

Exercises Martingales in Financial Mathematics: The CRR model

Week 2, 2025

Exercise 1: Cox Ross Rubinstein model

There is only one risky asset in the CRR model with price S_n at n until N along with a risk-less asset with risk-free interest rate r for every time period, i.e. $S_n^0 = (1 + r)^n$. The risky asset is modelled as follows. Between two consecutive periods the price changes by a factor $1 + a$ or $1 + b$

$$S_{n+1} = \begin{cases} S_n (1 + a) \\ S_n (1 + b) \end{cases}$$

where $-1 < a < b$.

Suppose that the initial stock price is given by S_0 and define the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega = \{1 + a, 1 + b\}^N$, $\mathcal{F} = \mathcal{P}(\Omega)$, and \mathbb{P} a probability measure such that $\mathbb{P}(\omega) > 0$ for every atom ω . For $n = 1, \dots, N$ the σ -algebra \mathcal{F}_n is generated by the random variables S_1, \dots, S_n , i.e. $\mathcal{F}_n = \sigma(S_1, \dots, S_n)$ ($\mathcal{F}_0 = \{\Omega, \emptyset\}$). We define the random variables $T_n = S_n / S_{n-1}$, with possible values $1 + a$ and $1 + b$, respectively.

1. Show that in order to end up with a viable market it is necessary that $r \in]a, b[$.
2. Find examples for violation of the assumption of absence of arbitrage if $r \notin]a, b[$.
3. Now let $r \in]a, b[$ and denote $p^* = (b - r)/(b - a)$. Show that (\tilde{S}_n) is a martingale under \mathbb{Q} if and only if the random variables T_1, T_2, \dots, T_N are i.i.d. and $\mathbb{Q}[T_1 = 1 + a] = p^* = 1 - \mathbb{Q}(T_1 = 1 + b)$.
4. Derive that the viable market obtained in 3 is complete (see Slides 52 and 53) and give a formula for the price of a claim with payoff H in the form of a conditional expectation with respect to \mathbb{Q} .

Exercise 2: Pricing of options

Continue with the notation and assumptions in the previous exercise. Furthermore, denote by C_n (P_n , respectively) the value at n of a European call (put) option with strike K and maturity N (both being written on the risky asset).

1. “Rediscover” the European put-call parity based on Point 4 of the previous exercise, i.e. derive

$$C_n - P_n = S_n - K (1 + r)^{-(N-n)}.$$

2. Show that $C_n = c(n, S_n)$, where c is a function which can be expressed with the help of K , a , b , r and p^* .

3. Show that

$$c(n, x) = \frac{p^*}{1+r}c(n+1, x(1+a)) + \frac{1-p^*}{1+r}c(n+1, x(1+b)) \quad n = 0, \dots, N-1.$$

4. Show that the perfect hedging strategy of a European call at n is defined by a quantity $H_n = \Delta(n, S_{n-1})$ representing the investment in the risky asset, where the Δ is a function, which can be expressed in terms of the function c .