
Numerical methods for conservation laws
7: Conservative Finite Difference Schemes



We have seen that conservative finite difference methods look better in 
practice. 

Let’s focus on such methods and their conceptual background.



We have had the idea that a finite difference scheme should be in “conservative” form.

We say a finite difference scheme is in “conservative” form if it can be written as 

Conceptually, we define the flux at nodes in-between the nodes for 𝑢:



Schemes in conservative form satisfy the following important property



More specifically, with a telescoping sum: 

Assuming periodic boundary conditions, the system is “physically closed” and we 
see that the sum of the nodal values is preserved over time steps. In particular, if 

ℎ ෍

𝑗

𝑈𝑗
𝑛 = න

Ω

𝑢0 𝑥 𝑑𝑥

then the integral of the initial value is preserved.



Assuming instead that the flux is constant outside of the interval of 
interest, we instead compute 

Here, the system is generally not physically closed, there is a constant 
influx or outflux taking place. 



This looks promising! So how do we compute the fluxes?

The numerical flux 𝐹
𝑗+

1

2

𝑛 depends on the values of 𝑈𝑛 in a neighborhood of 𝑥
𝑗+

1

2

:



Some important properties of numerical fluxes that we want to be satisfied:

1. We call a numerical flux 𝐹 consistent if 

𝐹 𝑢, 𝑢,… , 𝑢 = 𝑓(𝑢)

This ensures that locally constant solutions stay constant.

2. Lipschitz property / first-order approximation property:

𝐹 𝑢1, 𝑢2, … 𝑢𝑝+𝑞+1 − 𝑓(𝑢) ≤ 𝑀 max
1≤𝑖≤𝑝+𝑞+1

|𝑢𝑖 − 𝑢|

Ensures that the numerical flux approximates the physical flux.

Lipschitz implies consistent.

In practice, we only use the direct neighbors of 𝑈𝑗
𝑛, that is, 𝑈𝑗−1

𝑛 and 𝑈𝑗+1
𝑛



Having introduced finite difference schemes for conservation laws, we 
have focused on conservative finite difference schemes.

Such schemes require that we provide a numerical flux.

Several choices of numerical fluxes are known in the literature, and now 
review some of them.



Example
We evaluate the physical flux at the left or the right neighbor:

1) We use the flux F
j+

1

2

= 𝐹 𝑈𝑗 = 𝑓 𝑈𝑗 . With that:

𝑈𝑗
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𝑓 𝑈𝑗 − 𝑓(𝑈𝑗−1)

2) We use the flux F
j+

1

2

= 𝐹 𝑈𝑗 , 𝑈𝑗+1 = 𝑓 𝑈𝑗

𝑈𝑗
𝑛+1 = 𝑈𝑗

𝑛 −
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ℎ
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𝑓 𝑈𝑗+1 − 𝑓(𝑈𝑗)

Consistent ✓ Lipschitz ✓



Example: Lax-Friedrichs flux

Let 𝛼 = max
𝑢

|𝑓′ 𝑢 |. Then we set

𝐹𝐿𝐹 𝑢, 𝑣 =
𝑓 𝑢 + 𝑓(𝑣)

2
−
𝛼

2
𝑣 − 𝑢

Typically, the parameter is only an upper estimate for max
𝑢

|𝑓′ 𝑢 |

when the we already know that 𝑢 stays within a certain range.

Consistent ✓ Lipschitz ✓



Example: Lax-Wendroff flux

𝐹𝐿𝑊 𝑢, 𝑣 =
𝑓 𝑢 + 𝑓(𝑣)
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2ℎ
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𝑣 + 𝑢

2
𝑓 𝑣 − 𝑓(𝑢)

Consistent ✓ Lipschitz ✓



Example: Roe flux

𝐹𝑅𝑜𝑒 𝑢, 𝑣 =
𝑓 𝑢 + 𝑓(𝑣)

2
−
1

2

𝑓 𝑣 − 𝑓(𝑢)

𝑣 − 𝑢
𝑣 − 𝑢

Can be rewritten as:

𝐹𝑅𝑜𝑒 𝑢, 𝑣 = ቊ
𝑓 𝑢 𝑖𝑓 𝑠 > 0

𝑓 𝑣 𝑖𝑓 𝑠 < 0
,    where   𝑠 =

𝑓 𝑢 −𝑓(𝑣)

𝑢−𝑣

Consistent ✓ Lipschitz ✓



We have introduced several fluxes for conservative finite difference 
schemes. 

Do conservative schemes converge?

If so, to the correct solution?

A blueprint for the latter is the Lax-Wendroff theorem, which we now 
discuss.



Before we discuss the convergence of finite difference schemes, we first discuss 
how to compare 

• 𝑢, defined on a continuum in (𝑥, 𝑡)

• 𝑈𝑗
𝑛, defined for indices 𝑗 and 𝑘.

We define the function 𝑈(𝑥, 𝑡) as a piecewise constant function with value 𝑈𝑗
𝑛

when

𝑥, 𝑡 ∈ 𝑥
𝑗−

1
2

, 𝑥
𝑗+

1
2
× 𝑡𝑛 −

𝑘

2
, 𝑡𝑛 +

𝑘

2



Lax-Wendroff Theorem

Suppose we have a sequence of grids indexed by 𝑙 = 0,1,2,… with mesh 
parameters 𝑘𝑙 , ℎ𝑙 → 0.

Let 𝑈𝑙 𝑥, 𝑡 be obtained with consistent and Lipschitz flux and have uniformly 
bounded total variation.

Suppose for every bounded set 𝑎, 𝑏 × 0, 𝑇 we have 

න
0

𝑇

න
𝑎

𝑏

𝑈𝑙 𝑥, 𝑡 − 𝑢(𝑥, 𝑡) dxdt → 0

Then 𝑢 is a weak solution to the conservation law.



Proof (Lax-Wendroff Theorem)
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Proof (Lax-Wendroff Theorem)



Remarks:

1. The Lax-Wendroff theorem does not guarantee convergence, it 
assumes that convergence already holds.

2. Even if the limit exists, it is not necessarily a physical solution.

3. No statement on the order of convergence.

… we need more theory to establish anything.



Lastly, a “dual” point of view

We have defined the discrete solution 𝑈𝑗
𝑛 at nodal points. In particular, we are computing point values.

For comparison with any solution 𝑢, we have defined a piecewise constant function 𝑈(𝑥, 𝑡).

Instead of thinking in terms of values at nodes 𝑥𝑗, we may think of averages within “buckets” 𝑥
𝑗−

1

2

, 𝑥
𝑗+

1

2

.

This point of view leads to finite volume methods.



More about that … soon!
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