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The logit model

Probability for individual n to choose alternative i within the set Cn:

P(i |Cn) =
eµnVin∑
j∈Cn e

µnVjn
.

where

Vin =
K∑

k=1

βkzink ,

where

▶ Cn is the set of alternatives for individual n,

▶ zin are the attributes of alternative i for individual n, and

▶ µn and βk , k = 1, . . . ,K are parameters to be estimated from data.
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Example: transportation mode choice in Switzerland

Three alternatives
▶ Car,

▶ public transportation (PT),

▶ Slow modes (SM).

Six attributes
▶ Travel cost (car and PT).

▶ Travel time (car and PT).

▶ Waiting time (PT).

▶ Distance (SM).
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Example: n is Priya

Who is Priya?

▶ German speaking.

▶ Age: 44.

▶ Gender: female.

▶ Subscription: no GA.

▶ Socio-prof. category: manager.

▶ Income: high.

▶ Car availability: yes.

Attributes
▶ Car cost: zcar,Priya,1 = 0.13 CHF.

▶ Time by car: zcar,Priya,2 = 1.0 min.

▶ PT cost: zPT,Priya,1 = 3.0 CHF.

▶ Time by PT: zPT,Priya,2 = 10.0 min.

▶ Waiting time: zPT,Priya,3 = 0.0 min.

▶ Distance: zSM,Priya,4 = 0.1 km.
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Example: n is Priya
Utility: functions of the attributes

Vcar,Priya = 18− zcar,Priya,1 − 1.73 z0.757car,Priya,2

= 18− 0.13− 1.73 · 1
= 16.2,

VPT,Priya = −8.4− zPT,Priya,1 − 0.48 z0.757PT,Priya,2 − 1.9 zPT,Priya,3

= −8.4− 3− 0.48 · 100.757 − 1.9 · 0
= −14.1,

VSM,Priya = −237 zSM,Priya,4

= −237 · 0.1
= −23.7.
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Example: n is Priya

Logit model: probability for Priya to choose the car

CPriya = {car,PT, SM}, µn = 0.0373.

P(car|CPriya) =
e0.0373 Vcar,Priya∑

j∈CPriya e
0.0373 Vj,Priya

=
e0.0373 · 16.2

e0.0373 · 16.2 + e0.0373 · (−14.1) + e0.0373 · (−23.7)

=
1.83

2.83
= 0.646.
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Example: n is Priya

Logit model: probability for Priya to choose public transportation

CPriya = {car,PT, SM}, µn = 0.0373.

P(PT|CPriya) =
e0.0373 VPT,Priya∑

j∈CPriya e
0.0373 Vj,Priya

=
e0.0373 · −14.1

e0.0373 · 16.2 + e0.0373 · (−14.1) + e0.0373 · (−23.7)

=
0.59

2.83
= 0.208.
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Example: n is Priya

Logit model: probability for Priya to choose a slow mode

CPriya = {car,PT, SM}, µn = 0.0373.

P(SM|CPriya) =
e0.0373 VSM,Priya∑

j∈CPriya e
0.0373 Vj,Priya

=
e0.0373 · −23.7

e0.0373 · 16.2 + e0.0373 · (−14.1) + e0.0373 · (−23.7)

=
0.412

2.83
= 0.146.
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Example: n is Mateo

Who is Mateo?
▶ French speaking.

▶ Age: 35.

▶ Gender: male.

▶ Subscription: GA.

▶ Socio-prof. category: craftman.

▶ Income: low.

▶ Car availability: no.

Attributes (same as Priya, except
cost PT)

▶ Car cost: zcar,Mateo,1 = 0.13 CHF.

▶ Time by car: zcar,Mateo,2 = 1.0 min.

▶ PT cost: zPT,Mateo,1 = 0.0 CHF.

▶ Time by PT: zPT,Mateo,2 = 10.0 min.

▶ Waiting time: zPT,Mateo,3 = 0.0 min.

