
Ordinary Differential Equations

Laura Grigori

EPFL and PSI
slides based on lecture notes/slides from L. Dede/S. Deparis

November 27/December 4/11/18, 2024

Plan

Introduction and the Cauchy problem

Numerical differentiation

Numerical approximation of ODEs

Stability of the numerical methods: zero- and absolute stability

Runge-Kutta methods

Multistep methods

Systems of differential equations
Stability and examples

High order ODEs

2 of 100

Plan

Introduction and the Cauchy problem

Numerical differentiation

Numerical approximation of ODEs

Stability of the numerical methods: zero- and absolute stability

Runge-Kutta methods

Multistep methods

Systems of differential equations

High order ODEs

3 of 100

Numerical approximation of ODEs

Problem: Approximate numerically differential equations in the form:

F

(
y(t),

dy(t)

dt
,
d2y(t)

dt2
, . . . ,

dpy(t)

dtp

)
= 0,

with

■ t an independent variable, often associated with the time variable,

■ y(t) the solution of the differential problem,

■ p the order of the differential equation.

Focus on first-order problems for which p = 1, i.e.:

F

(
y(t),

dy(t)

dt

)
= 0.

ODEs of order p > 1 can be recast into systems of ODEs of order p = 1.

4 of 100

Numerical approximation of ODEs

Problem: Approximate numerically differential equations in the form:

F

(
y(t),

dy(t)

dt
,
d2y(t)

dt2
, . . . ,

dpy(t)

dtp

)
= 0,

with

■ t an independent variable, often associated with the time variable,

■ y(t) the solution of the differential problem,

■ p the order of the differential equation.

Focus on first-order problems for which p = 1, i.e.:

F

(
y(t),

dy(t)

dt

)
= 0.

ODEs of order p > 1 can be recast into systems of ODEs of order p = 1.

4 of 100

Numerical approximation of ODEs

Problem: Approximate numerically differential equations in the form:

F

(
y(t),

dy(t)

dt
,
d2y(t)

dt2
, . . . ,

dpy(t)

dtp

)
= 0,

with

■ t an independent variable, often associated with the time variable,

■ y(t) the solution of the differential problem,

■ p the order of the differential equation.

Focus on first-order problems for which p = 1, i.e.:

F

(
y(t),

dy(t)

dt

)
= 0.

ODEs of order p > 1 can be recast into systems of ODEs of order p = 1.

4 of 100

Example and motivations

Consider two populations, y1 and y2, where y1 are the prey and y2 are the
predators. The evolution of the two populations is described by the
simultaneous differential equations{

y ′
1(t) = C1y1(t) [1− b1y1(t)− d2y2(t)] ,

y ′
2(t) = −C2y2(t) [1− b2y2(t)− d1y1(t)] ,

(1)

where C1 and C2 represent the growth rates of the two populations. The
coefficients d1 and d2 govern the type of interaction between the two
populations, while b1 and b2 are related to the available quantity of
nutrients. The above equation are called the Lotka-Volterra equations.

0 20 40 60 80 100 120
15

20

25

30

35

40

lapins
renard

5 of 100

The Cauchy problem

Definition (8.1)
Consider a continuous function f : R+ × R → R. For given y0 ∈ R, we
search y : t ∈ I ⊂ R+ → y(t) ∈ R that satisfies the following problem,
called the Cauchy problem:{

y ′(t) = f (t, y(t)) ∀t ∈ I
y(t0) = y0

(2)

where y ′(t) =
dy(t)

dt
.

6 of 100

Model problem

The model problem is a Cauchy problem:{
dy
dt (t) = f (t, y(t)) ∀t ∈ I
y(t0) = y0

(3)

where f (t, y) = λy for some λ ∈ R and λ < 0.
Such a problem admits the solution:

y(t) = y0e
λ(t−t0), for all t ∈ [t0, tf]

Often I = (t0,+∞)

7 of 100

Examples

■ A Cauchy problem can be linear, such as:{
y ′(t) = 3y(t)− 3t if t > 0
y(0) = 1

(4)

with f (t, v) = 3v − 3t. The solution is y(t) = (1− 1/3)e3t + t + 1/3.

■ We have also nonlinear problems, such as{
y ′(t) = 3

√
y(t) if t > 0

y(0) = 0
(5)

with f (t, v) = 3
√
v . This problem has got three following solutions :

y(t) = 0, y(t) =
√

8t3/27, y(t) = −
√
8t3/27.

■ For the following problem:{
y ′(t) = 1 + y2(t) if t > 0
y(0) = 0

(6)

a solution is a function y(t) = tan(t) where 0 < t < π
2 , i.e. a local

solution.

8 of 100

Well-posedness of the Cauchy problem

Theorem (Cauchy-Lipschitz, proposition 8.1 in the book)
If a function f (t, y) is

1. continuous with respect to both its arguments;

2. Lipschitz-continuous with respect to its second argument, that is, there
exists a positive constant L (named Lipschitz constant) such that

|f (t, y1)− f (t, y2)| ≤ L|y1 − y2| ∀y1, y2 ∈ R, ∀t ∈ I , (7)

Then the solution y = y(t) of the Cauchy problem (2) exists, is unique and
belongs to C 1(I).

9 of 100

Example
Consider a problem (4) and we check it exists a unique global solution.
In this case f (t, v) = 3v − 3t and we have:

|f (t, y1)− f (t, y2)| = |3y1 − 3t − (3y2 − 3t)| = |3y1 − 3y2| ≤ 3|y1 − y2|

so

|f (t, y1)− f (t, y2)| ≤ L|y1 − y2| ∀y1, y2 ∈ R, ∀t > 0, where L = 3.

So f satisfies the assumptions of Theorem 1 and we can say that the
problem (4) has got a unique global solution.

10 of 100

Well-posedness of the Cauchy problem

Remark: If the function f (t, y) : I × R → R is C 1-continuous in the second
argument y , then it is also Lipschitz continuous in the second argument.
Indeed, we have:

|f (t, y1)− f (t, y2)| ≤ (max
t∈I ,y∈R

∣∣∣∣∂f∂y (t, y)
∣∣∣∣) · |y1 − y2|,

for which L = maxt∈I ,y∈R

∣∣∣ ∂f∂y (t, y)∣∣∣.

11 of 100

Plan

Introduction and the Cauchy problem

Numerical differentiation

Numerical approximation of ODEs

Stability of the numerical methods: zero- and absolute stability

Runge-Kutta methods

Multistep methods

Systems of differential equations

High order ODEs

12 of 100

Numerical differentiation

Let y : [a, b] → R be C 1 and tn ∈ [a, b]. The derivative y ′(tn) is given by

y ′(tn) = lim
h→0+

y(tn + h)− y(tn)

h
,

= lim
h→0+

y(tn)− y(tn − h)

h
,

= lim
h→0

y(tn + h)− y(tn − h)

2h
.

