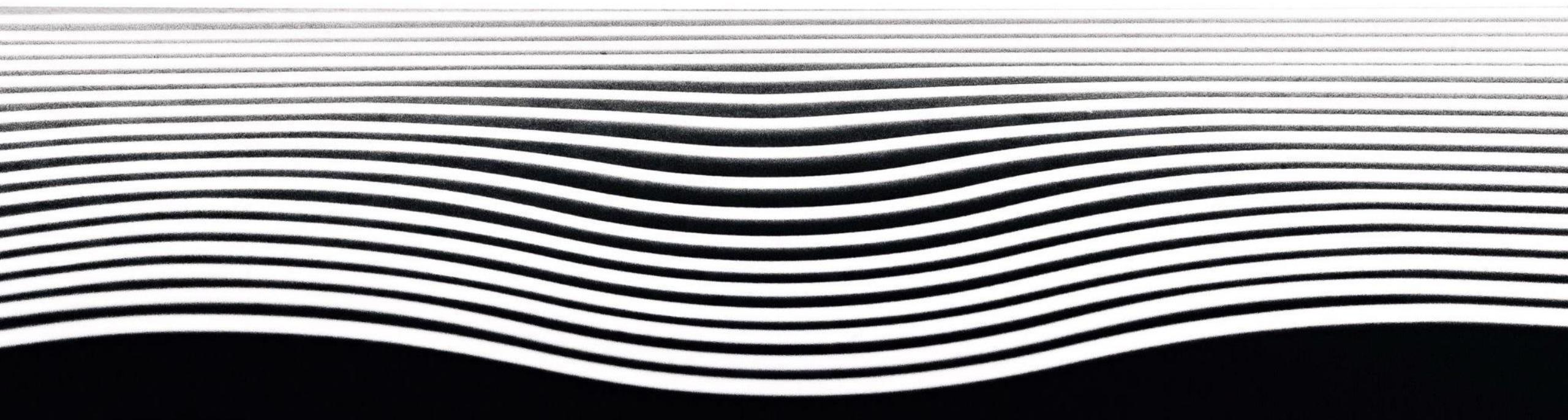


Numerical methods for conservation laws

9: Error analysis of finite-difference schemes



Recall the definition of our grid.

$$x_j = j \cdot h \quad j = 0, 1, \dots, N, \quad N \cdot h = L$$

$$t^n = n \cdot k, \quad n = 0, 1, \dots, K, \quad K \cdot k = T$$

Suppose that U^n and u are the numerical and the exact solution, respectively. What about

$$|u(x_j, t^n) - U_j^n| \xrightarrow[h, k \downarrow 0]{} 0 \quad ?$$

that is, u has no jumps

Let's assume u is defined pointwise for demonstrative purposes.

We define a sequence based on the exact solution

$$u(t^n)_j := u(x_j, t^n)$$

and consider

$$u(t^{n+1})_j = G(u(t^n))_j + k \bar{T}_j^n$$

Here, we define the truncation error

$$\bar{T}_j^n = \frac{1}{k} \left(u(t^{n+1})_j - G(u(t^n))_j \right)$$

We want the truncation error to vanish as $h, k \downarrow 0$.

For the error analysis,

1. Assume that u exists and is suff. smooth
2. Obtain T_j^n via Taylor expansion of u .

Example : Transport Equation

$$u_t + cu_x = 0, \quad c > 0, \quad u(x, 0) = u_0(x)$$

Consider the FTBS scheme

$$U_j^{n+1} = G(U^n)_j = U_j^n - \frac{k}{h}c (U_j^n - U_{j-1}^n)$$

We perform Taylor expansions around (x_j, t^n)

$$u(x_j, t^{n+1}) = u(x_j, t^n) + k \partial_t u(x_j, t^n) + \frac{k^2}{2} \partial_{tt}^2 u(x_j, t^n) + \mathcal{O}(k^3)$$

$$u(x_{j-1}, t^n) = u(x_j, t^n) - h \partial_x u(x_j, t^n) + \frac{h^2}{2} \partial_{xx}^2 u(x_j, t^n) + \mathcal{O}(h^3)$$

Example : Transport Equation

Consequently,

Example : Transport Equation

$$\begin{aligned} \text{Hence } T_j^h &= \frac{k}{2} \partial_{tt}^2 u - ch \partial_{xx}^2 u + \text{H.o.T.} \\ &=: O(h + k) \end{aligned}$$

The truncation error for FTBS goes to zero as h and k vanish. This error analysis requires additional smoothness of u in time and space.

Similarly, $O(h + k)$ for FTFS and $O(h^2 + k)$ for FTCS.