▶ Distance: zSM,Mateo,4 = 0.1 km.
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Example: n is Mateo
Utility: functions of the attributes

Vcar,Mateo = 3.84− zcar,Mateo,1 − 2.85 z0.757car,Mateo,2

= 3.84− 0.13− 2.85 · 1
= 0.858,

VPT,Mateo = 12.1− zPT,Mateo,1 − 1.02 z0.757PT,Mateo,2 − 0.17 zPT,Mateo,3

= 12.1− 0− 1.02 · 100.757 − 0.17 · 0
= 6.23,

VSM,Mateo = −167 zSM,Mateo,4

= −167 · 0.1
= −16.7.
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Example: n is Mateo

Logit model: probability for Mateo to choose the car

CMateo = {PT, SM}, µn = 0.0725.

P(car|CMateo) = 0.
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Example: n is Mateo

Logit model: probability for Mateo to choose public transportation

CMateo = {PT, SM}, µn = 0.0725.

P(PT|CMateo) =
e0.0725 VPT,Mateo∑

j∈CMateo
e0.0725 Vj,Mateo

=
e0.0725 · 6.23

e0.0725 · (6.23) + e0.0725 · (−16.7)

=
1.57

1.87
= 0.841.
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Example: n is Mateo

Logit model: probability for Mateo to choose a slow mode

CMateo = {PT, SM}, µn = 0.0725.

P(SM|CMateo) =
e0.0725 VSM,Mateo∑

j∈CMateo
e0.0725 Vj,Mateo

=
e0.0725 · −16.7

e0.0725 · (6.23) + e0.0725 · (−16.7)

=
0.298

1.87
= 0.159.
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How does it work?

▶ Where does the logit model come from?
▶ With two alternatives.
▶ With multiple alternatives.

▶ How do we specify the utility functions?
▶ What variables can be involved?
▶ How do we come up with a fonctional form?
▶ How do we derive a different model for different individuals?

▶ How do we estimate the parameters?
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The binary logit model

Two alternatives: Cn = {i , j}

Uin = Vin + ε′in,
Ujn = Vjn + ε′jn.

Main issue
▶ Utility is latent, not observed.

▶ Only the choice is observed.

▶ More complicated than linear regression.

▶ How do we know the “zero” of utility?

▶ How do we know the units of utility?
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Binary choice model

Choice model

Pn(i |{i , j}) = Pr(Uin ≥ Ujn).

Invariant to shifts

Pn(i |{i , j}) = Pr(Uin + η ≥ Ujn + η), ∀η ∈ R.

Invariant to scale

Pn(i |{i , j}) = Pr(µUin ≥ µUjn), ∀µ ∈ R, µ > 0.
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Binary choice model

Choice model

Pn(i |{i , j}) = Pr(Uin ≥ Ujn)
= Pr(Vin + ε′in ≥ Vjn + ε′jn)
= Pr(Vin − Vjn ≥ ε′jn − ε′in)
= Pr (ε′n ≤ Vin − Vjn) ,

where ε′n = ε′jn − ε′in.

Note
▶ For binary choice, it would be sufficient to make assumptions about

ε′n = ε′jn − ε′in.

▶ But we want to generalize later on.
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Error term

Assumptions about the random variables ε′in and ε′jn
ε′in and ε′jn are the maximum of many r.v. capturing unobserved attributes (e.g.
mood, experience), measurement and specification errors.

Gumbel theorem
The maximum of many i.i.d. random variables approximately follows an Extreme
Value distribution: EV(η, µ), with µ > 0.
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Extreme value distribution

Emil Julius Gumbel (1891–1966)

▶ father of extreme value theory,

▶ politically involved left-wing pacifist in
Germany,

▶ strongly against right wing’s campaign of
organized assassination (1919),

▶ first German professor to be expelled from
university under the pressure of the Nazis,

▶ 1932: he left Heidelberg to Paris, where he
met Borel and Fréchet,

▶ 1940: he had to escape to New-York, where
he continued his fight against Nazism by
helping the US secret service.
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The Extreme Value distribution EV(η, µ)

Probability density function (pdf)

f (t) = µe−µ(t−η)e−e−µ(t−η)

.