13 of 100

Let t0, t1, . . . , tNh , Nh + 1 be equidistributed nodes at [t0, tNh]. Let
h = (tNh − t0)/Nh be the distance between two consecutive nodes.
Let (Dy)n be an approximation of y ′(tn). We say

■ Forward finite difference if

(Dy)Pn =
y(tn+1)− y(tn)

h
, n = 0, . . . ,Nh − 1 (8)

■ Backward finite difference if

(Dy)Rn =
y(tn)− y(tn−1)

h
, n = 1, . . . ,Nh (9)

■ Centered finite difference if

(Dy)Cn =
y(tn+1)− y(tn−1)

2h
, n = 1, . . . ,Nh − 1 (10)

14 of 100

15 of 100

The error in the finite difference

Definition
The difference τn(h) = |y ′(tn)− (Dy)Pn | is called truncation error in the
point tn. We say that τn is of order p > 0 if

τn(h) ≤ Chp,

for a positive constant C .

Thanks to the found estimation, the truncation error of the forward and the
backward finite difference is of order 1; the truncation error of centered finite
difference is of order 2.

16 of 100

Plan

Introduction and the Cauchy problem

Numerical differentiation

Numerical approximation of ODEs

Stability of the numerical methods: zero- and absolute stability

Runge-Kutta methods

Multistep methods

Systems of differential equations

High order ODEs

17 of 100

The finite difference method

for approximating the Cauchy problem (Chapt. 8.2 in the book)

Let Ī = [t0, tf] be partitioned into Nh subintervals of equal size h,

t0 < t1 < . . . < tn < tn+1 < . . . < tf

where h = tn+1 − tn = tf −t0
Nh

is the time step. We denote by

un an approximation of y(tn).

In the Cauchy problem (2), for t = tn, we have

y ′(tn) = f (tn, y(tn)).

We want to approximate the derivative y ′(tn) in the point tn. We can use a
finite difference differentiation.

18 of 100

Forward Euler approximates y ′(tn) with forward finite differences as
un+1−un

h = f (tn, un){
un+1 = un + hf (tn, un) for n = 0, 1, . . . ,Nh − 1

u0 = y0
(11)

Backward Euler approximates y ′(tn+1) with backward finite differences as
un+1−un

h = f (tn+1, un+1){
un+1 = un + hf (tn+1, un+1) for n = 0, 1, . . . ,Nh − 1

u0 = y0
(12)

19 of 100

Remark

■ The forward Euler is explicit because un+1 depends on un explicitly:

(forwardEuler) un+1 = un + hf (tn, un).

■ The backward Euler is implicit because un+1 is implicitly defined in terms
of un:

(backwardEuler) un+1 = un + hf (tn+1, un+1).

20 of 100

Backward Euler with Newton method

In general, for the backward Euler, we have to solve a nonlinear equation at each time step.
Fixed point iterations: Note that (backward Euler) is equivalent to a fixed point problem with

un+1 = ϕ(un+1) = un + hf (tn+1, un+1) (13)

We can solve this problem thanks to the following iterations

uk+1
n+1 = ϕ(ukn+1), k = 0, 1, 2, . . . (14)

The Newton method: Starting from the equation:

F (un+1) ≡ un+1 − ϕ(un+1) ≡ un+1 − un − hf (tn+1, un+1) = 0, (15)

we use the following iterations:

uk+1
n+1 = ukn+1 −

F (ukn+1)

F ′(ukn+1)
= ukn+1 −

F (ukn+1)

1 − ϕ′(ukn+1)
, k = 0, 1, 2, . . . (16)

In both cases, we have limk→∞ ukn+1 = un+1.

21 of 100

Example
Consider the following differential equation{

y ′(t) = −ty2(t), t > 0

y(0) = 2.
(17)

We want to solve this equation using forward Euler and backward Euler
methods, in the interval [0, 4] with Nh = 20 subintervals (it is equivalent to
a time step h = 0.2). We approximate the exact solution y(tn) at times
tn = nh, n = 0, 1, . . . 20 (therefore tn = 0.2, 0.4, 0.6, . . .) by a numerical
solution un.
In Matlab, the forward Euler method can be used by:

>> h = 0.2; % the time step

>> u(1) = 2; % the initial value

>> t = [0:h:4]; % vector of time t(n)

>> for n=1:20; % loop ‘‘for’’

u(n+1) = u(n) + h * (-t(n) * u(n)^2);

end;

>> plot(t,u); % we draw the graph

22 of 100

We can also use the functions feuler and beuler:

■ Forward Euler

>> f = @(t,y) -t.*y.^2;

>> Nh = 20; tspan = [0 4]; y0 = 2;

>> [t_EP, y_EP] = feuler(f, tspan, y0, Nh);

Output variables t_EP and y_EP contain sequences of the times tn and
the values un respectively.

■ Backward Euler
The function beuler uses the same syntax:

>> [t_ER, y_ER] = beuler(f, tspan, y0, Nh);

23 of 100

Comparison between the exact solution and those obtained by forward and
backward Euler methods.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
y ’ (t) = − t y

2

t

y
(t

)

sol−ex
Euler prog.
Euler retr

■ Euler prog.: Forward Euler

■ Euler retr.: Backward Euler

24 of 100

Crank-Nicolson method

Derived from the integral of the ODE using the trapezoidal rule, that is∫ tn+1

tn

dy

dt
=

∫ tn+1

tn

f (t, y(t)) =⇒ yn+1 = yn +

∫ tn+1

tn

f (t, y(t))

Crank-Nicolson method un+1 = un +
h

2
[f (tn, un) + f (tn+1, un+1)] , for n = 0, 1, . . . ,Nh − 1,

u0 = y0
(18)

Crank–Nicolson method is an implicit method.

25 of 100

Crank-Nicolson method

Derived from the integral of the ODE using the trapezoidal rule, that is∫ tn+1

tn

dy

dt
=

∫ tn+1

tn

f (t, y(t)) =⇒ yn+1 = yn +

∫ tn+1

tn

f (t, y(t))

Crank-Nicolson method un+1 = un +
h

2
[f (tn, un) + f (tn+1, un+1)] , for n = 0, 1, . . . ,Nh − 1,

u0 = y0
(18)

Crank–Nicolson method is an implicit method.

25 of 100

Crank-Nicolson method

Since Crank-Nicolson is implicit, it requires solving the nonlinear equation
for each n = 0, 1, . . . ,Nh − 1:

find un+1 : F
CN
n (un+1) = 0 for all n = 0, 1, . . . ,Nh − 1.

with u0 = y0, where

FCN
n (y) := y − un −

h

2
[f (tn, un) + f (tn+1, y)] .

If Newton method is used, then one needs the first derivative of FCN
n (y),

which reads

(FCN
n)′(y) = 1− h

2

∂f

∂y
(tn+1, y).

