23 Higher-order schemes, part 1

We have seen that linear schemes only give approximations up to first-order. The same is
true for monotone schemes.

Other schemes outside of the classes, such as the Lax-Wendroff scheme, exhibit oscillations.

Generally speaking, in search of higher order schemes we need to strike a delicate balance
of quantitative approximation and qualitative stability.

Question: why are higher-order schemes of practical interest in the first place?
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