Cumulative distribution function (CDF)

P(ε ≤ c) = F (c) =

∫ c

−∞
f (t)dt

= e−e−µ(c−η)
.
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The Extreme Value distribution

pdf EV(0,1)
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The Extreme Value distribution

Properties

ε ∼ EV(η, µ).

▶ Mode: η.

▶ Mean: E[ε] = η + γ
µ
where γ is Euler’s constant.

▶ Variance: Var[ε] = π2

6µ2 .

Euler’s constant

γ = −
∫ ∞

0

e−x ln x dx ≈ 0.5772.
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The Extreme Value distribution

Properties

▶ Let ε ∼ EV (η, µ), α > 0 and β ∈ R. Then

αε+ β ∼ EV (αη + β, µ/α).

▶ In particular, if ε ∼ EV(0, 1), then, using α = 1/µ and β = η,

ε′ = η +
1

µ
ε ∼ EV(η, µ).
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The Extreme Value distribution

Properties
Let ε1 ∼ EV (η1, µ) and ε2 ∼ EV (η2, µ)

ε = ε1 − ε2 ∼ Logistic(η1 − η2, µ),

that is

Fε(x) =
1

1 + exp(−µ(x − (η1 − η2)))
.

Note: the two EV distributions must have the same scale µ.
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The Extreme Value distribution

Properties

▶ Let ε1 ∼ EV (η1, µ) and ε2 ∼ EV (η2, µ) independent. Then,

ε = max(ε1, ε2) ∼ EV

(
1

µ
ln(eµη1 + eµη2), µ

)
.

▶ Let εi ∼ EV (ηi , µ), i = 1, . . . , J independent. Then,

ε = max(ε1, . . . , εJ) ∼ EV

(
1

µ
ln

J∑
i=1

eµηi , µ

)
.

▶ The sum of two EV r.v. is not an EV r.v.
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Modeling assumptions

Distributions
▶ ε′in and ε′jn are i.i.d. EV(η, µ).

▶ η, µ ∈ R, µ > 0.

▶ i.i.d. = independent and identically distributed.

▶ i.i.d. across both i and n.
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Modeling assumptions

Change of variables: isolate the parameters

ε′in = η + 1
µ
εin,

ε′jn = η + 1
µ
εjn,

where εin, εjn ∼ EV(0, 1).
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Binary logit model

Specification
If the model is specified as

Uin = Vin + η + 1
µ
εin,

Ujn = Vjn + η + 1
µ
εjn,

we can assume w.l.o.g. that εin, εjn ∼ EV(0, 1).
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Binary logit model

Choice model

Pn(i |{i , j}) = Pr (Uin ≥ Ujn)
= Pr( 1

µ
(εjn − εin) ≤ Vin + �η − Vjn − �η),

= Pr(εjn − εin ≤ µVin − µVjn).

Property of EV

εn = εjn − εin ∼ Logistic(0, 1).
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The Logistic distribution: Logistic(η,µ)

Probability density function (pdf)

f (t) =
µe−µ(t−η)

(1 + e−µ(t−η))2
.

Cumulative distribution function (CDF)

P(c ≥ ε) = F (c) =

∫ c

−∞
f (t)dt =

1

1 + e−µ(c−η)
.

with µ > 0.
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Binary logit model

Choice model

Pn(i |{i , j}) = Pr (εn ≤ µVin − µVjn) = Fε(µVin − µVjn).

The binary logit model

Pn(i |{i , j}) =
1

1 + e−µ(Vin−Vjn)
=

eµVin

eµVin + eµVjn
.
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The binary logit model

Key element of the specification

µVin.

Comments
▶ η does not play any role in the model.

▶ The units of Vin must be fixed. The model must be normalized.

▶ Before doing it, we extend the model to more than two alternatives.
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Multiple alternatives

Choice set: Cn = {1, . . . , Jn}

U1n = V1n + ε1n,
...

UJnn = VJnn + εJnn.
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Choice set

Universal choice set: C
▶ All potential alternatives for the

population.

▶ Alternatives relevant to the
analyst.

