Numerical methods for conservation laws
7: Conservative Finite Difference Schemes




We have seen that conservative finite difference methods look better in
practice.

Let’s focus on such methods and their conceptual background.



We have had the idea that a finite difference scheme should be in “conservative” form.

We say a finite difference scheme is in “conservative” form if it can be written as
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Conceptually, we define the flux at nodes in-between the nodes for u:
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More specifically, with a telescoping sum:
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Assuming periodic boundary conditions, the system is “physically closed” and we
see that the sum of the nodal values is preserved over time steps. In particular, if
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then the integral of the initial value is preserved.



Assuming instead that the flux is constant outside of the interval of
interest, we instead compute
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Here, the system is generally not physically closed, there is a constant
influx or outflux taking place.



This looks promising! So how do we compute the fluxes?

The numerical flux Pﬁrl depends on the values of U™ in a neighborhood of X, 1
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Some important properties of numerical fluxes that we want to be satisfied:

1. We call a numerical flux F consistent if

F(u,u,..,u) = f(u)

This ensures that locally constant solutions stay constant.

2. Lipschitz property / first-order approximation property:
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Ensures that the numerical flux approximates the physical flux.

Lipschitz implies consistent.

In practice, we only use the direct neighbors of U;", that is, U/ ; and U/},



Having introduced finite difference schemes for conservation laws, we
have focused on conservative finite difference schemes.

Such schemes require that we provide a numerical flux.

Several choices of numerical fluxes are known in the literature, and now
review some of them.



Example
We evaluate the physical flux at the left or the right neighbor:

1) We use the flux Fj% = F(Uj) = f(U]-). With that:
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2) We use the flux F, 1 = F(Uj, Uj11) = £(Uj)
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Example: Lax-Friedrichs flux

Let a = max|f'(u) |. Then we set
u
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Typically, the parameter is only an upper estimate for max |f'(u) |
u
when the we already know that u stays within a certain range.
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Example: Lax-Wendroftf flux

=f(u)+f(v) k ,(v+u

" 2h 2

S ) (Fw) = Fa)

FLW (ul U)

Consistent v Lipschitz v/



Example: Roe flux

FRoe(U, U) — f(u) ‘|2‘f(v) 2 f(vz — f(u) ( - u)
Can be rewritten as:
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We have introduced several fluxes for conservative finite difference
schemes.

Do conservative schemes converge?

If so, to the correct solution?

A blueprint for the latter is the Lax-Wendroff theorem, which we now
discuss.



Before we discuss the convergence of finite difference schemes, we first discuss
how to compare

* u, defined on a continuum in (x, t)

» Uj", defined for indices j and k.

We define the function U(x, t) as a piecewise constant function with value U]1
when
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Lax-Wendroff Theorem

Suppose we have a sequence of grids indexed by [ = 0,1,2, ... with mesh
parameters k;, h; = 0.

Let U;(x, t) be obtained with consistent and Lipschitz flux and have uniformly
bounded total variation.

Suppose for every bounded set [a, b| X [0, T] we have
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Then u is a weak solution to the conservation law.



Proof (Lax-Wendroff Theorem)
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Proof (Lax-Wendroff Theorem)

Swmee d  hw wvv\paul Sum)ovf, He suoms ave Faide,

\A/Q, MPPlA] o‘»\'SCV{',J({/ i\,\‘}ﬂ\j\ru{'iow \<a-7 Pava

ZF k(L L) = —ob - ZP Lok(cﬂl’(—-olm) t CIP‘:fJ*r
kco 0

k=

Thus
n

LT a0 = L DT (B - Bty
J
LD T [ B0 - ol B

J 2



Proof (Lax-Wendroff Theorem)
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Proof (Lax-Wendroff Theorem)
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Proof (Lax-Wendroff Theorem)
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Proof (Lax-Wendroff Theorem)
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Proof (Lax-Wendroff Theorem)
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Proof (Lax-Wendroff Theorem)
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Proof (Lax-Wendroff Theorem)
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Remarks:

1. The Lax-Wendroff theorem does not guarantee convergence, it
assumes that convergence already holds.

2. Even if the limit exists, it is not necessarily a physical solution.

3. No statement on the order of convergence.

... we need more theory to establish anything.



Lastly, a “dual” point of view

We have defined the discrete solution Uj" at nodal points. In particular, we are computing point values.

For comparison with any solution u, we have defined a piecewise constant function U(x, t).
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Instead of thinking in terms of values at nodes x;, we may think of averages within “buckets” [xj_

This point of view leads to finite volume methods.
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