26 of 100

Heun method

Heun method is an explicit method which consists of two stages: compute
u∗n+1 as in forward Euler and then compute un+1 as in Crank-Nicolson but
replacing un+1 by u∗n+1


u∗n+1 = un + h f (tn, un),

un+1 = un +
h
2

[
f (tn, un) + f (tn+1, u

∗
n+1)

]
, for n = 0, 1, . . . ,Nh − 1

u0 = y0
(19)

27 of 100

Error analysis of the methods

Definition
The error associated with the numerical approximation of the Cauchy
problem at tn is en := |yn − un| for some n = 0, 1, . . . ,Nh. If one has:

en ≤ Chp,

where C > 0 is independent of h, then the method has convergence order
p > 0 (order of accuracy of the method).

■ If the solution of the Cauchy problem is y ∈ C 2(I), then the forward and
backward Euler methods converge with order p = 1 in h.

■ If the solution of the Cauchy problem is y ∈ C 3(I), then the
Crank–Nicolson and Heun methods converge with order p = 2 in h.

28 of 100

Error analysis of the methods

Definition
The error associated with the numerical approximation of the Cauchy
problem at tn is en := |yn − un| for some n = 0, 1, . . . ,Nh. If one has:

en ≤ Chp,

where C > 0 is independent of h, then the method has convergence order
p > 0 (order of accuracy of the method).

■ If the solution of the Cauchy problem is y ∈ C 2(I), then the forward and
backward Euler methods converge with order p = 1 in h.

■ If the solution of the Cauchy problem is y ∈ C 3(I), then the
Crank–Nicolson and Heun methods converge with order p = 2 in h.

28 of 100

Error analysis of the methods

The error ēn = yn − un = (yn − u∗n) + (u∗n − un) depends on two
contributions: Consider Forward Euler, computed from yn−1 and un−1,

u∗
n = yn−1 + hf (tn−1, yn−1)

un = un−1 + hf (tn−1, un−1)

■ τn(h) = (yn − u∗n)/h is called the local truncation error. It converges to 0
because the error of numerical differentiation converges to 0.

■ un − u∗n represents propagation of the error from the previous step. We
can prove it converges to 0 using that f is Lipschitz continuous.

29 of 100

Plan

Introduction and the Cauchy problem

Numerical differentiation

Numerical approximation of ODEs

Stability of the numerical methods: zero- and absolute stability

Runge-Kutta methods

Multistep methods

Systems of differential equations

High order ODEs

30 of 100

Stability conditions

The choice of time step h is not arbitrary. For forward Euler, we will see
later that if h is not small enough then stability problems may arise.

For example, if we consider the problem{
y ′(t) = −2y(t) for t ∈ R+

y(0) = 1,
(20)

then the solution is
y(t) = e−2t ,

We can observe that behavior with respect to h of forward and backward
Euler methods are very different.

31 of 100

Stability conditions (forward Euler)

0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

3

4

y(t)

EP, h=1.1

EP, h = 0.9

EP stands for Forward Euler

32 of 100

Stability conditions (backward Euler)

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y(t)

ER, h = 1.1

ER, h = 0.9

ER stands for Backward Euler

33 of 100

Stability of the numerical methods: zero-stability

(Chapt. 8.2.6 in the book)

Zero-stability: Property of a method to control the propagation of numerical
perturbations for bounded intervals I s.t. |I | < +∞ which are relatively
small.

Example with Forward Euler:{
un+1 = un + hf (tn, un) for n = 0, 1, . . . ,Nh − 1

u0 = y0
(21)

Perturbed system{
zn+1 = zn + h(f (tn, zn) + ρn) for n = 0, 1, . . . ,Nh − 1

z0 = y0 + ρ
(22)

34 of 100

Zero-stability

Definition (8.3.)
A numerical method for the approximation of ODEs is zero-stable if

∃h0 > 0,C > 0, ε0 > 0 s.t., ∀h ∈ (0, h0] and ∀ε ∈ (0, ε0],

if |ρn| ≤ ε ∀n = 0, . . . ,Nh, then |zn − un| ≤ Cε ∀n = 0, . . . ,Nh, where

■ ρn is size of the perturbation introduced at the step tn,

■ zn is solution that would be obtained by applying the numerical method
to a perturbed ODE,

■ C is constant independent of h but dependent on |I |,
■ ε is the maximum size of the perturbation.

Based on Lax–Richtmeyer equivalence Theorem 1.1, a consistent method for
the approximation of ODEs is convergent if and only if is zero–stable.
All previous methods are consistent, convergent and zero-stable.

35 of 100

Zero-stability

Definition (8.3.)
A numerical method for the approximation of ODEs is zero-stable if

∃h0 > 0,C > 0, ε0 > 0 s.t., ∀h ∈ (0, h0] and ∀ε ∈ (0, ε0],

if |ρn| ≤ ε ∀n = 0, . . . ,Nh, then |zn − un| ≤ Cε ∀n = 0, . . . ,Nh, where

■ ρn is size of the perturbation introduced at the step tn,

■ zn is solution that would be obtained by applying the numerical method
to a perturbed ODE,

■ C is constant independent of h but dependent on |I |,
■ ε is the maximum size of the perturbation.

Based on Lax–Richtmeyer equivalence Theorem 1.1, a consistent method for
the approximation of ODEs is convergent if and only if is zero–stable.
All previous methods are consistent, convergent and zero-stable.

35 of 100

Zero-stability

Definition (8.3.)
A numerical method for the approximation of ODEs is zero-stable if

∃h0 > 0,C > 0, ε0 > 0 s.t., ∀h ∈ (0, h0] and ∀ε ∈ (0, ε0],

if |ρn| ≤ ε ∀n = 0, . . . ,Nh, then |zn − un| ≤ Cε ∀n = 0, . . . ,Nh, where

■ ρn is size of the perturbation introduced at the step tn,

■ zn is solution that would be obtained by applying the numerical method
to a perturbed ODE,

■ C is constant independent of h but dependent on |I |,
■ ε is the maximum size of the perturbation.

Based on Lax–Richtmeyer equivalence Theorem 1.1, a consistent method for
the approximation of ODEs is convergent if and only if is zero–stable.
All previous methods are consistent, convergent and zero-stable.

35 of 100

The absolute stability (on unbounded intervals)

For given λ ∈ R, λ < 0, we consider the model problem:{
y ′(t) = λy(t) for t ∈ R+

y(t0) = y0
(23)

The solution is

y(t) = y0e
λ(t−t0). In particular, lim

t→∞
y(t) = 0.

Let t0 < t1 < . . . < tn < tn+1 < . . . such that tn = nh and where the time
step h > 0 is fixed.

We say that a numerical scheme associated to the model problem is
absolutely stable if limn→∞ un = 0.

■ unconditionally if limn→∞ un = 0 for all h > 0,

■ conditional if
limn→∞ un = 0 for all h > 0 such that h < hmax, for some hmax > 0.

