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Introduction

Panel data
▶ Type of data used so far: cross-sectional.

▶ Cross-sectional: observation of individuals at the same point in time.

▶ Time series: sequence of observations.

▶ Panel data is a combination of comparable time series.
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Introduction
Panel data
Data collected over multiple time periods for the same sample of individuals.

Multidimensional

Individual Day Price of stock 1 Price of stock 2 Purchase
n t x1nt x2nt iint
1 1 12.3 15.6 1
1 2 12.1 18.6 2
1 3 11.0 25.3 2
1 4 9.2 25.1 0
2 1 12.3 15.6 2
2 2 12.1 18.6 0
2 3 11.0 25.3 0
2 4 9.2 25.1 1
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Introduction

Examples of discrete panel data

▶ People are interviewed monthly and asked if they are working or unemployed.

▶ Firms are tracked yearly to determine if they have been acquired or merged.

▶ Consumers are interviewed yearly and asked if they have acquired a new cell
phone.

▶ Individual’s health records are reviewed annually to determine onset of new
health problems.
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Static model

Utility

Uint = Vint + εint , i ∈ Cnt .

Assumption

εint i.i.d. EV(0, 1), across i , n and t.

Logit

P(int) =
eVint∑

j∈Cnt e
Vjnt

.
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Static model

Estimation: contribution of individual n to the log likelihood

P(in1, in2, . . . , inT ) = P(in1)P(in2) · · ·P(inT ) =
T∏
t=1

P(int)

lnP(in1, in2, . . . , inT ) = lnP(in1) + lnP(in2) + · · ·+ lnP(inT ) =
T∑
t=1

lnP(int)
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Static model

Comments
▶ Views observations collected through time as supplementary cross sectional

observations.

▶ Standard estimation procedure for cross sectional data may be used directly.

▶ Simple, but there are two important limitations.
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Static model: limitations

Serial correlation
▶ unobserved factors persist over time,

▶ in particular, all factors related to individual n,

▶ εin(t−1) cannot be assumed independent from εint .

Dynamics

▶ Choice in one period may depend on choices made in the past,

▶ e.g. learning effect, habits.
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Dealing with serial correlation

it−1

Ut−1

xt−1

εt−1

it

Ut

xt

εt

13 / 38



Panel effects
Relax the assumption that εint are independent across t.

Assumption about the source of the correlation

▶ individual related unobserved factors,

▶ persistent over time.

The model

εint = αin + ε′int

It is also known as
▶ agent effects,

▶ unobserved heterogeneity.
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Panel effects

▶ Assuming that ε′int are independent across t,

▶ we can apply the static model.

▶ Two versions of the model:
▶ with fixed effects: αin are unknown parameters to be estimated,
▶ with random effects: αin are distributed.
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Static model with fixed effects
Utility

Uint = Vint + αin + ε′int , i ∈ Cnt .

Assumptions

▶ ε′int i.i.d. EV(0, 1), across i , n and t.

▶ αin unknown parameters to be estimated.

▶ αin independent from ε′int .

Logit

P(int) =
eVint+αin∑

j∈Cnt e
Vjnt+αjn
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Static model with fixed effects

Estimation: contribution of individual n to the log likelihood

P(in1, in2, . . . , inT ) = P(in1)P(in2) · · ·P(inT ) =
T∏
t=1

P(int)

lnP(in1, in2, . . . , inT ) = lnP(in1) + lnP(in2) + · · ·+ lnP(inT ) =
T∑
t=1

lnP(int)
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Static model with fixed effects

Comments
▶ αin capture permanent taste heterogeneity.

▶ For each n, one αin must be normalized to 0.

▶ The α’s are estimated consistently only if T → ∞.

▶ This has an effect on the other parameters that will be inconsistently
estimated.

▶ In practice,
▶ T is usually too short,
▶ the number of α parameters is usually too high,

for the model to be consistently estimated and practical.
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Static model with random effects

▶ Denote αn the vector gathering all parameters αin.

▶ Assumption: αn is distributed with density f (αn).

▶ For instance:
αn ∼ N(0,Σ).

▶ We have a mixture of static models.

▶ Given αn, the model is static, as ε′int are assumed independent across t.
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Static model with random effects
Utility

Uint = Vint + αin + ε′int , i ∈ Cnt .

Assumptions

▶ ε′int i.i.d. EV(0, 1), across i , n and t.

▶ αn ∼ N(0,Σ), with pdf f .

▶ αn independent from ε′int .