Mode choice
▶ driving alone,

▶ sharing a ride,

▶ taxi,

▶ motorcycle,

▶ bicycle,

▶ walking,

▶ transit bus,

▶ rail rapid transit.
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Choice set

Individual’s choice set: Cn
▶ No driver license.

▶ No auto available.

▶ Awareness of transit services.

▶ Transit services unreachable.

▶ Walking not an option for long
distance.

Mode choice
▶ driving alone,

▶ sharing a ride,

▶ taxi,

▶ motorcycle,

▶ bicycle,

▶ walking,

▶ transit bus,

▶ rail rapid transit.
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Choice set

Choice set generation is tricky

▶ How to model “awareness”?

▶ What does “long distance” exactly mean?

▶ What does “unreachable” exactly mean?

We assume here deterministic rules
▶ Car is available if n has a driver license and a car is available in the

household.

▶ Walking is available if trip length is shorter than 4km.
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Availability conditions

δin =

{
1 if i ∈ Cn,
0 otherwise.

or ln δin =

{
0 if i ∈ Cn,
−∞ otherwise.

Choice model

Pn(i |Cn) = Pn(i |δn, C) = Pr(Uin + ln δin ≥ Ujn + ln δjn).
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Error terms

Logit: same assumptions as for binary logit
εin are

▶ independent and

▶ identically distributed,

▶ extreme value EV(η, µ).

Comments
i.i.d. across i and n.
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The logit model: derivation

P(i |Cn) = Pr(Uin ≥ max
j∈Cn\{i}

Ujn) = Pr(Vin + εin ≥ max
j∈Cn\{i}

Vjn + εjn).

Best alternative different from i

U−in = max
j∈Cn\{i}

Ujn = max
j∈Cn\{i}

(Vjn + εjn).

Binary choice model

P(i |Cn) = Pr(Uin ≥ U−in).
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The logit model

Property of Extreme Value distribution

U−in = V−in + ε−in

where

V−in =
1

µ
ln
∑

j∈Cn\{i}

eµVjn ,

and
ε−in ∼ EV(0, µ).

43 / 99



The logit model

Binary logit

P(i |Cn) =
eµVin

eµVin + eµV−in

Therefore...

V−in = 1
µ
ln
∑

j∈Cn\{i} e
µVjn ,

eµV−in = e ln
∑

j∈Cn\{i} e
µVjn

=
∑

j∈Cn\{i} e
µVjn ,

P(i |Cn) = eµVin

eµVin+
∑

j∈Cn\{i} e
µVjn

= eµVin∑
j∈Cn e

µVjn
.
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The logit model

P(i |Cn) =
eµVin∑
j∈Cn e

µVjn
.

where
Vin =

∑
k

βkzink ,

where zin is the vector of attributes of alternative i for individual n.
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Choosing the units

Issue
▶ As utility is latent, the units are arbitrary.

▶ We need to choose the units.

▶ We first introduce a specification that is convenient to interpret.

Context
▶ Utility contains a cost/price variable (in CHF, say).

▶ We constrain its coefficient to be -1.

▶ Utility = opposite of generalized cost.

▶ Units: CHF.
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Example

Setting βc = −1

Vin = −costin + βttimein + βhdirectin.

Interpretation of the coefficients

▶ Willingness to pay for an increase of the variable.

▶ βt : transforms minutes into CHF: value of time (opposite).

▶ βh: transforms the feature of direct service into CHF.
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Logit model

Moneymetric utility function

Vin = −costin +
∑
k

βkzink .

Choice model

Pn(i |C) =
eµVin∑
j∈C e

µVin
=

e−µcostin+
∑

k µβkzink∑
j∈C e

−µcostjn+
∑

k µβkzjnk
.
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Maximum likelihood estimation

Motivation
▶ The model involves unknown parameters: µ, βk .

▶ Their value must be inferred from a sample of observations.

▶ We use maximum likelihood to estimate their value.
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Example: specification table of the model

Alternative i Alternative j

βc cost of trip (CHF) cost of trip (CHF)
β1 car (0/1) car (0/1)
β2 travel time (hours) travel time (hours)
β3 headway if train (min.) headway if train (min.)
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Observed variables

1. An indicator variable defined as

yin =

{
1 if individual n chose alternative i ,
0 if individual n chose alternative j .