36 of 100

The absolute stability (on unbounded intervals)

For given λ ∈ R, λ < 0, we consider the model problem:{
y ′(t) = λy(t) for t ∈ R+

y(t0) = y0
(23)

The solution is

y(t) = y0e
λ(t−t0). In particular, lim

t→∞
y(t) = 0.

Let t0 < t1 < . . . < tn < tn+1 < . . . such that tn = nh and where the time
step h > 0 is fixed.

We say that a numerical scheme associated to the model problem is
absolutely stable if limn→∞ un = 0.

■ unconditionally if limn→∞ un = 0 for all h > 0,

■ conditional if
limn→∞ un = 0 for all h > 0 such that h < hmax, for some hmax > 0.

36 of 100

The absolute stability (on unbounded intervals)

For given λ ∈ R, λ < 0, we consider the model problem:{
y ′(t) = λy(t) for t ∈ R+

y(t0) = y0
(23)

The solution is

y(t) = y0e
λ(t−t0). In particular, lim

t→∞
y(t) = 0.

Let t0 < t1 < . . . < tn < tn+1 < . . . such that tn = nh and where the time
step h > 0 is fixed.

We say that a numerical scheme associated to the model problem is
absolutely stable if limn→∞ un = 0.

■ unconditionally if limn→∞ un = 0 for all h > 0,

■ conditional if
limn→∞ un = 0 for all h > 0 such that h < hmax, for some hmax > 0.

36 of 100

Stability function

Consider our model problem:{
y ′(t) = λy(t) for t ∈ R+, λ ∈ R, λ < 0
y(t0) = y0

(24)

Definition (8.5)
The stability function associated with a numerical method is the complex
function R(z) : C → C such that, when applied to the model problem we
have:

un = R(hλ)un−1 = [R(hλ)]n y0 for n = 0, 1, . . .

Proposition
A method is absolutely stable if and only if |R(hλ)| < 1.

37 of 100

Stability function

Consider our model problem:{
y ′(t) = λy(t) for t ∈ R+, λ ∈ R, λ < 0
y(t0) = y0

(24)

Definition (8.5)
The stability function associated with a numerical method is the complex
function R(z) : C → C such that, when applied to the model problem we
have:

un = R(hλ)un−1 = [R(hλ)]n y0 for n = 0, 1, . . .

Proposition
A method is absolutely stable if and only if |R(hλ)| < 1.

37 of 100

Forward Euler for the model problem

• For the forward Euler:

un+1 = (1 + λh)un, where un = (1 + λh)ny0, ∀n ≥ 0. (25)

Stability function:
RFE (z) = 1 + z

If 1 + λh < −1, then |un| → ∞ when n → ∞, therefore forward Euler is
unstable.
To ensure stability, we need to limit the time step h, by imposing the
stability condition :

|1 + λh| < 1 hence 0 < h < 2/|λ|.

38 of 100

Backward Euler

• For the backward Euler:

un+1 =

(
1

1− λh

)
un and therefore un =

(
1

1− λh

)n

y0, ∀n ≥ 0.

Stability function:

RBE (z) =
1

1− z

Because limn→∞ un = 0, it is unconditionally stable (it is stable for any
h > 0).

39 of 100

Crank-Nicolson

• For the Crank-Nicolson:

un+1 = un +
h

2
(λun + λun+1)

un+1 =

(
1 + (hλ)/2

1− (hλ)/2

)
un and therefore un =

(
1 + (hλ)/2

1− (hλ)/2

)n

y0, ∀n ≥ 0.

Stability function:

RCN(z) =
1 + z/2

1− z/2

Because h > 0, λ < 0 then |RCN(hλ)| and limn→∞ un = 0, it is
unconditionally stable (it is stable for any h > 0).

40 of 100

Heun method

• For the Heun method:

un+1 = un +
h

2
·
(
f (tn, un) + f (tn+1, u

∗
n+1)

)
= un +

h

2
·
(
λun + λu∗n+1)

)
= un +

h

2
(λun + λ(un + hλun))

un+1 =

(
1 + hλ+

(hλ)2

2

)
un

Stability function:

RH(z) = 1 + z +
z2

2

Setting |RH(hλ)| < 1 we obtain Heun is conditionally absolutely stable if

0 < h < hmax with hmax =
2

|λ|

41 of 100

Region of absolute stability

Definition
The region of absolute stability of a numerical method applied to the model
problem is the set in the complex plane

A := {z ∈ C : |R(z)| < 1},

where R(z) : C → C is the stability polynomial.
42 of 100

Region of absolute stability

Definition
A numerical method is A-stable if it is unconditionally absolutely stable for
the model problem for all λ ∈ C such that Re(λ) < 0.

■ Backward Euler and Crank-Nicolson methods are A-stable.

■ Forward Euler and Heun methods are not A-stable.

43 of 100

Example
Let’s solve the problem (20) for λ = −2 and y0 = 1 at interval [0, 10] using
forward and backward Euler methods with h = 0.9 and h = 1.1. Here are
the Matlab/Octave commands for the case h = 0.9. Note that, even if
f (t, y) does not depend on t, it must be defined in Matlab/Octave as a
function of (t, y).

>> f = @(t,x) -2*x; h=0.9; tspan=[0 10]; Nh = 10/h; y0=1;

>> [t_ep, y_ep] = feuler(f, tspan, y0, Nh);

>> [t_er, y_er] = beuler(f, tspan, y0, Nh);

>> t = linspace(0, 10, 11); sol_ex = @(t) exp(-2*t);

>> plot(t, sol_ex(t), ’b’, t_ep, y_ep, ’ro-’, t_er, y_er’, ’go-’)

The following figure shows obtained solutions for h = 0.9 (on the left) and
h = 1.1 (on the right) and the exact solution.

44 of 100

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
y ’ (t) = −2 y(t)

t

y
(t

)
sol−ex
Euler prog.
Euler retr

0 2 4 6 8 10
−6

−4

−2

0

2

4

6
y ’ (t) = −2 y(t)

t

y
(t

)

sol−ex
Euler prog.
Euler retr

Example
Comparison of solutions that we obtain by the forward and backward Euler
methods for h = 0.9 (on the left, stable) and h = 1.1 (on the right,
unstable) (stability condition for forward Euler: |λ| = 2 ⇒ h < 2/|λ| = 1).

45 of 100

Plan

Introduction and the Cauchy problem

Numerical differentiation

Numerical approximation of ODEs

Stability of the numerical methods: zero- and absolute stability

Runge-Kutta methods

Multistep methods

Systems of differential equations

High order ODEs

46 of 100

Runge-Kutta methods

■ One-step methods for the numerical approximation of ODEs

■ The approximate solution un+1 is determined by evaluating f (t, y) at s
stages in the interval [tn, tn+1].