We have seen that this is not enough. For example, FTFS quickly blows up due to the lack of upwinding.

Recall that

$$U_j^{n+1} = G(U^n)_j \quad u(t^{n+1}, x_j) = G(u(t^n)_j) + k T_j^n$$

We define the local solution error, and express it in terms of the truncation error

$$\varepsilon_j^n := u(x_j, t^n) - U_j^n$$

Let us assume that G is linear in U . Via iteration we compute

$$\varepsilon_j^0 = u(x_j, 0) - U_j^0 = 0$$

$$\varepsilon_j^1 = G(\varepsilon^0)_j + k T_j^0$$

$$\begin{aligned} \varepsilon_j^2 &= G(\varepsilon^1)_j + k T_j^1 \\ &= G^2(\varepsilon^0)_j + k(G(T^0)_j + T_j^1) \end{aligned}$$

More generally, the following pattern emerges

$$\varepsilon_j^n = G^n(\varepsilon_j^0) + k \sum_{i=0}^{n-1} G^{n-i-1}(T^i)_j$$

Suppose that we have some norm $\|\cdot\|$ in which we want to measure the error. Then

$$\begin{aligned} \|\varepsilon^n\| &\leq \|G^n(\varepsilon^0)\| + k \sum_{i=0}^{n-1} \|G^{n-i-1}(T^i)\| \\ &\leq \|G^n\| \cdot \|\varepsilon^0\| + \underbrace{kn \cdot \max_i \|G^{n-i-1}\| \cdot \|T^i\|}_{\leq T} \end{aligned}$$

Here

$$\|G\| = \sup_{U \neq 0} \frac{\|G(U)\|}{\|U\|} \quad (\text{induced operator norm})$$

Consequently, the total error vanishes if

$$1) \quad \|\varepsilon^0\| \longrightarrow 0 \quad \text{for } h \rightarrow 0$$

The initial data are approximated

$$2) \quad \|\tau^i\| \longrightarrow 0 \quad \text{for } k, h \rightarrow 0$$

The truncation error vanishes

$$3) \quad \|G^n\| \leq C$$

The scheme is stable.

Remarks:

- We say that the scheme has order (p, q) if

$$\| T^i \| = O(h^p + k^q)$$

- A sufficient condition for stability is

$$\| G \| \leq 1 + \alpha k$$

Then:

$$\| G^n \| \leq \| G \|^n \leq (1 + \alpha k)^n$$

$$\leq e^{\alpha k n} \leq e^{\alpha T} := C$$

Example: monotone schemes are stable

$$U_j^{n+1} = G(U^n)_j \quad u(t^{n+1}, x_j) = G(u(t^n)_j) + k T_j^n$$

$$\varepsilon_j^{n+1} = G(u(t^n)_j) - G(U^n)_j + k T_j^n$$

We measure the error in the discrete L^1 -norm

$$\|\varepsilon^{n+1}\| = \sum_j h \cdot |\varepsilon_j^{n+1}|$$

$$\|\varepsilon^{n+1}\| \leq \|G(u(t^n)_j) - G(U^n)_j\| + k \cdot \|T_j^n\|$$

$$\begin{aligned}
 \|\varepsilon^{n+1}\| &\leq \|G(u(t^n)_j) - G(U^n)_j\| + k \cdot \|T_j^n\| \\
 &\leq \underbrace{\|u(t^n)_j - U_j^n\|}_{= \|\varepsilon^n\|} + k \cdot \|T_j^n\|
 \end{aligned}$$

In that sense, monotone schemes are stable.

We find easily, like before

$$\begin{aligned}
 \|\varepsilon^n\| &\leq \|\varepsilon^{n-1}\| + k \|T_j^{n-1}\| \\
 &\leq \|\varepsilon^{n-2}\| + k \|T_j^{n-2}\| + k \|T_j^{n-1}\| \\
 &\leq \dots \\
 &\leq \|\varepsilon^0\| + T \cdot \max_{0 \leq l \leq n-1} \|T_j^l\|
 \end{aligned}$$

While monotone schemes have many desirable properties, they have an important drawback: they are at most of first order.

Gudonov Barrier Theorem (1959)

A linear monotonicity-preserving scheme is at most first order.

A monotone scheme (possibly nonlinear) is at most first order.



Consequence: if we want stable higher-order schemes, then we need to study nonlinear schemes that are not monotone.

