Numerical methods for conservation laws
13: Systems in Higher Dimensions




We have discussed systems of conservations in 1D and their numerical
analysis.

Let us briefly address systems in higher dimensional space and their
numerical analysis.
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A similar construction is possible in 3D dimensions, with the obvious modifications.
More generally, we generalize this setup to unstructured cellular meshes, with further
additional complexity.



This finishes our outline of systems of conservations.

Now back to scalar conservation laws.