■ The general Runge-Kutta method for approximating the Cauchy problem
is: {

un+1 = un + h
∑s

i=1 biKi , n = 0, 1, . . . ,Nh − 1,

u0 = y0,

where

Ki := f

tn + cih, un + h
s∑

j=1

aijKj

 , i = 1, . . . , s, (8.9)

for some coefficients c = (c1, . . . , cs)
T ∈ Rs , b = (b1, . . . , bs)

T ∈ Rs , and
A ∈ Rs×s , with (A)ij = aij for i , j = 1, . . . , s.

47 of 100

Runge-Kutta and Butcher’s array

For a given Runge-Kutta method,{
un+1 = un + h

∑s
i=1 biKi , n = 0, 1, . . . ,Nh − 1,

u0 = y0,
(26)

where

Ki := f

tn + cih, un + h
s∑

j=1

aijKj

 , i = 1, . . . , s, (8.9)

the coefficients are stored in the so-called Butcher’s array as:

c A
bT

■ If A is stored from the bottom-left “corner,” the Runge-Kutta method is
explicit, if aij = 0 for j ≥ i for all i = 1, . . . , s;

■ otherwise, the Runge-Kutta method is implicit.

48 of 100

Runge-Kutta and Butcher’s array

For a given Runge-Kutta method,{
un+1 = un + h

∑s
i=1 biKi , n = 0, 1, . . . ,Nh − 1,

u0 = y0,
(26)

where

Ki := f

tn + cih, un + h
s∑

j=1

aijKj

 , i = 1, . . . , s, (8.9)

the coefficients are stored in the so-called Butcher’s array as:

c A
bT

■ If A is stored from the bottom-left “corner,” the Runge-Kutta method is
explicit, if aij = 0 for j ≥ i for all i = 1, . . . , s;

■ otherwise, the Runge-Kutta method is implicit.

48 of 100

Runge-Kutta methods of order 1

Explicit Runge-Kutta with s = 1 (RK1) In this case, Eq. (26) becomes:{
un+1 = un + hb1K1, n = 0, 1, . . . ,Nh − 1,

u0 = y0,

where
K1 = f (tn + c1h, un + ha11K1).

By setting c1 = 0, b1 = 1, and a11 = 0, i.e., with the following Butcher’s
array:

0 0
1

RK1 corresponds to forward Euler

49 of 100

Runge-Kutta methods of order 1

Explicit Runge-Kutta with s = 1 (RK1) In this case, Eq. (26) becomes:{
un+1 = un + hb1K1, n = 0, 1, . . . ,Nh − 1,

u0 = y0,

where
K1 = f (tn + c1h, un + ha11K1).

By setting c1 = 0, b1 = 1, and a11 = 0, i.e., with the following Butcher’s
array:

0 0
1

RK1 corresponds to forward Euler

49 of 100

Runge-Kutta methods of order 1

Implicit Runge-Kutta with s = 1 In this case, Eq. (26) becomes:{
un+1 = un + hb1K1, n = 0, 1, . . . ,Nh − 1,

u0 = y0,

where
K1 = f (tn + c1h, un + ha11K1).

With the following Butcher’s array,

1 1
1

we obtain backward Euler

50 of 100

Runge-Kutta methods of order 1

Implicit Runge-Kutta with s = 1 In this case, Eq. (26) becomes:{
un+1 = un + hb1K1, n = 0, 1, . . . ,Nh − 1,

u0 = y0,

where
K1 = f (tn + c1h, un + ha11K1).

With the following Butcher’s array,

1 1
1

we obtain backward Euler

50 of 100

Runge-Kutta methods of order 2

If we integrate the equation y ′(t) = f (t, y(t)) between tn and tn+1, we obtain:

y(tn+1) − y(tn) =

∫ tn+1

tn

f (t, y(t))dt. (27)

Remark
Numerical integration methods (Chapt. 4.2 in the book)

We want to approximate the integral of the function f (t, y(t)). If we use the midpoint formula, we
approximate the area below the curve by the area of a rectangle that has as a basis h and as a height
the value of the function at time tn + h/2 (see figure on the left). If we use the trapezoidal formula,
we approximate the area below the curve by the area of a trapezoid that has as basis both values of the
function at times tn and tn+1 and as a height h (see figure on the right).

51 of 100

Using trapezoidal formula, we find the following implicit method, that is
called Crank-Nicolson or trapezoidal method :

un+1 − un =
h

2
[f (tn, un) + f (tn+1, un+1)] , ∀n ≥ 0. (28)

This method is unconditionally stable when it is applied to the model
problem (20).

If we modify the schema (28) (changing to explicit) then we obtain the
Heun method:

un+1 − un =
h

2
[f (tn, un) + f (tn+1, un + hf (tn, un))] . (29)

Both methods (Crank-Nicolson and Heun) are of order 2 with respect to h.

52 of 100

Runge-Kutta methods of order 2

Explicit Runge-Kutta with s = 2 (RK2) In this case, Eq. (26) becomes:{
un+1 = un + hb1K1 + hb2K2, n = 0, 1, . . . ,Nh − 1,

u0 = y0,

where

K1 = f (tn + c1h, un + ha11K1 + ha12K2) , K2 = f (tn + c2h, un + ha21K1 + ha22K2) .

Then, we consider the following Butcher’s array:

0 0 0
1 1 0

1
2

1
2

for which we obtain the RK2 method, i.e., the Heun method (8.7), where:

K1 = f (tn, un), K2 = f (tn+1, un + hK1).

RK2 corresponds to Heun method

53 of 100

Runge-Kutta methods of order 2

Explicit Runge-Kutta with s = 2 (RK2) In this case, Eq. (26) becomes:{
un+1 = un + hb1K1 + hb2K2, n = 0, 1, . . . ,Nh − 1,

u0 = y0,

where

K1 = f (tn + c1h, un + ha11K1 + ha12K2) , K2 = f (tn + c2h, un + ha21K1 + ha22K2) .

Then, we consider the following Butcher’s array:

0 0 0
1 1 0

1
2

1
2

for which we obtain the RK2 method, i.e., the Heun method (8.7), where:

K1 = f (tn, un), K2 = f (tn+1, un + hK1).

RK2 corresponds to Heun method

53 of 100

Runge-Kutta methods of order 2

Runge-Kutta with s = 2 In this case, Eq. (26) becomes:{
un+1 = un + hb1K1 + hb2K2, n = 0, 1, . . . ,Nh − 1,

u0 = y0,

where

K1 = f (tn + c1h, un + ha11K1 + ha12K2) , K2 = f (tn + c2h, un + ha21K1 + ha22K2) .

Consider the following Butcher’s array:

0 0 0
1 1/2 1/2

1
2

1
2

this corresponds to Crank-Nicolson method

54 of 100

Runge-Kutta methods of order 2

Runge-Kutta with s = 2 In this case, Eq. (26) becomes:{
un+1 = un + hb1K1 + hb2K2, n = 0, 1, . . . ,Nh − 1,

u0 = y0,

where

K1 = f (tn + c1h, un + ha11K1 + ha12K2) , K2 = f (tn + c2h, un + ha21K1 + ha22K2) .