Example : Transport Equation

$$u_t + c u_x = 0, \quad c > 0, \quad u(x, 0) = u_0(x)$$

Notice that

$$u_{tt} = -c u_{xt} = -c u_{tx} = c^2 u_{xx}$$

More generally,

$$\partial_t^r u = (-c)^r \partial_x^r u$$

What order are linear monotone schemes?

$$U_j^{n+1} = G(U^n)_j = \sum_{\ell} c_{\ell} U_{j+\ell}^n$$

Recall the Taylor expansions

$$u(x_j, t^{n+1}) = u + k \partial_t u + \frac{k^2}{2} \partial_{tt}^2 u + \dots \mathcal{O}(k^3)$$

$$u(x_{j+\ell}, t^n) = u + h\ell \cdot \partial_x u + \frac{(h\ell)^2}{2} \partial_{xx}^2 u + \dots \mathcal{O}(h^3)$$

Hence

$$u(x_j, t^{n+1}) - G(u(t^n))_j =: k T_j^n$$

$$= u - ck \partial_x u + \frac{ck^2}{2} \partial_{xx}^2 u + \dots \mathcal{O}(k^3)$$

$$- \left(\sum c_\ell \right) u - \left(\sum h\ell c_\ell \right) \partial_x u - \frac{1}{2} \left(\sum (\ell h)^2 c_\ell \right) \partial_{xx}^2 u - \dots \mathcal{O}(h^3)$$

$$= (1 - \sum_\ell c_\ell) u + \left(-ck - h \sum_\ell \ell c_\ell \right) \partial_x u$$

$$+ \left(\frac{c^2 k^2}{2} - \frac{h^2}{2} \sum_\ell \ell^2 c_\ell \right) \partial_{xx}^2 u + \dots \mathcal{O}(h^3 + k^3)$$

If we want a quadratic order scheme, then we need the leading coefficients to be zero. That is,

$$\sum_{\ell} c_{\ell} = 1, \quad \sum_{\ell} \ell \cdot c_{\ell} = -c \frac{k}{h}, \quad \sum_{\ell} \ell^2 c_{\ell} = \left(\frac{ck}{h} \right)^2$$

Now suppose that the scheme is monotone / MP. Then $c_{\ell} \geq 0$.

We write $c_{\ell} = \gamma_{\ell}^2$, using that we can take square roots. Now

$$\left(\sum_{\ell} \gamma_{\ell}^2 \right) \left(\sum_{\ell} \ell^2 \gamma_{\ell}^2 \right) = \left(\sum_{\ell} \ell \gamma_{\ell}^2 \right)^2$$

$$\langle a, b \rangle \cdot \langle b, b \rangle = \langle a, b \rangle^2$$

The equation

$$\langle a, a \rangle \langle b, b \rangle = \langle a, b \rangle^2$$

is an instance of the Cauchy-Schwarz inequality with equality [sic!].

But that means the vectors a and b are colinear, that is, $b = \lambda \cdot a$.
Concretely, this means

$$\gamma_e / \lambda \cdot \gamma_e = \lambda \quad (\text{const})$$

Clearly, this can't be.

Similar calculations apply to general (nonlinear) monotone schemes.

As a coda to this discussion, we revisit the CFL condition.

Example: FTBS scheme for the transport equation

$$U_j^{n+1} = U_j^n - c \frac{k}{h} (U_j^n - U_{j-1}^n) = (1 - \lambda)U_j^n + \lambda U_{j-1}^n$$

