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Discrete time versus continuous time models

There are pros and cons of discrete time models relative to continuous time models,

highly depending on, what you concretely want to do'!

— Some computational advantages of discrete time models, e.g. related to American
options.

— Nice closed form formulas based on some popular continuous time models for quite
complicated derivatives, which are e.g. helpful for computing hedge parameters and
for the speed (important on the “trading floor”).

— Trading in reality is not continuous. However, how should we choose the minimal
time tick ?

— Calibration tends to work better for continuous time models.

— Multivariate extensions are “easier” in continuous time models.

— Etc.



Historical remark on models for concrete dynamics

— Louis Bachelier “Théorie de la Speculation” A.S. ENS (1900)

— Fischer Black and Myron Scholes “The Pricing of Options and Corporate Liabilities”,
J. of political Economy (1973)

— Hull & White (1987), Heston (1993), etc.: Stochastic volatilities

— Merton (76), Carr/Geman/Madan/Yor (2002/2003), Barndorff-Nielsen (...), Eberlein
(...), etc., etc.: Models driven by Lévy processes (beyond Brownian motion driven
models)

— Bates (1996): Stochastic volatilities with jumps



Description of the model

The classical Black-Scholes model contains two assets

Risk free A risk-free asset. Its price process is denoted by S = (S?)o<i<7. We
assume that its dynamic is given by the ODE

ds0 — 1 59 dt
with S = 1, where 7 is a non-negative constant. Obviously Sy = e”? (note that
r="Te).

Stock A risky asset with price process denoted by S = (St)ogth- We assume that
its dynamic is given by the SDE

dSt :/Lstdt+05tdBt,

with ¢ > 0 and p being constants and (B;)o<¢<T being a standard Brownian

motion.



Filtration

As in the discrete time case we introduce a filtration. Let (€2, F, IP) be a probability
space. Then a filtration (JF;) is an increasing family of o-subalgebras of F. We can

construct a filtration based on a process (X;) by F; = (X, s < t).

However, from now on, we assume that the filtration satisfies the usual conditions, i.e.
— fA"C A€ Fandif P(A) = 0,thenforany t, A" € F;.

— Fi = [Ngst Fs-

E.g. if (X;) is a Brownian Motion and if F; is the o-algebra generated by both, F; and

N (the o-algebra generated by all the P-null sets of F), we obtain a filtration satisfying
the usual conditions (called the standard Brownian filtration).



Standard model for the price

The unique (for given Sy) solution (.S} ) of the SDE of the risky asset is given by

2
S, =Sy GUBH—(M—%)t

Y

where Sq stands for the price at ¢t = 0.



Properties of the risky asset

continuous pathes

independence of the relative increments If s < ¢, S—t and % are
independent of F. ) )
stationarity of the relative increments if u < ¢ the law of A shares the
St—u — S '

distribution with

So

2
log normality V¢, we have that log S; ~ N <log So + (,LL — %) t, o? t).



Strategies

Definition 1 (Strategy). A strategy is a process ¢ = (¢¢)o<i<T = (Hy , Hy)o<t<T
with values in R?, adapted to the filtration (F;)o<i<T-

The components HLP and H; are the quantities of the risk-less asset and the risky

asset, respectively.

The value of the portfolio at time t is given by

Vi(¢) = HY S + Hy Sy .



Self-financing strategies

Definition 2 (Self-financing strategy). A strategy ¢ is self-financing if it satisfies the

following two conditions

Integrability fOT | HP|dt + fOT H? dt < cca.s.
Self-financing dV; = d(H? SY) + d(H; S;) = HY dSY + H; dSy, i.e.

t t
Vt(gb):HES§+HtSt:H858+HOSO+/ Hgdsg+/ H,dS,,
0 0

a.s., forallt € [0,T].
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Denote the present values of the risky asset and the portfolio, respectively, by

S, =eTtS and V, = e TV,

Proposition 1. Let ¢ = (¢ )o<i<7 = (Hy , Hy)o<t<T be a strategy such that
fOT H 752 dt + fOT |H ?\ dt < oo a.s. Then ¢ defines a self-financing strategy if and
only if

Vi(¢) = /HdS a.s.

forallt € [0,T].
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Equivalent probability measures

Definition 3 (Absolute continuity). A probability measure Q on (€2, F) is absolutely
continuous with respectto P ifVA € F,IP(A) = 0= Q(A) = 0, in which case we
write Q < P.