For notational convenience, we also define yjn = 1− yin.

2. Two vectors of explanatory variables zin and zjn, each containing K = 4
values.
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Example: raw data

Individual 1 Individual 2 Individual 3
Train cost 40.00 7.80 40.00
Car cost 5.00 8.33 3.20

Train travel time 2.50 1.75 2.67
Car travel time 1.17 2.00 2.55

Headway 60 60 30
Choice Car Train Train
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Example: formatted data

n costin carin timein headwayin costjn carjn timejn headwayjn
1 5 1 1.17 0 40 0 2.5 60
2 7.8 0 1.75 60 8.33 1 2 0
3 40 0 2.67 30 3.2 1 2.55 0

Chosen alternative: i .
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Example: observed variables

yi1 = yi2 = yi3 = 1, yj1 = yj2 = yj3 = 0.

zi1= (5 1 1.17 0 )T

zj1= (40 0 2.5 60 )T

zi2= (7.8 0 1.75 60 )T

zj2= (8.33 1 2 0 )T

zi3= (40 0 2.67 30 )T

zj3= (3.2 1 2.55 0 )T
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Choice model

β =


−1
βcar

βtime

βheadway


Pn(i ; β, µ) =

eµβ
T zin

eµβT zin + eµβ
T zjn

.

Likelihood
Probability that the model replicates all the observations.
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Example: likelihood

Individuals
▶ Each individual n has chosen alternative i .

▶ This choice is predicted by the model with probability Pn(i ; β, µ).

Likelihood

L∗(β, µ) = P1(i ; β, µ)P2(i ; β, µ)P3(i ; β, µ).

where β ∈ RK=4 and µ ∈ R.
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Example: likelihood

Assume that

β =


−1
0
0
0

 , µ = 10−8,

we have

n Vin Vjn Pn(i) Pn(j)
1 -5.0 -40.00 0.5 0.5
2 -7.8 -8.33 0.5 0.5
3 -40.0 -3.20 0.5 0.5

L∗ = 0.5 · 0.5 · 0.5 = 0.125. (1)
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Example: likelihood

Assume that

β =


−1
−1
−15
−0.3

 , µ = 0.1

we have

n Vin Vjn Pn(i) Pn(j)
1 -23.55 -95.50 0.999 0.001
2 -52.05 -39.33 0.219 0.781
3 -89.05 -42.45 0.009 0.991

L∗ = 0.999 · 0.219 · 0.009 = 0.00197.
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Definitions

Likelihood

L∗(β, µ) =
N∏

n=1

Pn(i ; β, µ)
yinPn(j ; β, µ)

yjn ,

where β ∈ RK and µ ∈ R.

Log likelihood

L(β, µ) =
N∑

n=1

(yin lnPn(i ; β, µ) + yjn lnPn(j ; β, µ)).
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Maximum likelihood estimation

Optimization problem

β̂, µ̂ = argmaxβ∈RK ,µ∈R L(β, µ) = L(β1, β2, . . . , βK , µ).

Software
biogeme.epfl.ch
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Estimation of the parameters

Unknown parameters

µ, βk , k = 1, . . . .

Contribution to the likelihood of observation n

Pn(i |C) =
e−µcostin+

∑
k µβkzink

e−µcostin+
∑

k µβkzink + e−µcostjn+
∑

k µβkzjnk
.

Issue: non linearity

▶ Non-concave formulation.

▶ Algorithms may converge to local maxima.

▶ A concave formulation is desirable.
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Estimation of the parameters
Rename the parameters

β′
c = −µ and β′

k = µβk , ∀k .

Pn(i |C) =
eβ

′
ccostin+

∑
k β

′
kzink

eβ
′
ccostin+

∑
k β

′
kzink + eβccostjn+

∑
k βkzijk

.

Notes
▶ It is equivalent to the original specification, if µ is normalized to 1.

▶ Logit with this specification has a concave log-likelihood function.

