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The logit model

Probability for individual n to choose alternative i within the set C,,:

eH‘nVin
P(ilC,) = —=———.
(i[Ca) Dicc, €V
where
K
Vip = Z 5k2ink,
k=1
where

» C, is the set of alternatives for individual n,
» z;,, are the attributes of alternative i for individual n, and

» 1, and B, k =1,..., K are parameters to be estimated from data.
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Example: transportation mode choice in Switzerland

Three alternatives
» Car,
» public transportation (PT),
» Slow modes (SM).

Six attributes
» Travel cost (car and PT).
» Travel time (car and PT).
» Waiting time (PT).
» Distance (SM).
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Example: nis Priya

Who is Priya? Attributes
> German speaking. » Car cost: Zearpriya1 = 0.13 CHF.
> Age: 44. » Time by car: Zearpriya2 = 1.0 min.
» Gender: female. » PT cost: zpt priya1 = 3.0 CHF.
» Subscription: no GA. » Time by PT: zp1 priya2 = 10.0 min.
» Socio-prof. category: manager. > Waiting time: zpt priya,3 = 0.0 min.
» Income: high. » Distance: zsm priyas = 0.1 km.
» Car availability: yes.
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Example: nis Priya
Utility: functions of the attributes

Vcar,Priya =18 — Zcar,Priya,1 — 1.73 Zgé:,?jriyaQ
=18—-0.13-1.73-1
=16.2,

0.757
Vet priya = —8.4 — ZpT priya1 — 0.48 ZpT privan — 1.9 ZpT Priya3

= -84-3-048-10""-1.9.0
— _141,
Vsm,priya = —237 Zsm,Priya 4
= —237-0.1
= —23.7.
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Example: nis Priya
Logit model: probability for Priya to choose the car

Cpriya = {car,PT,SM}, p, = 0.0373.

e0~0373 Vcar,Priya

_ 0.0373 V] priya
ZJECF’riya €

e0.0373 -16.2

- 0.0373 - 16.2 1 0.0373 - (—14.1) 4 £0.0373 - (-23.7)
1.83

- 283

= 0.646.

P(car|Cpyiya) =
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Example: nis Priya
Logit model: probability for Priya to choose public transportation
Cpriya = {car,PT,SM}, p, = 0.0373.

£0-0373 VoT priva

P(PT|CPriya) = Zjecpriya e0-0373 V] priya
£0.0373 - —14.1
T 00373162 | g0.0373 - (—14.1) | g0.0373 - (~23.7)
059
- 283
= 0.208.

8/99



Example: nis Priya
Logit model: probability for Priya to choose a slow mode
Cpriya = {car,PT,SM}, p, = 0.0373.

£0-0373 Vou priya

. 0.0373 V] prya
ZJecF’riya €

'D(SM |CPriya) =

e0.0373 . —23.7
T 00373162 | £0.0373 - (~14.1) | 0.0373 - (—23.7)
0.412
- 283
= 0.146.
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Example: n is Mateo

Who is Mateo? Attributes (same as Priya, except
» French speaking. cost PT)
> Age: 35. » Car cost: ZcarMateo,1 = 0.13 CHF.
» Gender: male. » Time by car: Z.rMateo2 = 1.0 min.
» Subscription: GA. » PT cost: zpT Mateo,q = 0.0 CHF.
» Socio-prof. category: craftman. » Time by PT: zp1 Mateo2 = 10.0 min.
» Income: low. » Waiting time: ZpT Mateo,3 = 0.0 min.
» Car availability: no. » Distance: Zsm Mateo,s = 0.1 km.
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Example: n is Mateo
Utility: functions of the attributes

Vcar,Mateo = 3.84 — Zcar,Mateo,1 — 2.85 Zgalz,?\;ateog
=384—-0.13-285-1
= 0.858,

0.757
VhT Mateo = 12.1 — ZpT Mateo1 — 1.02 ZpT Mateo2 — 0-17 ZPT Mateo 3

=121-0-1.02-10%" —-0.17-0
= 6.23,
VsMm,Mateo = —167 Zsm Mateo 4
= —-167-0.1
= —16.7.
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Example: n is Mateo

Logit model: probability for Mateo to choose the car

CMateo = {PT7 SM}, MUn = 0.0725.
P(Car|CMateo) =0.
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Example: n is Mateo
Logit model: probability for Mateo to choose public transportation

CMateo = {PT7 SM}, Mn = 0.0725.

eO~0725 VPT,Mateo

Z 3 60'0725 Vj,Mateo
JecMateo

00725 - 6.23
T @0.0725 - (6.23) 4 0.0725 - (~16.7)
1.57

187
= 0.841.