Consider the following Butcher’s array:

0 0 0
1 1/2 1/2

1
2

1
2

this corresponds to Crank-Nicolson method

54 of 100

Runge-Kutta method of order 4

Obtained by considering the integration of the Simpson method:

 un+1 = un +
h

6
(K1 + 2K2 + 2K3 + K4),

u0 = y0

where:



K1 = f (tn, un),

K2 = f (tn +
h

2
, un +

h

2
K1),

K3 = f (tn +
h

2
, un +

h

2
K2),

K4 = f (tn+1, un + hK3).

and the corresponding Butcher’s array is:

0 0 0 0 0
1
2

1
2

0 0 0
1
2

0 1
2

0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

55 of 100

In the following table we summarize the characteristics of the methods:

Method Explicit/Implicit Stability w.r.to h
Forward Euler Explicit Conditionally 1
Backward Euler Implicit Unconditionally 1
Crank–Nicolson Implicit Unconditionally 2

Heun Explicit Conditionally 2
Runge–Kutta Explicit Conditionally 4

56 of 100

Regions of absolute stability A for RK1, RK2, RK4

57 of 100

Example
Let us consider the Cauchy problem{

y ′(t) = −y(0.1− cos(t)), t > 0

y(0) = 1.
(30)

We solve this problem by the forward Euler and Heun methods on the
interval [0, 12] with a time step h = 0.4.

>> f = @(t,y) (cos(t) - 0.1)*y;

>> h = 0.4; tspan = [0 12]; y0 = 1; Nh = 12/h;

>> % forward Euler

>> [t_ep, y_ep] = feuler(f, tspan, y0, Nh);

>> % Heun

>> [t_heun, y_heun] = heun(f, tspan, y0, Nh);

58 of 100

Example
The first of the following figures shows the solutions obtained by both
methods and the exact solution y(t) = e−0.1t+sin(t). Note that the solution
obtained by the Heun method is much more precise than the forward Euler
method.
Moreover, we can see that if we reduce the time step, the solution obtained
by the forward Euler method approximates the exact solution. The second
figure shows the solutions obtained with h = 0.4, 0.2, 0.1, 0.05 using the
following commands:

>> sol_ex = @(t) exp(-0.1*t + sin(t));

>> t = [0:0.01:12];

>> plot(t, sol_ex(t), ’b--’); hold on;

>> h=0.4; Nh = 12/h;

>> for i=1:4

[t_ep, y_ep] = feuler(f, tspan, y0, Nh);

plot(t_ep, y_ep)

Nh = Nh*2;

end

59 of 100

Example
Comparison of solutions obtained by the forward Euler and Heun methods
for h = 0.4.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

t

y
(t

)

sol−ex
Euler prog.
Heun

60 of 100

Example
Solutions obtained by the forward Euler method for different time steps.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

Euler progressive
y ’ (t) = − y (0.1 t − cos (t))

t

y
(t

)

sol. ex.

h=0.05

h=0.1

h=0.2

h=0.4

61 of 100

Example
We want to estimate the order of convergence of these two methods. For
this we will solve the problem with different time steps and we will compare
the results obtained at time t = 6 with the exact solution.

>> h=0.4; Nh = 12/h; t=6; y6 = sol_ex(t);

>> for i=1:5

% foreward Euler

[t_ep, y_ep] = feuler(f, tspan, y0, Nh);

err_ep(i) = abs(y6 - y_ep(fix(Nh/2)+1));

% Heun

[t_heun, y_heun] = heun(f, tspan, y0, Nh);

err_heun(i) = abs(y6 - y_heun(fix(Nh/2)+1));

Nh = Nh*2;

end

>> h=[0.4, 0.2, 0.1, 0.05, 0.025];

>> loglog(h,err_ep,’b’,h,err_heun,’r’)

The following figure shows, in logarithmic scale, errors of both methods
depending on h. Clearly, the forward Euler method converges with order 1
and Heun method converges with order 2.

62 of 100

Example
Errors of the forward Euler and Heun methods in the calculation of y(6).
Note that a scale is logarithmic.

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

h

|
y
(6

)
−

 u
n
 (

6
)

|

euler prog.
heun

−1

−2

63 of 100

Plan

Introduction and the Cauchy problem

Numerical differentiation

Numerical approximation of ODEs

Stability of the numerical methods: zero- and absolute stability

Runge-Kutta methods

Multistep methods

Systems of differential equations

High order ODEs

64 of 100

Multistep methods for ODEs

■ The approximate solution un+1 is obtained by using un, . . . , un−p for some
p ≥ 0, with p + 1 being the number of steps,

■ A multistep method for approximating the Cauchy problem (2) is:

un+1 =

p∑
j=0

ajun−j + h

p∑
j=−1

bj f (tn−j , un−j), n = p, . . . ,Nh − 1, (8.10)

given u0, . . . , up, for some coefficients {aj}pj=0 and {bj}pj=−1, which
determine the multistep method.

If b−1 = 0, the method is explicit; otherwise, it is implicit.

65 of 100

Multistep methods for ODEs

A multistep method is consistent if and only if:

−
p∑

j=0

aj = 1 and

p∑
j=0

jaj +

p∑
j=−1

bj = 1.

66 of 100

One-step methods p = 0

From eq. (8.10) of multistep methods we obtain:

un+1 = a0un + hb−1f (tn+1, un+1) + hb0f (tn, un), n = 0, 1, . . . ,Nh − 1,

given u0.

■ Forward Euler: a0 = 1, b−1 = 0, and b0 = 1

■ Backward Euler: a0 = 1, b−1 = 1, and b0 = 0

■ Crank–Nicolson: a0 = 1, b−1 =
1
2 , and b0 =

1
2

67 of 100

One-step methods p = 0

From eq. (8.10) of multistep methods we obtain:

un+1 = a0un + hb−1f (tn+1, un+1) + hb0f (tn, un), n = 0, 1, . . . ,Nh − 1,

given u0.

■ Forward Euler: a0 = 1, b−1 = 0, and b0 = 1

■ Backward Euler: a0 = 1, b−1 = 1, and b0 = 0

■ Crank–Nicolson: a0 = 1, b−1 =
1
2 , and b0 =

1
2

67 of 100

One-step methods p = 0

From eq. (8.10) of multistep methods we obtain:

un+1 = a0un + hb−1f (tn+1, un+1) + hb0f (tn, un), n = 0, 1, . . . ,Nh − 1,

given u0.