▶ Once the parameters are estimated, the inverse transform must be applied
to obtain the willingness to pay parameters

βt =
β′
t

µ
= −β′

t

β′
c

.
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Moneymetric specification

Unnormalized version: includes all β’s and µ

µVin = µβccostin +
∑
k

µβkzink .

Normalization: βc = −1

µVin = −µcostin +
∑
k

µβkzink .
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Moneymetric specification

Normalization: βc = −1

µVin = −µcostin +
∑
k

µβkzink .

Advantages

▶ Convenient unit.

▶ Easy interpretation.

▶ Explicit representation of µ.

Drawbacks
▶ Not linear in the parameters.

▶ More complicated to estimate.

▶ Possibility to be caught in local
maxima.
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Linear-in-parameters specification

Unnormalized version: includes all β’s and µ

µVin = µβccostin +
∑
k

µβkzink .

Normalization: µ = 1

µVin = βccostin +
∑
k

βkzink .
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Linear-in-parameters specification

Normalization: µ = 1

µVin = Vin = βccostin +
∑
k

βkzink .

Advantages

▶ Linear in the parameters.

▶ Simple to estimate.

▶ With logit, concave
log-likelihood function.

Drawbacks
▶ Unitless.

▶ Coefficients difficult to
interpret.

▶ No explicit representation of µ.
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Normalization

Notes
▶ The choice of a specific normalization is arbitrary, as both lead to the exact

same choice model.

▶ The linear-in-parameters normalization has been widely adopted in the
literature, for historical reasons.

▶ The moneymetric normalization provides a better interpretation.

▶ Warning: if some parameters are assumed to be distributed (see the lecture
on mixtures), the choice of the distribution is conditional on the type of
normalization.

69 / 99



Comparison with linear regression

Linear regression

yn =
∑
k

βkznk + εn

▶ εn ∼ N(η, σ2).

▶ εn independent from x .

▶ yn is observable.

▶ All parameters are identified.

Choice model

Uin =
∑
k

βkzink + εin

▶ εin ∼ EV (η, µ).

▶ εin independent from x .

▶ Uin is latent, not observable.

▶ Location: η does not play any role.

▶ Units: normalization is needed.
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Summary

▶ εin i.i.d. EV(η, µ).

▶ Derivation: from binary logit to multiple alternatives.

▶ Identification issues due to the latent nature of utility.

▶ Normalization: η does not play any role.

▶ Normalization: βc = −1: moneymetric specification.

▶ Alternative normalization: µ = 1.

▶ Estimation of the parameters: maximum likelihood.

Appendices

▶ Output of the estimation.

▶ The binary probit model.

▶ Gumbel’s theorem.
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Appendix I: Output of the estimation

Main outputs

▶ the parameter estimates β̂,

▶ the value of the log likelihood function at the parameter estimates L(β̂).

Other output

▶ variance-covariance matrix of the estimates,

▶ standard errors,

▶ t-statistics,

▶ p-values,

▶ goodness of fit.
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Variance-covariance: Cramer-Rao bound

Definition

−E
[
∇2L(β)

]−1
=

{
−E

[
∂2L(β)
∂β∂βT

]}−1

.

Estimator

A = E

[
∂2L(β)
∂βk∂βm

]
≈

N∑
n=1

[
∂2 (yin lnPn(i) + yjn lnPn(j))

∂βk∂βm

]
β=β̂

,

Σ̂CR
β = −Â−1.
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Variance-covariance: robust estimator

BHHH matrix

− E

[
∂2L(β)
∂β∂βT

]
≈

N∑
n=1

∇Ln(β̂)∇Ln(β̂)
T = B̂ ,

where
∇Ln(β̂) = ∇(yin lnPn(i) + yjn lnPn(j)).

Robust or sandwich estimator

Σ̂R
β = (−Â)−1 B̂ (−Â)−1 = Σ̂CR

β (Σ̂BHHH
β )−1 Σ̂CR

β .
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Variance-covariance matrix

Notes
▶ When the true likelihood function is maximized, these estimators are

asymptotically equivalent.

