motion

The geometric Brownian motion (applied in the Black–Scholes model) is the probably

most well-known asset price model.

St = S0 exp

(
(µ− 1

2
σ2)t+ σWt

)
, under P ,

or in “local” form

dSt = µStdt+ σStdWt , under P ,

where (Wt) stands for a Brownian motion under P.
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In particular we have that for a fixed t, Wt is normally distributed, with E[Wt] = 0 and

Var[Wt] = t, so that

St = S0e
η ,

where η is normally distributed with E[η] = (µ− 1
2 σ

2)t and Var[η] = σ2t⇒
E[St] = S0e

µt⇒ µ is the expected yield of the share (continuous compounding).

In the classical Black–Scholes setting the bond price process is of the form

Bt = ert.

In this market Q is unique⇒ prices of financial derivatives are also unique.
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Furthermore, we will see that the asset price process under Q can be written as

St = S0 exp

(
(r − 1

2
σ2)t+ σW̃t

)
, under Q ,

or in “local” form

dSt = rStdt+ σStdW̃t , under Q ,

where (W̃t) is a Brownian motion under Q.
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In view of that we often have

P0 = e−rTEQ[f(ST )] ,

where ST = S0e
η̃ , for η̃ being normally distributed, with EQ[η̃] = (r − 1

2 σ
2)T and

VarQ[η̃] = σ2T ⇒ EQ[ST ] = S0e
rT .

Example: European call option

e−rTEQ[(ST − k)+] = S0N (d+)− ke−rTN (d−) , (1)

whereN (·) stands for the cumulative distribution function of a standard normally

distributed random variable and

d+ =
log
(
S0

k

)
+
(
r + σ2

2

)
T

σ
√
T

, d− =
log
(
S0

k

)
+
(
r − σ2

2

)
T

σ
√
T

.

35



We will derive the above pricing approach and the above formula with the help of

martingale techniques.

Furthermore, we will briefly discuss the pros and cons of this model.

Some pros: Closed form formulas, hedging strategies can be derived efficiently, etc.

Cons: In particular the model cannot jointly explain traded option prices for options

being written on one underlying.
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If the formula would be correct, then the σ would be the same for all maturities and all

strike prices.

Figure 9 – Source: Bloomberg
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After the crash 1987 people started to question the Black–Scholes model more

intensively.

Figure 10 – Source: Cont & Tankov, Financial Modelling with Jump Processes.

⇒We will discuss alternatives.
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Short discussion of the NA-assumption

If I enter in a market with a new product it seems to be reasonable that I try to find a

price, which excludes arbitrage opportunities for my counterparty.

However, are markets free of arbitrage?

However, what are the consequences of absence of (sufficient) liquidity ?

Etc.
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Perfect market hypothesis

Market structure characterized by a very large number of buyers and sellers of a

homogeneous (nondifferentiated) product. Entry and exit from the industry is costless,

or nearly so. Information is freely available to all market participants.

The following concrete simplifying assumptions are often used:

1. No transaction costs or taxes, no bid-ask spread.

2. No limitations on the quantities of transactions, securities are perfectly divisible and

there are no short-selling restrictions.

3. The market is liquid.

4. The risk-free lending and borrowing rate is the same.
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Discrete-time model

Discrete-time formalism

A discrete-time financial model is built on a finite probability space (Ω, F , P)

equipped with a filtration ({Fn}n=0, 1, ..., N with N ∈ N∗), i.e. an increasing

sequence of σ-algebras included in F .

The horizon N will often correspond to the maturity of the considered options.

Fn can be interpreted as the information avilable at time n.
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From now on, we assume

Standard filtration F0 = {Ω, ∅} and FN = F .

Atoms P(ω) > 0, for all ω ∈ Ω.

Assets The market consists of d+ 1 assets with price at time n being given by

Sn = (S0
n, S

1
n, . . . , S

d
n).

Measurability The positive random variables S0
n, S1

n, . . . , Sdn are measurable

with respect to Fn.

Risk-less asset There is a risk-less asset in the market such that S0
0 = 1 and

S0
n = (1 + r)n, with r being the positive risk-less interest rate.
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Strategies

Definition 1 (Trading Strategy). A trading strategy is defined as a stochastic process

(i.e. a sequence in the discrete case) φ = (φ0n, φ
1
n, . . . , φ

d
n)n=1, ...,N with values in

Rd+1, where φin denotes the number of shares of asset i held in the portfolio on the

time interval between n− 1 and n. The sequence φ is assumed to be predictable, i.e.

φij is Fj−1-measurable, for all i and j ≥ 1, φi0 is F0-measurable for all i.

The value Vn(φ) of the corresponding portfolio at time n is the scalar product

Vn(φ) = φ0n S
0
n + φ1n S

1
n + · · ·+ φdn S

d
n = φn · Sn .

Its discounted value is denoted by Ṽn(φ) = Vn(φ) (S0
n)−1.

Analogously S̃n = Sn (S0
n)−1.
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Self-financing strategies

A strategy is called self-financing if ∀n φn+1 · Sn = φn · Sn.