Conditional choice probability

P(int |αn) =
eVint+αin∑

j∈Cnt e
Vjnt+αjn
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Static model with random effects

Contribution of individual n to the log likelihood, given αn

P(in1, in2, . . . , inT |αn) =
T∏
t=1

P(int |αn).

Unconditional choice probability

P(in1, in2, . . . , inT ) =

∫
α

T∏
t=1

P(int |α)f (α)dα.
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Static model with random effects
Estimation
▶ Mixture model.

▶ Usually requires simulation.

▶ Generate draws α1, . . . , αR from f (α).

▶ Approximate

P(in1, in2, . . . , inT ) =

∫
α

T∏
t=1

P(int |α)f (α)dα ≈ 1

R

R∑
r=1

T∏
t=1

P(int |αr ).

▶ The product of probabilities can generate very small numbers.

R∑
r=1

T∏
t=1

P(int |αr ) =
R∑

r=1

exp

(
T∑
t=1

lnP(int |αr )

)
.
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Static model with random effects

Comments
▶ Parameters to be estimated: β’s and Σ’s

▶ Maximum likelihood estimation leads to consistent and efficient estimators.

▶ Ignoring the correlation (i.e. assuming that αn is not present) leads to
consistent but not efficient estimators (not the true likelihood function).

▶ Accounting for serial correlation generates the true likelihood function and,
therefore, the estimates are consistent and efficient.
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Relax the i.i.d. assumption

i.i.d. assumption

✓ Same η for all alternatives i : relaxed.

✓ Same η for all observations n: relaxed.

✓ Same µ for all alternatives i : relaxed.

✓ Same µ for all observations n: relaxed.

✓ Independence across alternatives i : relaxed.

▶ Independence across observations n: relaxed in this lecture.
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Dynamics

▶ Choice in one period may depend on choices made in the past

▶ e.g. learning effects, habits.

▶ Simplifying assumption:
▶ the utility of an alternative at time t
▶ is influenced by the choice made at time t − 1 only.

▶ It leads to a dynamic Markov model.
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Dynamic Markov model
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Notation

yjnt =

{
1 if int = j
0 otherwise.

Example

int = 2 ⇔ ynt =


0
1
0
0


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Dynamic Markov model

The model

Uint = Vint + γyin(t−1) + εint , i ∈ Cnt .

yin(t−1) =

{
1 if alternative i was chosen by n at time t − 1
0 otherwise.

Estimation: same as for the static model
except that observation t = 0 is lost

29 / 38



Outline

Static model

Serial correlation

Dynamic model

Dynamic model with panel effects

30 / 38



Dynamic Markov model with serial correlation
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Dynamic Markov model

Extension: combine Markov with panel effects

Uint = Vint + αin + γyin(t−1) + ε′int , i ∈ Cnt .

Dynamic Markov model with fixed effects

▶ Similar to the static model with fixed effects.

▶ Similar limitations.

Dynamic Markov model with random effects
The initial condition problem.
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The initial condition problem

History

▶ The dynamic choice process usually has an history before the sampling
period.

▶ The only information about history is yn0.

▶ Because of persistence of unobserved factor, yn0 is correlated with these
unobserved factors.

▶ Examples: heavy smokers, car lovers, etc.

Endogeneity

▶ Cause: yn0 is correlated with αn.

▶ Problem: inconsistent parameter estimates.
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Dynamic Markov model with panel effects

Utility function

Uint = Vint + αin + γyin(t−1) + ε′int , i ∈ Cnt .

Contribution of individual n to the log likelihood, given in0 and αn

P(in1, in2, . . . , inT |in0, αn) =
T∏
t=1

P(int |in0, αn).
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Dynamic Markov model with panel effects

Wooldridge’s model
Assume a distributions of α, depending on the first choice.

f (αn|in0)

We integrate out αn

P(in1, in2, . . . , inT |in0) =
∫
α

T∏
t=1

P(int |in0, α)f (α|in0)dα.

[Wooldridge, 2005]
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Dynamic Markov model with random effects

▶ The main difference between static model with RE and dynamic model with
RE is the term

f (α|in0)
▶ It captures the distribution of the panel effects, knowing the first choice.

Modeling

αn = a + bTyn0 + cTxn + ξn, ξn ∼ N(0,Σα).

▶ a, b and c are vectors and Σα a matrix of parameters to be estimated.

▶ xn capture the entire observed history (t = 1, . . . ,T ) for agent n.

▶ This addresses the endogeneity issue.
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Summary

▶ Panel data consist in observations of the same individuals over time.

▶ Static model suffers from two limitations.

▶ Serial correlation is addressed with the agent effect.

▶ Dynamic choices are captured by the Markov model.

▶ Initial condition problem: endogeneity.
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