04 Weak solutions and RH condition

Consider a conservation law
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We multiply that with a test function ¢, thatis, a smooth
function with compact support, and then we take integrals. We
find that
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Both equations are equivalent for a smooth solution u.
Now we integrate by parts
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This is the weak formulation of the initial value problem. If any locally
integrable function u satisfies the weak formulation for all test functions ¢,
then we call it a weak solution.

Rankine-Hugoniot condition

Suppose that u is piecewise differentiable with a discontinuity along a
curve x = s(t) and that u is a weak solution to the conservation law.
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Consider a small domain wthat covers a part of the curve. For any test
function ¢ supported within the small domain w, we observe
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