The important interpretation is that at time n, when the new prices (S0
n, . . . , S

d
n) are

quoted, the investor readjust his position from φn to φn+1 without bringing or

consuming any wealth / money.

The profit or loss realised by following a self-financing strategy is only due to the price

movements.
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Proposition 1. The following properties are equivalent

I φ is self-financing.

II For any n ∈ {1, . . . , N},

Vn(φ) = V0(φ) +
n∑
i=1

φi ·∆Si ,

where ∆Si = Si − Si−1.

III For any n ∈ {1, . . . , N},

Ṽn(φ) = V0(φ) +
n∑
i=1

φi ·∆S̃i ,

where ∆S̃i = S̃i − S̃i−1.

Note ∆S̃0
i = S̃0

i − S̃0
i−1 = 0.
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Proposition 2. For any predictable process (φ1n, . . . , φ
d
n)n=0, ..., N and for any V0,

there exists a unique predictable process (φ0n)n=0, ..., N such that the strategy

φ = (φ0n, φ
1
n, . . . , φ

d
n) is self-financing and its initial value is V0.
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Admissible strategies and arbitrage

Definition 2 (Admissible strategy). A strategy φ is admissible if it is self-financing

and if Vn(φ) ≥ 0 for any n ∈ {0, 1, . . . , N}.

Definition 3 (Arbitrage). An arbitrage strategy is an admissible strategy with zero

initial value and non-vanishing probability of an non-vanishing final value, i.e. V0 = 0

and P{VN > 0} > 0.
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Martingales and arbitrage opportunities

Martingales (defined on a finite probability space)

Definition 4 (Martingales). An adapted sequence {Mn}n=0, ..., N of real-valued

random variables is

Martingale if Mn = E[Mn+1 | Fn] ∀n .

Submartingale if Mn ≤ E[Mn+1 | Fn] ∀n.

Supermartingale if Mn ≥ E[Mn+1 | Fn] ∀n.

In particular

— If Mn is a martingale we have E[Mn] = E[M0].

— If Mn is a martingale and Hn is a predictable process then

Xn =
∑n
i=1Hi (Mi −Mi−1) defines a martingale.

— The sum of two martingales is a martingale.
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Proposition 3 (Characterisation of martingales). An adapted sequence of

real-valued random variables (Mn) is a martingale if and only if for any predictable

sequence (Hn), we have

E

(
N∑
n=1

Hn∆Mn

)
= 0 .
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Viable financial markets

Definition 5 (Viable market). A market is viable if there is no arbitrage opportunity.

Theorem 1 (Fundamental Theorem of Asset Pricing). The market is viable if and only

if there exists a probability measure Q equivalent to P such that the discounted prices

of assets are Q-martingales.

Attention : The probability measure Q is not necessarily unique.
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Complete markets and option pricing

A contingent claim is a nonnegative FN -measurable random variable.

Examples

European call H = (SN −K)+.

European put H = (K − SN )+.

European digital H = ISN>K .

Definition 6 (Attainable claim). The contingent claim defined by H is attainable if

there exists an admissible strategy worth H at time N .
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Definition 7 (Complete market). The market is complete if every contingent claim is

attainable.

Theorem 2 (2. FTAP). A viable market is complete if and only if there exists a unique

probability measure Q equivalent to P, under which the discounted prices are

martingales.

Attention : The probability measure Q is a tool for deriving pricing formulas for options.
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Pricing and hedging contingent claims in complete markets

Consider a viable and complete market with Q being the unique equivalent martingale

measure.

Furthermore, consider a contingent claim H (a nonnegative FN -measurable random

variable).

Under these assumptions there exists self-financing φH with VN (φH) = H .

We then have ṼN (φH) = H̃ and

Ṽn(φH) = EQ [ṼN (φH) | Fn] = EQ [H̃ | Fn] .

Since H ≥ 0⇒ Vn ≥ 0, hence, the strategy φH is also admissible.

53



Furthermore, at any time, the value of an admissible strategy replicating H is

completely determined by H ⇒ Vn(φH) is the value of the contingent claim at

time n.

If, at time 0, an investor sells the option for EQ [H̃], he can follow a replicating strategy

φ in order to generate an amount H at time N ⇒ the investor is perfectly hedged.

It is important to notice that the computation of the option price only requires the

knowledge of Q and not of P.
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Cox, Ross and Rubinstein model

Definition of the model

Trading dates n = 0, 1, 2, . . . , N with N ∈ N∗

Risk-less asset S0
n = (1 + r)n with r > 0

Risky asset there is only one risky asset with prices given by the vector

(S0, S1, S2, . . . , SN )

Transition Assuming−1 < a < b

Sn =

 Sn−1(1 + a)

Sn−1(1 + b)

∀n = 1, . . . , N

Probability space Ω = {(1 + a), (1 + b)}N , F = P(Ω), F0 = {Ω, ∅} and

Fn = σ(S1, S2, . . . , Sn).
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Some results

— It is necessary that r ∈ (a, b) in order to end up with a viable market.

— The price of a European call is given by

C(0, S0) =∑N
j=0

N !
(N−j)! j!p

j (1− p)N−j
[
S0 (1 + a)j (1 + b)N−j −K

]+
(1 + r)N

.
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