Numerical methods for conservation laws
9: Error analysis of finite-difference schemes
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The truncation error for FTBS goes to zero as h and k vanish. This error
analysis requires additional smoothness of u in time and space.

Similarly, O(h + k) for FTFS and O(h? + k) for FTCS.

We have seen that this is not enough. For example, FTFS quickly blows up
due to the lack of upwinding.



Recall that
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We define the local solution error, and express it in terms of the truncation error
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More generally, the following pattern emerges
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Suppose that we have some norm ||:|| in which we want to measure the error. Then
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Consequently, the total error vanishes if
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Example: monotone schemes are stable
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While monotone schemes have many desirable properties, they have
an important drawback: they at most of first order.

Gudonov Barrier Theorem (1959)
A linear monotonicity-preserving scheme is at most first order.
A monotone scheme (possibly nonlinear) is at most first order.
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Consequence: if we want stable higher-order schemes, then we
need to study nonlinear schemes that are not monotone.
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Similar calculations apply to general (nonlinear) monotone schemes.



As a coda to this discussion, we revisit the CFL condition.

Example: FTBS scheme for the transport equation
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The scheme is a contraction if A € [0,1]. We define the mesh velocity v,,, = h/k
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Graphically, the physical domain of dependence must lie within the
numerical domain of dependence.
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Example: FTCS scheme for the transport equation
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Consider a modification:
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This is a conservative scheme with flux
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Example: Lax-Friedrichs flux and variations
This is a conservative scheme with flux
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Here, « = max|f'| and @ = max{|f' (U)|, |f' (V)]}.
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