

Martingales in Financial Mathematics: Static and semi-static hedging

Week 9, 2025

We assume a risk-neutral Black–Scholes setting, i.e. we have a risk-less bond with price process $B_t = e^{rt}$, $t \in [0, T]$, $r > 0$ and a risky asset with a price process satisfying

$$dS_t = rS_t dt + \sigma S_t dW_t,$$

where $\sigma > 0$ and $(W_t)_{t \in [0, T]}$ is a standard Brownian motion (with respect to \mathbb{Q}).

Exercise 1: Forward price

Recall that a forward contract is an agreement to pay a specified delivery price k at a maturity date $T \geq 0$ for the asset whose price at time t is S_t .

The T -forward price $F_{t,T}$ of this asset at time $t \in [0, T]$ is the value of k that makes the forward contract have no-arbitrage price zero at time t . Describe the process $F_{t,T}$, $t \in [0, T]$.

Exercise 2: European put-call symmetry

Show that in the Black–Scholes case the European put-call symmetry holds, which can be expressed by the property that for arbitrary $k \geq 0$

$$\begin{aligned} e^{-r(T-t)} \mathbb{E}_{\mathbb{Q}}[(F_{t,T}\eta_{t,T} - k)_+ | \mathcal{F}_t] &= e^{-r(T-t)} \mathbb{E}_{\mathbb{Q}}[(F_{t,T} - k\eta_{t,T})_+ | \mathcal{F}_t] \\ &= e^{-r(T-t)} \frac{k}{F_{t,T}} \mathbb{E}_{\mathbb{Q}} \left[\left(\frac{F_{t,T}^2}{k} - F_{t,T}\eta_{t,T} \right)_+ | \mathcal{F}_t \right], \end{aligned}$$

where $\eta_{t,T} = e^{-\frac{1}{2}\sigma^2(T-t)+\sigma(W_T-W_t)}$, $t \in [0, T]$, so that $F_{t,T}\eta_t = S_t$ under \mathbb{Q} , i.e. we obtain a relation between European call and put prices (often this relation is only formulated for $t = 0$, i.e. for the random variable S_T).

Hint: Write the Black–Scholes formulas in terms of $F_{t,T}$.

Exercise 3: Semi-static hedge of a down-and-out call

Semi-static hedging strategies are often defined to be replicating strategies where trading is no more needed than two times after inception. Assume that there is a barrier H , a strike k satisfying $H < k$, where $S_0 > H$, and assume that there are no carrying costs. The down-and-out call is knocked-out if H is hit any time before maturity. Otherwise pays $(S_T - k)_+$, i.e.

$$X_{\text{doc}} = (S_T - k)_+ \mathbb{1}_{S_t > H, \forall t \in [0, T]}.$$

1

Assume that European calls and puts are available for arbitrary strikes. Use the European put-call symmetry in order to derive a semi-static hedging strategy (use without proof that the put-call symmetry from Exercise 2 also holds for $[0, T]$ -valued stopping times).

Exercice 4: Decomposition of European payoff functions

Assume that a payoff function $f: \mathbb{R}_+ \rightarrow \mathbb{R}$ is two times *continuously* differentiable. Show that for $a \in \mathbb{R}_+$

$$f(x) = f(a) + f'(a)(x - a) + \int_a^\infty f''(k)(x - k)_+ dk + \int_0^a f''(k)(k - x)_+ dk,$$

and give an economic interpretation.

Exercise 5: Implicit distribution

Consider a risk-neutral setting where \tilde{S}_T is sampled from a martingale and assume for simplicity that the strictly positive random variable S_T is absolutely continuous with continuous density q . Show that either the prices of European calls or European puts for arbitrary strikes uniquely determine the distribution of S_T .¹

¹This result is obviously interesting in its own right but has also some consequences for the characterisation of random variables satisfying European put-call symmetry.