$\overbrace{\phantom{U_j^n - U_{j-1}^n}}^{\mathbf{=: \lambda}}$

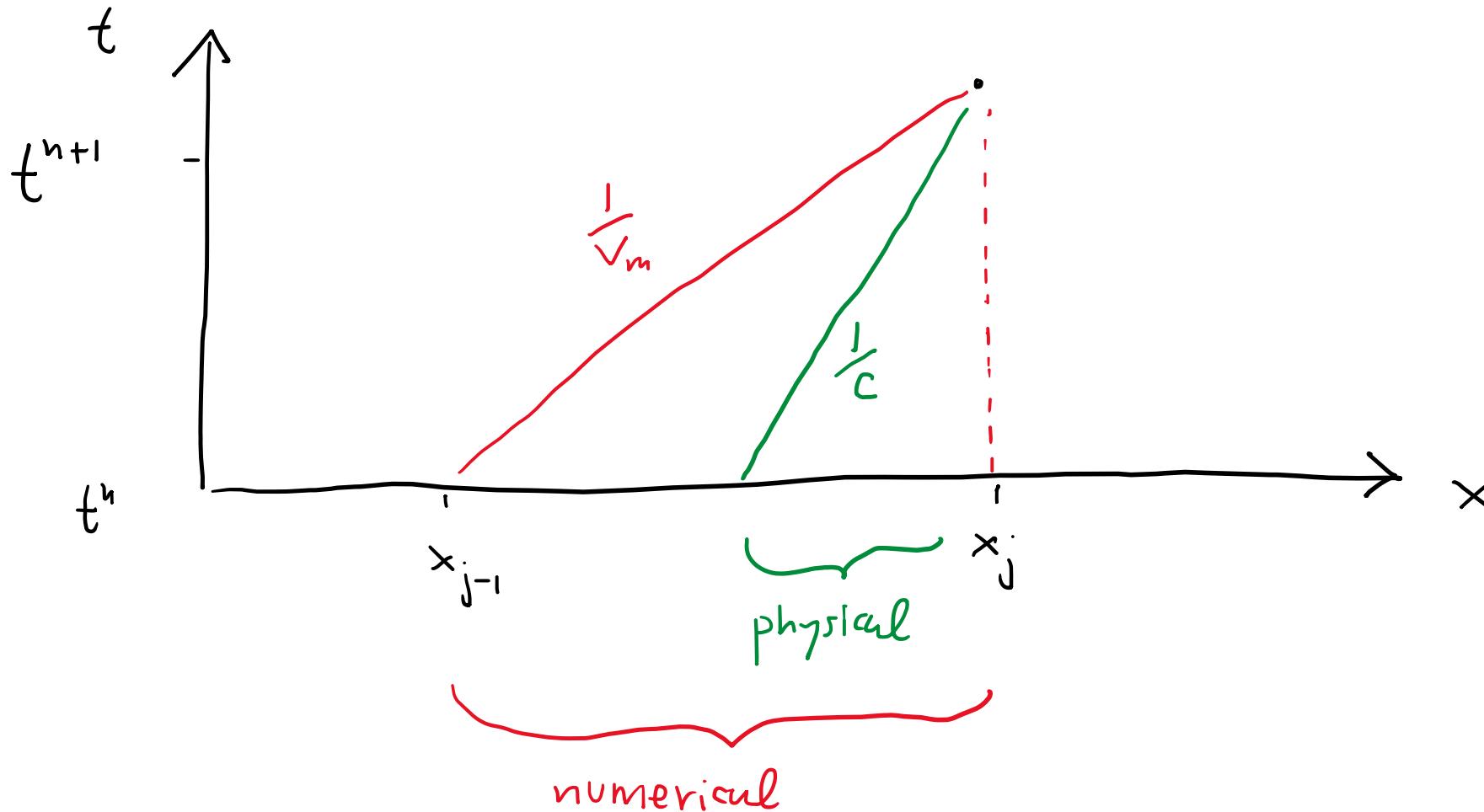
Hence

$$|U_j^{n+1}| \leq |U_j^n| \cdot |1 - \lambda| + |U_{j-1}^n| \cdot |\lambda| \leq \|U^n\|_\infty (|1 - \lambda| + |\lambda|)$$

The scheme is a contraction if $\lambda \in [0,1]$. We define the mesh velocity $v_m = h/k$

For that we need $0 \leq c \leq v_m$

Graphically, the physical domain of dependence must lie within the numerical domain of dependence.



Example: FTCS scheme for the transport equation

$$U_j^{n+1} = U_j^n - c \frac{k}{2h} (U_{j+1}^n - U_{j-1}^n)$$

Consider a modification:

$$U_j^{n+1} = \frac{U_{j+1}^n + U_{j-1}^n}{2} - c \frac{k}{2h} (U_{j+1}^n - U_{j-1}^n)$$

This is a conservative scheme with flux

$$F_{j+\frac{1}{2}}^n = \frac{c}{2} (U_{j+1}^n + U_j^n) - \frac{k}{2h} (U_{j+1}^n - U_j^n)$$

when $|c/v_m| \leq 1$.

Example: Lax-Friedrichs flux and variations

This is a conservative scheme with flux

$$F(U, V) = \frac{1}{2} \left(f(U) + f(V) \right) - \frac{\alpha}{2} (V - U) \quad \leftarrow \text{LF}$$

$$F(U, V) = \frac{1}{2} \left(f(U) + f(V) \right) - \frac{h}{2k} (V - U) \quad \leftarrow \text{LF with upper estimate}$$

$$F(U, V) = \frac{1}{2} \left(f(U) + f(V) \right) - \frac{\tilde{\alpha}}{2} (V - U) \quad \leftarrow \text{local LF / Rusanov}$$

Here, $\alpha = \max|f'|$ and $\tilde{\alpha} = \max\{|f'(U)|, |f'(V)|\}$.

Monotone when $\alpha \leq \frac{k}{h}$ and $\tilde{\alpha} \leq \frac{k}{h}$.

$$\tilde{\alpha} \leq \alpha$$