Numerical methods for conservation laws
11: Systems of Conservation Laws




Recap

We have had our focus on scalar conservation laws up to this point.

We now address the solution theory of systems of conservation laws.
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Important vocabulary in different languages:
Eigenvalue / Eigenwert / egenverdi / eigenwaarde / %F{IE{E / valeur propre

Eigenvector / Eigenvektor / Egenvektor / eigenvector / ¥5{2{[a] & / vecteur propre



For simplicity we assume that A is diagonalizable.

mx Wm

A = S A §__—| S ¢ R \‘Vl\/\ewéllle, é\ O"“fjo'm‘p

— -
— —

—
—
—

qug, cjuwaov\kl QWHEQS OD 4 dve ‘H/\e, ‘E((J—Qv\vu&,\,es 0{: _)9\_

ClMU( 'Mae CO(UV"\V\S EL Uve 'H/Le/ Q(G‘]QV\VQL{‘DV’;.

o

/\ = A ; - S]l 5)1 5,
| |



For simplicity we assume that A is diagonalizable.
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Those are m independent linear transport equations. The initial condition of the system is
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The exact solution is a sum of m waves that propagate with respective speeds A; , and we can
solve each of them separately.
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The solution is a superposition of two
waves propagating into opposite
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We consider a Riemann problem for the system of conservations laws,
with two initial states U; and Up,.
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We switch to the “characteristic coordinate system” of the state
variable, in which the solution V is described by the coordinates v;
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As a rule of thumb, we have m — 1 intermediate states.



As a rule of thumb, we have m — 1 intermediate states between m
discontinuities. The jump along the p-th discontinuity is
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We see that
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This describes the solution of the Riemann problem:
1. Find the eigenvalues and eigenvectors of the system matrix
2. Assemble the intermediate states by the procedure above
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We have discussed linear systems with detail now. What about
nonlinear systems?
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More details on nonlinear systems soon...
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