'D(PT|CMateo) -
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Example: n is Mateo
Logit model: probability for Mateo to choose a slow mode

CMateo = {PT7 SM}, Mn = 0.0725.

0.0725 Vsm Mateo

e
'D(SM|CMateo) = ZjeCMateo £0-0725 Vj Mateo
0-0725 - —16.7
T @0.0725 - (6.23) 4 0.0725 - (~16.7)
~0.298
T o187
= 0.159.
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How does it work?

» Where does the logit model come from?
> With two alternatives.
» With multiple alternatives.

» How do we specify the utility functions?

» What variables can be involved?
» How do we come up with a fonctional form?
» How do we derive a different model for different individuals?

» How do we estimate the parameters?
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Binary logit model
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The binary logit model

Two alternatives: C, = {i,/}

Uin - \/I +5/'
Un = Vot e

Main issue
» Utility is latent, not observed.
» Only the choice is observed.
» More complicated than linear regression.
» How do we know the “zero” of utility?
» How do we know the units of utility?
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Binary choice model

Choice model
Pa(il{i,j}) = Pr(Uin = Up).
Invariant to shifts
Po(il{i,j}) = Pr(Upn+n > Upn+n), Vn € R,
Invariant to scale

Pa(il{i,j}) = Pr(uUin > pU), Y € R, pu > 0.
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Binary choice model

Choice model

Po(il{i,j}) = Pr

! A /
where ), = ¢}, — ]

mn-

Note
» For binary choice, it would be sufficient to make assumptions about
A | /
€n = 8jn — Eip-

» But we want to generalize later on.
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Error term

Assumptions about the random variables ¢/, and ¢,

€, and €’ are the maximum of many r.v. capturing unobserved attributes (e.g.
mood, experience), measurement and specification errors.

Gumbel theorem
The maximum of many i.i.d. random variables approximately follows an Extreme
Value distribution: EV(n, i), with > 0.
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Extreme value distribution
Emil Julius Gumbel (1891-1966)

» father of extreme value theory,

» politically involved left-wing pacifist in
Germany,

» strongly against right wing's campaign of
organized assassination (1919),

» first German professor to be expelled from
university under the pressure of the Nazis,

» 1932: he left Heidelberg to Paris, where he
met Borel and Fréchet,

» 1940: he had to escape to New-York, where
he continued his fight against Nazism by
helping the US secret service.
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The Extreme Value distribution EV(7, 1)

Probability density function (pdf)
f(t) = ,ue_“(t_")e_e_”(t_").

Cumulative distribution function (CDF)

Ple < c) = F(c) — /_ F(t)dt
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The Extreme Value distribution
pdf EV(0,1)

CDF EV(0,1)

0.8

0.6 |
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The Extreme Value distribution

Properties

e~ EV(n, ).

» Mode: 7.
> Mean: E[e] =7+ L where 7 is Euler's constant.

» Variance: Var[e] = 6”—

Euler’'s constant

v = —/ e “Inxdx ~ 0.5772.
0
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The Extreme Value distribution

Properties
» Lete~ EV(n,u), «>0and g € R. Then

ag+ [~ EV(an + B, u/a).

» In particular, if e ~ EV(0, 1), then, using o = 1/p and g =17,

1
e=n+ Y EV(n, 1)
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The Extreme Value distribution

Properties
Let 1 ~ EV/(m1, 1) and €3 ~ EV/ (12, 1)

E =€ — &y~ LogiStiC(T]l - 7]27,&),

that is 1
FE(X)

14 exp(—pu(x — (m —m2)))

Note: the two EV distributions must have the same scale .
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The Extreme Value distribution

Properties
» Let e; ~ EV(ny, 1) and e3 ~ EV/(na, i) independent. Then,

1
£ = max(51,52) ~ EV (_ |n(ew71 + eum)’lu) )

L
» Lete; ~ EV(ni,pn), i=1,...,J independent. Then,

J
1
e = max(ey,...,ey) ~ EV (—InZe’”“,u) :
-

» The sum of two EV r.v. is not an EV r.v.

