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Chapter 3: GBM and the Black-Scholes model

— Probabilistic tools

— Pricing

— Hedging

2



Discrete time versus continuous time models

There are pros and cons of discrete time models relative to continuous time models,

highly depending on, what you concretely want to do !

— Some computational advantages of discrete time models, e.g. related to American

options.

— Nice closed form formulas based on some popular continuous time models for quite

complicated derivatives, which are e.g. helpful for computing hedge parameters and

for the speed (important on the “trading floor”).

— Trading in reality is not continuous. However, how should we choose the minimal

time tick?

— Calibration tends to work better for continuous time models.

— Multivariate extensions are “easier” in continuous time models.

— Etc.
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Historical remark on models for concrete dynamics

— Louis Bachelier “Théorie de la Speculation” A.S. ENS (1900)

— Fischer Black and Myron Scholes “The Pricing of Options and Corporate Liabilities”,

J. of political Economy (1973)

— Hull & White (1987), Heston (1993), etc.: Stochastic volatilities

— Merton (76), Carr/Geman/Madan/Yor (2002/2003), Barndorff-Nielsen (. . .), Eberlein

(. . .), etc., etc.: Models driven by Lévy processes (beyond Brownian motion driven

models)

— Bates (1996): Stochastic volatilities with jumps

— . . .
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Description of the model

The classical Black-Scholes model contains two assets

Risk free A risk-free asset. Its price process is denoted by S0 = (S0
t )0≤t≤T . We

assume that its dynamic is given by the ODE

dS0
t = r S0

t dt ,

with S0
0 = 1, where r is a non-negative constant. Obviously S0

t = er t (note that

r = rc).

Stock A risky asset with price process denoted by S = (St)0≤t≤T . We assume that

its dynamic is given by the SDE

dSt = µSt dt+ σ St dBt ,

with σ > 0 and µ being constants and (Bt)0≤t≤T being a standard Brownian

motion.
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Filtration

As in the discrete time case we introduce a filtration. Let (Ω,F ,P) be a probability

space. Then a filtration (Ft) is an increasing family of σ-subalgebras of F . We can

construct a filtration based on a process (Xt) by F̄t = σ(Xs, s ≤ t).

However, from now on, we assume that the filtration satisfies the usual conditions, i.e.

— If A′ ⊂ A ∈ F and if P(A) = 0, then for any t, A′ ∈ Ft.
— Ft =

⋂
s>t Fs.

E.g. if (Xt) is a Brownian Motion and if Ft is the σ-algebra generated by both, F̄t and

N (the σ-algebra generated by all the P-null sets of F ), we obtain a filtration satisfying

the usual conditions (called the standard Brownian filtration).
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Standard model for the price

The unique (for given S0) solution (St) of the SDE of the risky asset is given by

St = S0 e
σBt+(µ−σ22 ) t ,

where S0 stands for the price at t = 0.
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Properties of the risky asset

continuous pathes

independence of the relative increments If s ≤ t, St
Ss

and
St − Ss
Ss

are

independent of Fs.

stationarity of the relative increments if u ≤ t the law of
St − Su
Su

shares the

distribution with
St−u − S0

S0
.

log normality ∀t, we have that logSt ∼ N
(

logS0 +

(
µ− σ2

2

)
t, σ2 t

)
.
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Strategies

Definition 1 (Strategy). A strategy is a process φ = (φt)0≤t≤T = (H0
t , Ht)0≤t≤T

with values in R2, adapted to the filtration (Ft)0≤t≤T .

The components H0
t and Ht are the quantities of the risk-less asset and the risky

asset, respectively.

The value of the portfolio at time t is given by

Vt(φ) = H0
t S

0
t +Ht St .
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Self-financing strategies

Definition 2 (Self-financing strategy). A strategy φ is self-financing if it satisfies the

following two conditions

Integrability
∫ T
0
|H0

t | dt+
∫ T
0
H2
t dt <∞ a.s.

Self-financing dVt = d(H0
t S

0
t ) + d(Ht St) = H0

t dS
0
t +Ht dSt, i.e.

Vt(φ) = H0
t S

0
t +Ht St = H0

0 S
0
0 +H0 S0 +

∫ t

0

H0
s dS

0
s +

∫ t

0

Hs dSs ,

a.s., for all t ∈ [0, T ].
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Denote the present values of the risky asset and the portfolio, respectively, by

S̃t = e−r t St and Ṽt = e−r t Vt.

Proposition 1. Let φ = (φt)0≤t≤T = (H0
t , Ht)0≤t≤T be a strategy such that∫ T

0
H2
t dt+

∫ T
0
|H0

t | dt <∞ a.s. Then φ defines a self-financing strategy if and

only if

Ṽt(φ) = V0(φ) +

∫ t

0

Hs dS̃s a.s.

for all t ∈ [0, T ].
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Equivalent probability measures

Definition 3 (Absolute continuity). A probability measure Q on (Ω,F) is absolutely

continuous with respect to P if ∀A ∈ F , P(A) = 0⇒ Q(A) = 0, in which case we

write Q� P.