■ Forward Euler: a0 = 1, b−1 = 0, and b0 = 1

■ Backward Euler: a0 = 1, b−1 = 1, and b0 = 0

■ Crank–Nicolson: a0 = 1, b−1 =
1
2 , and b0 =

1
2

67 of 100

One-step methods p = 0

From eq. (8.10) of multistep methods we obtain:

un+1 = a0un + hb−1f (tn+1, un+1) + hb0f (tn, un), n = 0, 1, . . . ,Nh − 1,

given u0.

■ Forward Euler: a0 = 1, b−1 = 0, and b0 = 1

■ Backward Euler: a0 = 1, b−1 = 1, and b0 = 0

■ Crank–Nicolson: a0 = 1, b−1 =
1
2 , and b0 =

1
2

67 of 100

Common multistep methods

■ AB3 (explicit Adam–Bashforth) method with order of accuracy 3, which
is a 3-step method (p = 2). From multistep eq. (8.10), we have:

un+1 = un+
h

12
[23f (tn, un)− 16f (tn−1, un−1) + 5f (tn−2, un−2)] , n = 2, ..,Nh−1,

for which the coefficients are:

a0 = 1, a1 = a2 = 0, b−1 = 0, b0 =
23

12
, b1 = −16

12
, b2 =

5

12
.

■ AM4 (implicit Adam–Moulton) method with order of accuracy 4, which
is a 3-step method (p = 2). From multistep eq. (8.10), we have:

un+1 = un+
h

24
[9f (tn+1, un+1) + 19f (tn, un)− 5f (tn−1, un−1) + f (tn−2, un−2)] , n = 2, ..,Nh−1,

with the coefficients:

a0 = 1, a1 = a2 = 0, b−1 =
9

24
, b0 =

19

24
, b1 = − 5

24
, b2 =

1

24
.

68 of 100

Common multistep methods

■ AB3 (explicit Adam–Bashforth) method with order of accuracy 3, which
is a 3-step method (p = 2). From multistep eq. (8.10), we have:

un+1 = un+
h

12
[23f (tn, un)− 16f (tn−1, un−1) + 5f (tn−2, un−2)] , n = 2, ..,Nh−1,

for which the coefficients are:

a0 = 1, a1 = a2 = 0, b−1 = 0, b0 =
23

12
, b1 = −16

12
, b2 =

5

12
.

■ AM4 (implicit Adam–Moulton) method with order of accuracy 4, which
is a 3-step method (p = 2). From multistep eq. (8.10), we have:

un+1 = un+
h

24
[9f (tn+1, un+1) + 19f (tn, un)− 5f (tn−1, un−1) + f (tn−2, un−2)] , n = 2, ..,Nh−1,

with the coefficients:

a0 = 1, a1 = a2 = 0, b−1 =
9

24
, b0 =

19

24
, b1 = − 5

24
, b2 =

1

24
.

68 of 100

Regions of absolute stability A for AB3 and AM4

AB3 and AM4 are consistent and zero-stable. They are also conditionally
absolutely stable.

69 of 100

Plan

Introduction and the Cauchy problem

Numerical differentiation

Numerical approximation of ODEs

Stability of the numerical methods: zero- and absolute stability

Runge-Kutta methods

Multistep methods

Systems of differential equations
Stability and examples

High order ODEs
70 of 100

Systems of differential equations

(Chapt. 8.3 in the book)

Definition
Let us consider the interval I = (t0, tf) ⊂ R, then the vector–valued Cauchy
problem reads:

find y : I → Rm s.t.:

{
dy
dt (t) = f(t, y(t)) for all t ∈ I ,

y(t0) = y0,
(31)

where m ≥ 1, f(t, y) : I × Rm → Rm is given and assumed to be continuous
in both arguments. We have:

y(t) =

y1(t)
...

ym(t)

 , and f(t, y) =

 f1(t, y)
...

fm(t, y)

 ;

71 of 100

Systems of differential equations

Definition
Consider f(t, y) = Ay(t) + g(t) and obtain the following system of ODEs
which is non-homogeneous with constant coefficients.{

dy(t)
dt = Ay(t) + g(t), t > 0,

y(0) = y0,
(32)

where A ∈ Rm×m and g(t) ∈ Rm.

If g(t) = 0 for all t ∈ (t0, tf] the system is in homogeneous form.

If A has m distinct eigenvalues λj and associated eigenvectors vj ,
j = 1, . . . ,m, the solution is y =

∑m
j=1 Cje

λj tvj , where Cj depends on the
initial data.

72 of 100

Systems of differential equations

Definition
Consider f(t, y) = Ay(t) + g(t) and obtain the following system of ODEs
which is non-homogeneous with constant coefficients.{

dy(t)
dt = Ay(t) + g(t), t > 0,

y(0) = y0,
(32)

where A ∈ Rm×m and g(t) ∈ Rm.

If g(t) = 0 for all t ∈ (t0, tf] the system is in homogeneous form.

If A has m distinct eigenvalues λj and associated eigenvectors vj ,
j = 1, . . . ,m, the solution is y =

∑m
j=1 Cje

λj tvj , where Cj depends on the
initial data.

72 of 100

Systems of differential equations

Definition
Consider f(t, y) = Ay(t) + g(t) and obtain the following system of ODEs
which is non-homogeneous with constant coefficients.{

dy(t)
dt = Ay(t) + g(t), t > 0,

y(0) = y0,
(32)

where A ∈ Rm×m and g(t) ∈ Rm.

If g(t) = 0 for all t ∈ (t0, tf] the system is in homogeneous form.

If A has m distinct eigenvalues λj and associated eigenvectors vj ,
j = 1, . . . ,m, the solution is y =

∑m
j=1 Cje

λj tvj , where Cj depends on the
initial data.

72 of 100

Linear system

Example
The system {

y ′
1(t) = −2y1(t) + y2(t) + e−t

y ′
2(t) = 3y1(t)− 4y2(t)

(33)

with initial conditions y1(0) = y10, y2(0) = y20, can be written as (32), where

y(t) =

[
y1(t)
y2(t)

]
, A =

[
−2 1
3 −4

]
, g(t) =

[
e−t

0

]
, y0 =

[
y10
y20

]
.

Let h > 0 be the time step; for n ∈ N, we set tn = nh, gn = g(tn) and we
denote by un an approximation of the exact solution y(tn) at time tn.

73 of 100

Θ-method

Let θ ∈ R such that θ ∈ [0, 1]; then, the θ–method for the approximation of
the Cauchy problem (2) is:{
un+1 = un + h [(1− θ)f(tn,un) + θf(tn+1,un+1)] for n = 0, . . . ,Nh − 1,

u0 = y0.

(34)
The θ–method is

■ explicit for θ = 0,

■ implicit for θ ∈ (0, 1].

74 of 100

Θ-method

Let θ ∈ R such that θ ∈ [0, 1]; then, the θ–method for the approximation of
the Cauchy problem (2) is:{
un+1 = un + h [(1− θ)f(tn,un) + θf(tn+1,un+1)] for n = 0, . . . ,Nh − 1,

u0 = y0.