27 /99



Modeling assumptions

Distributions
> ¢i, and g, are i.id. EV(n, u).
» nueR, up>0.
» i.i.d. = independent and identically distributed.

» i.i.d. across both / and n.
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Modeling assumptions

Change of variables: isolate the parameters

/ _ 1

€n =M + ﬁgina
/ _ 1_.

Ejn TN L

where ¢, €, ~ EV(0, 1).
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Binary logit model

Specification
If the model is specified as

Uin - Vin + n + %&na
(jjn == \/jn + 77 + l%gjn,

we can assume w.l.o.g. that ¢;,, €j, ~ EV(0, 1).
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Binary logit model

Choice model

PAil{i.i}) = Pr(Un > U)
- Pr(;(gjn - 5in) S Vin +%_ an - ﬁ)a
= PF(SJ',, — Ein S ,uvm - ,uvjn)

Property of EV

€n = Ejn — €in ~ Logistic(0, 1).
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The Logistic distribution: Logistic(7, 1)

Probability density function (pdf)

'u/e_:u‘(t_'r])
(1 + e—nlt=m)2°

f(t) =

Cumulative distribution function (CDF)

1
1+ e—#(C—n) )

P(c>¢) = F(c) = /_ f(t)dt =

with > 0.
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Binary logit model

Choice model
P,,(I|{I,_j}) - Pr(gn < M\/In - N\/Jn) = Fg(M\/,n — /LVJ,,)
The binary logit model

1 etVi

Pa(il{i,J}) = =

1+ e—,LL(V,',,—Vj,,) et Vin + etVin®
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The binary logit model

Key element of the specification
pVin.

Comments
» 1 does not play any role in the model.

» The units of V;, must be fixed. The model must be normalized.

» Before doing it, we extend the model to more than two alternatives.
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Outline

Logit with multiple alternatives

35/99



Multiple alternatives

Choice set: C, = {1,...,J,}

Uln = Vln_'_glm

UJnn - VJnn+5J,,n-
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Choice set

Universal choice set: C

» All potential alternatives for the
population.

» Alternatives relevant to the
analyst.

Mode choice

>

vVVvVvvYyVvYyVvyy

driving alone,
sharing a ride,
taxi,

motorcycle,
bicycle,

walking,

transit bus,

rail rapid transit.
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Choice set

Individual's choice set: C, Mode choice
» No driver license. > driving-alone,
» No auto available. » sharing a ride,
» Awareness of transit services. > taxi,
» Transit services unreachable. » motorcycle,
» Walking not an option for long > bicycle,
distance. -~ watking,
> transit-bus,
» rail rapid transit.
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Choice set

Choice set generation is tricky
» How to model “awareness”?
» What does “long distance” exactly mean?

» What does “unreachable” exactly mean?

We assume here deterministic rules

» Car is available if n has a driver license and a car is available in the
household.

» Walking is available if trip length is shorter than 4km.
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Availability conditions

5in:{1 if i € C,, or|n5,-,,:{0 if i € C,,

0 otherwise. —o00 otherwise.
Choice model

Pa(i|Cn) = Pu(i|0n,C) = Pr(Uin + Indin > Ujn + Indjs).
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Error terms

Logit: same assumptions as for binary logit
Ein are

» independent and

» identically distributed,

> extreme value EV(n, p).

Comments
i.i.d. across i and n.
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The logit model: derivation

P(i|Cy) = Pr(Ui, > max Uj,) = Pr(Vip +ein > max Vi, +¢jn).