Two probability measures P and Q are equivalent if P� Q and Q� P.

Theorem 1 (Radon-Nikodym). A probability measure Q is absolutely continuous with

respect to P if and only if there exists a non-negative random variable Z on (Ω,F)

such that ∀A ∈ F
Q(A) =

∫
A

Z dP .

The random variable Z is the density of Q with respect to P and denoted by
dQ
dP

.
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The Girsanov theorem

Theorem 2 (Girsanov). Let θ = (θt)t∈[0,T ] be an adapted process satisfying∫ T
0
θ2s ds <∞ a.s. and such that the process (Lt)t∈[0,T ] defined by

Lt = e−
∫ t
0
θs dBs− 1

2

∫ t
0
θ2s ds

is a martingale. Then under the probability P(L) with density LT with respect to P, the

process (Wt)t∈[0,T ] defined by

Wt = Bt +

∫ t

0

θsds ,

is an (Ft)-standard Brownian motion.

Here we have dP(L)

dP |Ft = E[LT | Ft] = Lt.
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Representation of Brownian martingales

Theorem 3 (Martingale Representation Theorem). Let M = (Mt)0≤t≤T be a

square-integrable martingale, with respect to the filtration (Ft)0≤t≤T generated by

standard Brownian motion (Wt)0≤t≤T . There exits an adapted process (Kt)0≤t≤T

such that E[
∫ T
0
K2
u du] <∞ and

∀t ∈ [0, T ] Mt = M0 +

∫ t

0

Ku dWu a.s.
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A probability measure under which (S̃t) is a martingale

In view of the SDE for (St) we have

dS̃t = −re−rtSt dt+ e−rt dSt

= S̃t((µ− r)dt+ σ dBt)

Hence, if we set Wt = Bt + µ−r
σ t, we have

dS̃t = S̃tσdWt .

Theorem 2, for θt = µ−r
σ , implies the existence of a probability measure Q equivalent

to P under which (Wt)t∈[0,T ] is a standard Brownian motion.
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Then for the discounted asset price process (S̃t) we have

S̃t = S0 exp(σWt − σ2t/2)

under Q. Hence, (S̃t) is a Q-martingale.
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Pricing

Definition 4 (Admissible strategy). A strategy φ = (H0
t , Ht)0≤t≤T is admissible if it

is self-financing and if the discounted value Ṽt(φ) = H0
t +HtS̃t of the

corresponding portfolio is, for all t, non-negative, and if EQ[
∫ T
0
H2
t (σS̃t)

2 dt] <∞.

Theorem 4 (Pricing contingent claims). In the Black–Scholes model, any option

defined by a non-negative FT -measurable random variable h, which is

square-integrable under the probability measure Q, is replicable (attainable) and the

value at time t of any replicating portfolio is given by

Vt = e−r (T−t)EQ[h | Ft] .

Hence, the option value at time t can be naturally defined by the expression

e−r (T−t)EQ[h | Ft] .
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European call option

In the Black–Scholes model the price of an European call with maturity T > 0 and

strike K > 0 is given by

Ct = StN (d+)−K e−r(T−t)N (d−) ,

where

N is the cdf of a standard normally distributed random variable and

d± are given by d± =
log
(
St
K

)
+
(
r±σ

2

2

)
(T − t)

σ
√
T − t

.

Furthermore, the hedging strategy is given by

φt = (H0
t , Ht) =

(
−K e−rT N (d−), N (d+)

)
.
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Hedging

In cases where the claim is defined by a random variable of the form h = f(ST ), it is

often possible to derive the replication portfolio explicitly. A replication portfolio must

have, at any time t, a discounted value equal to

Ṽt = e−rtF (t, St) ,

where F is defined by

F (t, x) = e−r(T−t)
∫
R
f(xe(r−

1
2 σ

2)(T−t)+σ
√
T−tz)

e−
z2

2

√
2π

dz .

Hence, F will usually be quite regular. If we set

F̃ (t, x) = e−rtF (t, xert) ,
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we have Ṽt = F̃ (t, S̃t), and for all t < T , we obtain from the Itô Lemma

F̃ (t, S̃t) = F̃ (0, S0) +

∫ t

0

(
∂F̃

∂t
(u, S̃u) +

1

2
σ2S̃2

u

∂2F̃

∂x2
(u, S̃u))︸ ︷︷ ︸

Ku

du

+

∫ t

0

σS̃u
∂F̃

∂x
(u, S̃u)dWu .

The martingale property of (F̃ (t, S̃t)) under Q implies that Ku is vanishing. Hence,

F̃ (t, S̃t) = F̃ (0, S0) +

∫ t

0

∂F̃

∂x
(u, S̃u)dS̃u .
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Thus,

Ht =
∂F̃

∂x
(t, S̃t) =

∂F

∂x
(t, St) .

If we set H0
t = F̃ (t, S̃t)−HtS̃t, we have that (H0

t , Ht) is self-financing and that

Vt = F (t, St), being non-negative for R+-valued payoff functions f .
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