
Numerical methods for conservation laws
12: Finite volume methods for 
systems of conservation laws



Recap

Previously, we have discussed finite volume methods for scalar 
conservation laws.

We have also discussed systems of conservation laws in 1D.

In this lecture, we apply finite volume methods to systems in 1D.

The basic setup is the same as in the scalar case, so we skip to the 
interesting part and address Gudonov’s method.



We first address linear systems. 

We revisit the flux integral in the FVM.













So much for Gudonov’s method applied to linear systems but 
what about nonlinear systems?

Two major concerns:

1. At each time step, we can try to solve the Riemann problems 
exactly and then average the solution. But that last step 
already introduces some error, hence solving the local 
problems exactly might not be necessary in the first place.

2. Even if we want to use exact solution to the local Riemann 
problems in Gudonov’s method, that might be generally 
impractical, in particular with a nonlinear flux.



There are two basic approaches to adapt Gudonov’s method:

a) Approximate the intermediate state 𝑈∗ ≈ 𝑈∗(𝑈𝐿 , 𝑈𝑅) and 
compute the flux integrals

න
𝑡𝑛

𝑡𝑛+1

𝑓( 𝑈∗(𝑈𝐿 , 𝑈𝑅 ) 𝑑𝑠

The resulting method, by construction, be conservative.

b) Alternatively, we solve the local Riemann problems only 
approximately, and then average the solution. 



We focus on the second option: solve the local Riemann problems only 
inexactly. 

In most cases, we replace the original conservation law by a simplified 
conservation law that we do solve exactly.

We linearize the flux with yet to be defined linearization 𝐴∗ 𝑈𝐿 , 𝑈𝑅
𝐴 𝑈 ≈ 𝐴∗ 𝑈𝐿 , 𝑈𝑅 ,

We have 𝑚 discontinuities and 𝑚 − 1 intermediate states. 













What conditions do we need for 𝐴∗ when solving the local linearized 
problem?



An observation about the Roe condition:

If the solution to the original Riemann problem is a shock wave with 
speed 𝑠, then the Rankine-Hugoniot condition implies

𝑓 𝑈𝐿 − 𝑓 𝑈𝑅 = 𝑠(𝑈𝐿 − 𝑈𝑅)

We want that simple special case to be replicated exactly. Thus

𝐴∗ 𝑈𝐿 − 𝑈𝑅 = 𝑠 𝑈𝐿 − 𝑈𝑅

In other words, 𝑈𝐿 − 𝑈𝑅  must be an eigenvector of the linearized flux and 
the shock speed must be an eigenvalue of 𝐴∗ .





We do we compute the linearized flux?







We reconsider the Roe condition from a different angle. The Roe condition reflects 
the presence of one dominant discontinuity with speed 𝑠. 

Recall the Rankine-Hugoniot condition

𝑓 𝑈𝐿 − 𝑓 𝑈𝑅 = 𝑠  𝑈𝐿 − 𝑈𝑅

The Roe condition leads to 

𝐴∗ 𝑈𝐿 − 𝑈𝑅 = 𝑠  𝑈𝐿 − 𝑈𝑅

In other words, the Roe condition reflects the assumption of one strong discontinuity 



We improve this by incorporating two strong shocks, the one with fast speed 𝑠+and 
the one with slowest speed 𝑠− 
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