Tjeca\{i} Tjeca\{i}
Best alternative different from i

U_i,= max U,= max (Vi, +ein).
jeea\{iy J'GCn\{i}( i+ €in)

Binary choice model

P(I|Cn) = PI’(U,'n Z U—in)-
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The logit model

Property of Extreme Value distribution

U—in = V—in +E_in

1 .
Vip=—In > e,

H ety

where

and
E_in ™~ EV(O,ILL)
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The logit model

Binary logit
Therefore...
V—in
e/»‘vfin
P(i|Cy)

etVi

PUIC) = g e

1 HVin
i 0 2 e iy €

e @ _ v,
= e"Xjecniiy =Y ieenin €,
e“vin e“vin

= wV: uV; = wVi, *
etintd ey € U e,
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The logit model

ehVi

Zjecn euvjn ’

Vin - E 5kzink7
k

where z;, is the vector of attributes of alternative i for individual n.

P(ilC,) =

where
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Normalization
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Choosing the units

Issue
» As utility is latent, the units are arbitrary.
» We need to choose the units.

» We first introduce a specification that is convenient to interpret.

Context
» Utility contains a cost/price variable (in CHF, say).
» We constrain its coefficient to be -1.
» Utility = opposite of generalized cost.
» Units: CHF.
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Example

Setting . = —1
Vi, = —cost;, + B:time;, + Bndirect;,.

Interpretation of the coefficients

» Willingness to pay for an increase of the variable.

» [, transforms minutes into CHF: value of time (opposite).

» (3, transforms the feature of direct service into CHF.
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Logit model

Moneymetric utility function

Vi, = —cost;, + Z Bk Zink-
k

Choice model

e# Vin ef:uCOStfn+Zk 1Bk Zink

PA(ilC) = -

J

Z ec et Vin Zjec e Heostin+d 2y 1BkZjnk |
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Outline

Estimation of the parameters
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Maximum likelihood estimation

Motivation
» The model involves unknown parameters: p, (.
» Their value must be inferred from a sample of observations.

» We use maximum likelihood to estimate their value.
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Example: specification table of the model

‘ Alternative | ‘ Alternative j
Bc | cost of trip (CHF) cost of trip (CHF)
p1 | car (0/1) car (0/1)
B2 | travel time (hours) travel time (hours)
B3 | headway if train (min.) headway if train (min.)
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Observed variables

1. An indicator variable defined as

_J 1 if individual n chose alternative i,
Yin =9 0 if individual n chose alternative J.

For notational convenience, we also define yj, =1 — yi,.

2. Two vectors of explanatory variables z;, and zj,, each containing K = 4
values.
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Example: raw data

Individual 1 Individual 2 Individual 3

Train cost 40.00 7.80 40.00

Car cost 5.00 8.33 3.20

Train travel time 2.50 1.75 2.67
Car travel time 1.17 2.00 2.55
Headway 60 60 30

Choice Car Train Train
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Example: formatted data

n | cost, car,, time;, headway;, | cost;, car;, time;, headway,
1 5 1 1.17 0 40 0 2.5 60
2 7.8 0 1.75 60 8.33 1 2 0
3 40 0 2.67 30 3.2 1 2.55 0

Chosen alternative: 1.
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Example: observed variables

Yil:}/izz)/i3:17}/jl:yj2:yj3:0-

Zi1=— (5
zjp= (40
Zip— (78
zp= (8.33
Zi3=— (40
zj3= (3.2

R O, OORK

1.17
25
1.75
2
2.67
2.55

0
60
60
0
30
0

T

- 4 o o

)
)
)
)
)
)
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Choice model

-1
/3car
B N ﬁtime
ﬁheadway
. e,UBTZ,',,
'Dn(’; 57 ,u) =

e.u‘BTZin _|_ euﬁTZjn ’

Likelihood

Probability that the model replicates all the observations.
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Example: likelihood

Individuals
» Each individual n has chosen alternative i.
» This choice is predicted by the model with probability P,(i; 3, 1).