▶ When other consistent estimators are used, different from the maximum
likelihood, the robust estimator must be used.
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Standard errors

Definition

σk =

√
Σ̂β(k , k),

where Σ̂β(k , k) is the kth entry of the diagonal of the matrix Σ̂β.
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t statistics

Definition

tk =
β̂k − β0

σk
,

where β0 is the value associated wth the null hypothesis (usually 0).

Role
Typically used to test the null hypothesis that the true value of the parameter is
zero. This hypothesis can be rejected with 95% of confidence if

|tk | ≥ 1.96. (2)
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p values

Definition
▶ It is the probability to get a t statistic at least as large (in absolute value) as

the one reported, under the null hypothesis that βk = 0.

▶ Consider an estimate β̂k of the parameter βk , and tk its t statistic. The p
value is calculated as

pk = 2(1− Φ(tk)),

where Φ(·) is the cumulative density function of the univariate standard
normal distribution.

Role
▶ Exact same role as the t statistics.

▶ The null hypothesis can be rejected at the confidence level pk .
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Goodness of fit

Preliminary remarks

▶ There are several measures of goodness of fit.

▶ None of them can be used in an absolute way.

▶ They can only be used to compare two models, estimated on the same data
set, with the same dependent variable.
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Goodness of fit
Log likelihood

L(β̂).

Normalized log likelihood

ρ2 = 1− L(β̂)
L(0)

.

Comments on ρ2

▶ It is not the square of anything. It mimics R2 in linear regression.

▶ In general, value strictly between 0 (null model) and 1 (perfect fit).

▶ But the value is meaningless as such.
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Goodness of fit: accounting for the number of parameters

Akaike Information Criterion (AIC)

2K − 2L(β̂).

Note: the lower, the better.

Normalized AIC

ρ̄2 = 1 +
AIC

2L(0)
= 1− L(β̂)− K

L(0)
.

Note: the higher, the better.
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Goodness of fit: accounting for sample size

Bayesian Information Criterion (BIC)

K ln(N)− 2L(β̂).

Note: the lower, the better.
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Goodness of fit: benchmark models

Benchmark model with 0 parameter

Pn(i) =
1

Jn
.

L(0) = −
N∑

n=1

log(Jn),

where N is the number of observations.
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Goodness of fit: benchmark models

Benchmark model with J − 1 parameters
We assume that Jn = J , ∀n:

Pn(i) = pi =
Ni

N
.

There are J parameters p1, . . . , pJ . They must sum up to one, removing one
degree of freedom.

L(c) =
J∑

i=1

Ni(lnNi − lnN) =
J∑

i=1

Ni lnNi − N lnN .

where Ni is the number of observations choosing alternative i .
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Likelihood ratio test

Null hypothesis
Two models are equivalent.

Statistic

−2(L(0)− L(β̂))

is asymptotically distributed as χ2 with K degrees of freedom.

Statistic

−2(L(c)− L(β̂))

is asymptotically distributed as χ2 with K − 1 degrees of freedom.

85 / 99



Appendix II: the probit model

Assumption: similar to linear regression
εin and εjn are the sum of many r.v. capturing unobserved attributes (e.g. mood,
experience), measurement and specification errors.

Central limit theorem
The sum of many i.i.d. random variables approximately follows a normal
distribution: N(η, σ2).
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The normal distribution N(η, σ2)

Probability density function (pdf)

f (t) =
1

σ
√
2π

e−
1
2(

t−η
σ )

2

.

Cumulative distribution function (CDF)

P(c ≥ ε) = F (c) =

∫ c

−∞
f (t)dt.
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The normal distribution

pdf N(0,1)

−3 −2 −1 1 2 3

0.1

0.2

0.3

CDF N(0,1)
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0.4

0.6
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The distribution

Assumptions

▶ εin and εjn are normally distributed, with variance σ2
i and σ2

j , respectively,
and covariance σij .

▶ Note: identical distribution across n.

▶ If an alternative specific constant is in the model, their mean can be
assumed to be any constant.

▶ εn = εjn − εin is also normally distributed, with variance

σ2 = σ2
i + σ2

j − 2σij .
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The binary probit model

Choice model

Pn(i |{i , j}) = Pr (εn ≤ Vin − Vjn) = Fε(Vin − Vjn).