Two probability measures IP and Q are equivalent if P << Q and Q < IP.

Theorem 1 (Radon-Nikodym). A probability measure Q is absolutely continuous with
respect to P if and only if there exists a non-negative random variable Z on (€2, F)
such thatVA € F

@M:AZW.

. . . . dQ
The random variable Z is the density of Q with respect to IP and denoted by ik
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The Girsanov theorem

Theorem 2 (Girsanov). Letf = (et)te[O,T] be an adapted process satisfying

T .
Jo 03 ds < oo a.s. and such that the process (L) ¢co, 1] defined by
L, =e" [50sdBs—2% [7 62 ds

is a martingale. Then under the probability P'X) with density L1 with respect to P, the
process (Wy)icio,1) defined by

t
Wt:Bt+/ HSdS,
0

is an (JF;)-standard Brownian motion.

Here we have d%;) |7, = E[Lyp | F| = L.
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Representation of Brownian martingales

Theorem 3 (Martingale Representation Theorem). Let M = (M;)o<i<T be a
square-integrable martingale, with respect to the filtration (ft)ogth generated by

standard Brownian motion (W} )o<:<7. There exits an adapted process (K )o<i<T
T
such that E[ [ K7 du] < co and

t
Vvt €10, T] M; = My +/ K, dW, as.
0
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~

A probability measure under which (5;) is a martingale

In view of the SDE for (.S;) we have

dgt — —re_TtSt dt -+ B_Tt dSt
= S;((p —7)dt + o dBy)

Hence, if we set W, = B; + £="¢, we have

dgt — gtO'th .

Theorem 2, for 0; = £=", implies the existence of a probability measure Q equivalent

g

to IP under which (W;):c[0, 17 is a standard Brownian motion.
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Then for the discounted asset price process (S’t) we have
S, = Soexp(cW; — ot/2)

under Q. Hence, (S, ) is a Q-martingale.
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Pricing

Definition 4 (Admissible strategy). A strategy ¢ = (Ht0 : Ht)ogth is admissible if it
is self-financing and if the discounted value V;(¢) = HY + H,;S; of the
corresponding portfolio is, for all t, non-negative, and if Eq| |, OT HZ(0S;)? dt] < oo.

Theorem 4 (Pricing contingent claims). In the Black—Scholes model, any option
defined by a non-negative JF-measurable random variable h, which is
square-integrable under the probability measure Q, is replicable (attainable) and the
value at time t of any replicating portfolio is given by

‘/t = e—r (T_t)EQ[h | .Ft] .

Hence, the option value at time t can be naturally defined by the expression
e " (T-UEQ[L| F].
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European call option

In the Black—Scholes model the price of an European call with maturity 7" > 0 and
strike K > 0 is given by

Ot = StN(d+) — K G_T(T_t) N(d_) )

where

N is the cdf of a standard normally distributed random variable and
2
log (5¢) + (r£% ) (T —1)
oI —t '

Furthermore, the hedging strategy is given by

d+ aregivenby dr =

¢r = (HY, Hy) = (—Ke ™" N(d_), N(d)) .
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Hedging

In cases where the claim is defined by a random variable of the form h = f(S7), itis
often possible to derive the replication portfolio explicitly. A replication portfolio must

have, at any time ¢, a discounted value equal to

‘Z = €_TtF(t, St) ,

where F'is defined by

2

— =
2

F(t,x :BT(T”/ zeT=3 )N T=)+oVT=iE = ;.
(t,x) Rf( )\/%

Hence, F' will usually be quite regular. If we set

F(t,x) = e " F(t,ze™),
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we have ‘7,5 = ﬁ(t, gt) and for all t < I', we obtain from the 1t6 Lemma

EOF  ~ 1 o~ 0°F  ~
(E(u, Su) + = 0252—(u, Sy)) du

N\

ﬁ(tagt) :ﬁ<0750)+/
0

The martingale property of (Fv(t, §t)) under QQ implies that K, is vanishing. Hence,

LOF ~

F(t,S) =F(0,5)+ [ =—(u,S,)dS., .
0 833
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Thus,

OF , ~. OF
Hy = —(t,5;) = (£, 5).
it we set HO = F(t,S,) — H;S,, we have that (H?, H,) is self-financing and that

Vi = F(t,St), being non-negative for R -valued payoff functions f.
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