Likelihood

LB, 1) = Pr(i; B, 1) Po(i: B, ) P3 (i B, 1)
where 3 € RX=* and i € R.
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Example: likelihood

Assume that

, =10"%,

=
I
o oo

we have

n_ Vi Vin  Pa(i)  Pa(i)
1 50 -40.00 05 05
2 78 833 05 05
3 400 -320 05 05

£*=05- 05 - 0.5=0.125. (1)
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Example: likelihood

Assume that

B=1 _15 [ #=01
-0.3
we have
V; Vin  Pa(i)  Pa())

-23.55 -95.50 0.999 0.001
-52.05 -39.33 0.219 0.781
-89.05 -42.45 0.009 0.991

W N =S

L£*=0.999 - 0.219 - 0.009 = 0.00197.
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Definitions

Likelihood

N

£5(8,1) = T[] Palis B 1) ol 8, 1),

n=1

where 5 € R and 1 € R.
Log likelihood

N

L(B, 1) =Y (¥inIn Pa(is B, 12) + Yjn In Pa(j; B, 1))-

n=1
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Maximum likelihood estimation

Optimization problem
B\a ﬁ - argmaXﬁERK,uER ‘C(ﬂa :U’) - E(ﬁla ﬁ27 ce 7BK7 ,LL)

Software
biogeme.epfl.ch
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Estimation of the parameters

Unknown parameters

Maﬂk?k:]-u""

Contribution to the likelihood of observation n

e HeostintD 2 1Bk Zink

Pa(ilC)

Issue: non linearity
» Non-concave formulation.
» Algorithms may converge to local maxima.
» A concave formulation is desirable.

e Heostint 3oy 1BiZink | @—HCOStjnt Dy Bk Zjnk |
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Estimation of the parameters
Rename the parameters

Be = —pand By = uf, Vk.

) eBecostintd . B Zink
Pa(ilC) =

eﬁéCOStin‘i’Zk /B//(Zink + eﬁcCOStjn‘FZk ﬁkzijk ’

Notes
» It is equivalent to the original specification, if p is normalized to 1.
» Logit with this specification has a concave log-likelihood function.

» Once the parameters are estimated, the inverse transform must be applied
to obtain the willingness to pay parameters

b B

Be :
H Bé 64 /99



Moneymetric specification

Unnormalized version: includes all 5's and p

:u\/in = /’LﬂCCOStin + Z Mﬁkzink-
k

Normalization: 5. = —1

wVi, = —pucost;, + Z Wk Zink-
k
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Moneymetric specification

Normalization: 5. = —1

wVi, = —pcost;, + Z UBkZink-
k

Advantages Drawbacks
» Convenient unit. » Not linear in the parameters.
» Easy interpretation. » More complicated to estimate.
» Explicit representation of . > Poss.ibility to be caught in local
maxima.
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Linear-in-parameters specification

Unnormalized version: includes all 5's and p

:u\/in = /’LﬂCCOStin + Z Mﬁkzink-
k

Normalization: © =1

pVin = Becostj, + Z Bk Zink-
P
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Linear-in-parameters specification

Normalization: =1

/L\/in = \/in - 6CCOStin + Z 6kzink-
k

Advantages Drawbacks
» Linear in the parameters. > Unitless.
interpret.

» With logit, concave

log-likelihood function. » No explicit representation of L.
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Normalization

Notes

» The choice of a specific normalization is arbitrary, as both lead to the exact
same choice model.

» The linear-in-parameters normalization has been widely adopted in the
literature, for historical reasons.

» The moneymetric normalization provides a better interpretation.

» Warning: if some parameters are assumed to be distributed (see the lecture
on mixtures), the choice of the distribution is conditional on the type of
normalization.
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Comparison with linear regression

Linear regression Choice model
Yn = Z Bkzak + €n Uin = Z BrZink + Ein
k k
> e~ N(,02). sin ~ EV(n, 1)

» ¢, independent from x. £in independent from x.

> y, is observable. U;, is latent, not observable.

» All parameters are identified. Location: 7 does not play any role.

vvyyVvyyvYyy

Units: normalization is needed.
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Summary

>, iiiid. EV(n, p).

» Derivation: from binary logit to multiple alternatives.

» Identification issues due to the latent nature of utility.

» Normalization: 7 does not play any role.

» Normalization: 5. = —1: moneymetric specification.

» Alternative normalization: p = 1.

» Estimation of the parameters: maximum likelihood.
Appendices

» Output of the estimation.

>
>

The binary probit model.