The binary probit model

Pn(i |{i , j}) = Φ

(
Vin − Vjn

σ

)
=

1√
2π

∫ (Vin−Vjn)/σ

−∞
exp

(
−1

2
u2

)
du.
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Appendix III: Gumbel theorem

Motivation
▶ X1, . . . ,Xn i.i.d.

▶ fXi
(x) = f (x), FXi

(x) = F (x), i = 1, . . . , n

▶ X ′
n = max(X1, . . . ,Xn).

▶ Applications:
▶ rainfall,
▶ floods,
▶ earthquakes,
▶ air pollution,
▶ ...
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Extreme value distribution

▶ X ′
n = max(X1, . . . ,Xn).

▶ FX ′
n
= F (x)n. Indeed

P(X ′
n ≤ x) = P(X1 ≤ x)P(X2 ≤ x) . . .P(Xn ≤ x).

▶ Warning: if n → ∞

lim
n→∞

FX ′
n
(x) =

{
1 if F (x) = 1,
0 if F (x) < 1.

Degenerate distribution (if you a die sufficiently many times, the maximum
score will always be 6).
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Extreme value distribution

▶ We want a limiting distribution which is non degenerate.

▶ Limiting distribution of some sequence of transformed “reduced” values.

▶ For instance anX
′
n + bn.

▶ an, bn do not depend on x .

▶ CDF of limiting distribution: G (x).

▶ Let’s identify desired properties.
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Extreme value distribution

X1 . . . Xn max(X1, . . . ,Xn)
Xn+1 . . . X2n max(Xn+1, . . . ,X2n)
...

...
X(i−1)n+1 . . . Xin max(X(i−1)n+1, . . . ,Xin)

...
...

X(N−1)n+1 . . . XNn max(X(N−1)n+1, . . . ,XNn)

Two ways of seeing max(X1, . . . ,XNn) when n → ∞.

1. As a max of many Xi , the CDF should look like G (aNx + bN).

2. The CDF of the max of each row is G (x).

3. So the CDF of the max of all rows is G (x)N .
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Extreme value distribution

Stability postulate (Fréchet, 1927):

G (x)N = G (aNx + bN).

We consider here the case aN = 1 to obtain the so-called “type I extreme value
distribution”

G (x)N = G (x + bN).

We have also

G (x)MN = G (x + bN)
M = G (x + bN + bM),

G (x)MN = G (x + bMN).
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Extreme value distribution

Therefore
G (x + bN + bM) = G (x + bMN),

that is
bN + bM = bMN ,

so that bN must be of the form

bN = −µ′ lnN ,

and the stability postulate becomes

G (x)N = G (x − µ′ lnN).

Let’s take the logarithm twice...
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Extreme value distribution

G (x)N = G (x − µ′ lnN).

N lnG (x) = lnG (x − µ′ lnN).

Warning: G is a CDF, so G (x) ≤ 1 and lnG (x) ≤ 0, ∀x .

−N lnG (x) = − lnG (x − µ′ lnN).

lnN + ln(− lnG (x)) = ln(− lnG (x − µ′ lnN)).

Define h(x) = ln(− lnG (x)) to obtain

lnN + h(x) = h(x − µ′ lnN).

h is affine.
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Extreme value distribution

lnN + h(x) = h(x − µ′ lnN),
h(x) = αx + β,
h(0) = β,

lnN + αx + β = α(x − µ′ lnN) + β,
α = − 1

µ′ .

Therefore
h(x) = h(0)− x

µ′ .

G is increasing in x (CDF), so h is decreasing in x . Therefore, µ′ > 0.
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Extreme value distribution

h(x) = ln(− lnG (x)) = h(0)− x

µ′ .

− lnG (x) = exp

(
h(0)− x

µ′

)
= exp

(
−x − µ′h(0)

µ′

)
.

G (x) = exp

(
−exp

(
−x − µ′h(0)

µ′

))
.

Let µ = 1/µ′ and η = µ′h(0) = ln(− lnG (0))/µ

G (x) = exp (−exp (−µ(x − η))) .
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