Gumbel's theorem.
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Appendix |: Output of the estimation

Main outputs

» the parameter estimates E
» the value of the log likelihood function at the parameter estimates £(f3).

Other output

» variance-covariance matrix of the estimates,
» standard errors,
> t-statistics,

» p-values,
| 4

goodness of fit.
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Variance-covariance: Cramer-Rao bound

Definition
U L)
“elvee) = {-e |55}
Estimator
b lazw)} R [02 (y,-,,InPn(i)+y,-nlnPn(j))]
~ 0808 T & OBiOBm 55

SCR _ -1
TR =—AL
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Variance-covariance: robust estimator

BHHH matrix

Y

E B ﬁ%(;)] ~ S VLAVLE)T = B

n=1

where R
VLy(8) = V(yinIn Pa(i) + yjn In Pa(j)).

Robust or sandwich estimator

T8 = (A B (—A)T" = TSR (TBHHH) L SR,
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Variance-covariance matrix

Notes

» When the true likelihood function is maximized, these estimators are
asymptotically equivalent.

» When other consistent estimators are used, different from the maximum
likelihood, the robust estimator must be used.
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Standard errors

Definition

ok = 1/ Za(k, k),

where ig(k, k) is the kth entry of the diagonal of the matrix fg.
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t statistics

Definition

~ Bk—Bo
tk— )
Ok

where [, is the value associated wth the null hypothesis (usually 0).

Role

Typically used to test the null hypothesis that the true value of the parameter is
zero. This hypothesis can be rejected with 95% of confidence if

|t > 1.96. (2)
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p values

Definition
> It is the probability to get a t statistic at least as large (in absolute value) as
the one reported, under the null hypothesis that 5, = 0.

» Consider an estimate 3,( of the parameter [y, and t, its t statistic. The p
value is calculated as

P = 2(1 = &(t)),
where ®(-) is the cumulative density function of the univariate standard
normal distribution.

Role
» Exact same role as the t statistics.
» The null hypothesis can be rejected at the confidence level py.

78/ 99



Goodness of fit

Preliminary remarks
» There are several measures of goodness of fit.
» None of them can be used in an absolute way.

» They can only be used to compare two models, estimated on the same data
set, with the same dependent variable.
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Goodness of fit
Log likelihood

Normalized log likelihood

Comments on p?

» It is not the square of anything. It mimics R? in linear regression.
» In general, value strictly between 0 (null model) and 1 (perfect fit).
» But the value is meaningless as such.
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Goodness of fit: accounting for the number of parameters

Akaike Information Criterion (AlIC)

~

2K — 2£(B).
Note: the lower, the better.
Normalized AIC
AIC L(B) - K
214 = 1
Y0 £(0)

Note: the higher, the better.
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Goodness of fit: accounting for sample size

Bayesian Information Criterion (BIC)

K In(N) — 2£(B).
Note: the lower, the better.
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Goodness of fit: benchmark models

Benchmark model with O parameter

‘C(O) == Z Iog(Jn)v

where N is the number of observations.
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Goodness of fit: benchmark models

Benchmark model with J — 1 parameters
We assume that J, = J, Vn:

N
'Dn ) = i = _I-
() =pi=
There are J parameters py, ..., py. They must sum up to one, removing one
degree of freedom.
J J
L{c) =Y N(InN;—InN)=> N;InN; = Nln N.
i=1 i=1

where N; is the number of observations choosing alternative /.
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Likelihood ratio test

Null hypothesis

Two models are equivalent.

Statistic

—2(£(0) — L(B))

is asymptotically distributed as x? with K degrees of freedom.

Statistic

~2(L(c) — £(B))

is asymptotically distributed as x? with K — 1 degrees of freedom.

85 /99



Appendix Il: the probit model

Assumption: similar to linear regression

€in and €j, are the sum of many r.v. capturing unobserved attributes (e.g. mood,
experience), measurement and specification errors.

Central limit theorem
The sum of many i.i.d. random variables approximately follows a normal
distribution: N(n, o).
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The normal distribution N(7, o2)

Probability density function (pdf)

t—mn 2
f(1) = ——e (5
oV 2T

Cumulative distribution function (CDF)

P(c>¢e)=F(c) = [ﬁaom
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The normal distribution

pdf N(0,1) CDF N(0,1)

88/99



The distribution

Assumptions
» cj, and €, are normally distributed, with variance a,-2 and af, respectively,
and covariance oj.
» Note: identical distribution across n.

» If an alternative specific constant is in the model, their mean can be
assumed to be any constant.

» ¢, = ¢€j, — €in is also normally distributed, with variance

2_ 2, 2 )
o =o0; +0;j —20j.
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The binary probit model

Choice model

Pa(il{i,j}) = Pr(es < Vin = Vin) = Fo(Vin — Vj).

The binary probit model

Ve — V. 1 (Vin=Vjn)/o 1
P (il{i j}) = " LN I —Zu? ) du.
(il{i,J}) ( pu ) P /Oo exp ( 2u ) u
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Appendix Ill: Gumbel theorem

Motivation
> Xi,..., X, iid.
> fx.(x) = f(x), Fx.(x) =F(x), i=1,...,n
> X! =max(Xy,...,Xp).
» Applications:
» rainfall,
floods,

earthquakes,

>
>
» air pollution,
>
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Extreme value distribution

> X = max(Xy,...,Xp).
> Fx: = F(x)". Indeed

» Warning: if n — oo

lim Fx(x) —{ L if F(x)

n—oo

Degenerate distribution (if you a die sufficiently many times, the maximum
score will always be 6).
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Extreme value distribution

We want a limiting distribution which is non degenerate.

Limiting distribution of some sequence of transformed “reduced” values.
For instance a,X] + b,.

a,, b, do not depend on x.

CDF of limiting distribution: G(x).

Let's identify desired properties.

vvyVvyVvVvyyvVyy
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Extreme value distribution

X1 oo Xy | max(Xy, ..., X))
Xn+1 Ce in max(X,,+1, e ,Xgn)
X(ifl)n+1 oo Xin maX(X(ifl)nJrla e 7Xin)
X(N—l)n+1 oo Xnn maX(X(N—l)n—i—l; s 7XNn)

Two ways of seeing max(Xi, ..., Xy,) when n — oc.
1. As a max of many X;, the CDF should look like G(anx + by).

2. The CDF of the max of each row is G(x).
3. So the CDF of the max of all rows is G(x)V.
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Extreme value distribution

Stability postulate (Fréchet, 1927):
G(X)N = G(aNx + bN)

We consider here the case ay = 1 to obtain the so-called “type | extreme value
distribution”
G(x)VN = G(x + by).

We have also

G(X)MN = G(X + bN)M = G(X + b/\/ + b/\//),
G(X)MN = G(X+bMN).
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Extreme value distribution

Therefore
G(X -+ b/\/ -+ bM) = G(X + bMN);
that is
bn + by = bun,
so that by must be of the form
by = —p'InN,

and the stability postulate becomes
G(x)V = G(x — i/ InN).
Let's take the logarithm twice...
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Extreme value distribution

G(x)" = G(x — ' In N).
In G(x) =In G(x — ' In N).
Warning: G is a CDF, so G( ) <1andInG(x) <0, Vx.

—NInG(x) = —=1InG(x — p/ InN).

InN +In(—In G(x)) = In(—In G(x — ¢/ In N)).
Define h(x) = In(—In G(x)) to obtain

In N + h(x) = h(x — i/ In N).

h is affine.
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Extreme value distribution

InN+ h(x) = h(x—p InN),
h(x) = ax+ 0,
h(0) = B,
InN+ax+ 8 = alx—p InN)+ 3,
a = ——.
o
Therefore X
h(x) = h(0) — —.
() = o) = =

G is increasing in x (CDF), so h is decreasing in x. Therefore, i/ > 0.
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Extreme value distribution

h(x) = In(— In G(x)) = h(0) — 5
—In G(x) = exp (h(O) - 5) —exp [T Zih(o)) |
G(x) = exp <—exp Xz Z:h(o)»

Let u = 1/p' and n = p'h(0) = In(—In G(0))/

G(x) = exp (—exp (—pu(x —n))).
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