(34)
The θ–method is

■ explicit for θ = 0,

■ implicit for θ ∈ (0, 1].

74 of 100

From the numerical point of view, the methods introduced in the scalar case
can be extended to systems of differential equations. For example, the
forward Euler method (11) becomes:

{ un+1 − un
h

= f(tn,un) = Aun + gn for n = 0, 1, 2, . . . ,Nh − 1

u0 = y0 ,
(35)

while the backward Euler method (12) becomes:{ un+1 − un
h

= f(tn+1,un+1) = Aun+1 + gn+1 for n = 0, 1, 2, . . . ,Nh − 1

u0 = y0 ,
(36)

75 of 100

FE, BE, and CN as Θ-methods

One iteration of Θ-methods is:{
un+1 = un + h [(1− θ)f (tn,un) + θf (tn+1,un+1)]

u0 = y0.

We obtain:

forward Euler (Θ = 0)

{
un+1 = un + hAun + hgn = (I + hA)un + hgn

u0 = y0

backward Euler (Θ = 1)

{
(I − hA)un+1 = un + hgn+1

u0 = y0

Crank-Nicolson (Θ = 1/2)

{
(I − h

2A)un+1 = (I + h
2A)un +

h
2 (gn + gn+1)

u0 = y0

Implicit methods (BE and CN), solve a linear system at each step with the
matrix I − hA and I − h

2A, respectively.

76 of 100

FE, BE, and CN as Θ-methods

One iteration of Θ-methods is:{
un+1 = un + h [(1− θ)f (tn,un) + θf (tn+1,un+1)]

u0 = y0.

We obtain:

forward Euler (Θ = 0)

{
un+1 = un + hAun + hgn = (I + hA)un + hgn

u0 = y0

backward Euler (Θ = 1)

{
(I − hA)un+1 = un + hgn+1

u0 = y0

Crank-Nicolson (Θ = 1/2)

{
(I − h

2A)un+1 = (I + h
2A)un +

h
2 (gn + gn+1)

u0 = y0

Implicit methods (BE and CN), solve a linear system at each step with the
matrix I − hA and I − h

2A, respectively.

76 of 100

FE, BE, and CN as Θ-methods

One iteration of Θ-methods is:{
un+1 = un + h [(1− θ)f (tn,un) + θf (tn+1,un+1)]

u0 = y0.

We obtain:

forward Euler (Θ = 0)

{
un+1 = un + hAun + hgn = (I + hA)un + hgn

u0 = y0

backward Euler (Θ = 1)

{
(I − hA)un+1 = un + hgn+1

u0 = y0

Crank-Nicolson (Θ = 1/2)

{
(I − h

2A)un+1 = (I + h
2A)un +

h
2 (gn + gn+1)

u0 = y0

Implicit methods (BE and CN), solve a linear system at each step with the
matrix I − hA and I − h

2A, respectively.

76 of 100

FE, BE, and CN as Θ-methods

One iteration of Θ-methods is:{
un+1 = un + h [(1− θ)f (tn,un) + θf (tn+1,un+1)]

u0 = y0.

We obtain:

forward Euler (Θ = 0)

{
un+1 = un + hAun + hgn = (I + hA)un + hgn

u0 = y0

backward Euler (Θ = 1)

{
(I − hA)un+1 = un + hgn+1

u0 = y0

Crank-Nicolson (Θ = 1/2)

{
(I − h

2A)un+1 = (I + h
2A)un +

h
2 (gn + gn+1)

u0 = y0

Implicit methods (BE and CN), solve a linear system at each step with the
matrix I − hA and I − h

2A, respectively.

76 of 100

The error associated with the numerical approximation of the Cauchy
problem (2) at t = tn is en := ∥yn − un∥2 for some n = 0, 1, . . . ,Nh. If

en ≤ Chp,

C a positive constant independent of h, then the method has convergence
order p > 0.

Method Explicit/Implicit Order of convergence
Forward Euler Explicit 1 (if y ∈ C 2(I))
Backward Euler Implicit 1 (if y ∈ C 2(I))
Crank–Nicolson Implicit 2 (if y ∈ C 3(I))

Heun Explicit 2 (if y ∈ C 3(I))

77 of 100

Heun method for systems of ODEs

Heun method is not a θ–method, but can be deduced by applying the
reasoning to a system of ODEs, to obtain:

u∗n+1 = un + hf(tn,un),

un+1 = un +
h

2

[
f(tn,un) + f(tn+1,u

∗
n+1)

]
, n = 0, . . . ,Nh − 1,

u0 = y0.

78 of 100

Stability

Consider a non-homogeneous system of ODEs with constant coefficients,

f(t, y) = Ay + g(t).

Assume that eigenvalues of A satisfy

Re{λi (A)} < 0 for all i = 1, . . . ,m,

then a numerical method is absolutely stable if if the condition on the
stability function R (as in Def. 8.5 in lecture notes) is satisfied for all the
eigenvalues, that is,

|R(hλi (A))| < 1, for i = 1, . . . ,m,

79 of 100

Stability

Under the assumptions in the previous slide, we obtain:

■ Forward Euler is conditionally absolutely stable for h > 0 s.t.

|1 + hλi (A)| < 1, for i = 1, . . . ,m,

or

h <
2

maxj=1,...,p |λj |
=

2

ρ(A)
, (37)

where ρ(A) is the spectral radius of A,

■ Heun method is conditionally absolutely stable for h > 0 s.t.

|1 + hλi (A) +
(hλi (A))

2

2
| < 1, for i = 1, . . . ,m.

■ Backward Euler and Crank-Nicolson are unconditionally absolutely stable.

80 of 100

Example
Linear system
The system {

y ′
1(t) = −2y1(t) + y2(t) + e−t

y ′
2(t) = 3y1(t)− 4y2(t)

(38)

with initial conditions y1(0) = y10, y2(0) = y20, can be written as (32), where

y(t) =

[
y1(t)
y2(t)

]
, A =

[
−2 1
3 −4

]
, g(t) =

[
e−t

0

]
, y0 =

[
y10
y20

]
.

Let h > 0 be the time step; for n ∈ N, we set tn = nh, gn = g(tn) and we
denote by un an approximation of the exact solution y(tn) at time tn.

81 of 100

The forward Euler method is explicit (there is no linear system to solve), but
it is stable conditionally. In this case, the eigenvalues of A are λ1 = −1 and
λ2 = −5; they are strictly negative, so the condition (37) on h is satisfied.
ρ(A) = 5, so the stability condition is

h < h̄ =
2

5
.

82 of 100

Example
Behavior of the forward Euler method for the system ((38)) with initial
condition y0 = [1, 1]T and different values of the time step h.

A = [-2 1; 3 -4];

dy = @(t,y,A) A*y + [exp(-t); 0];

h_bar = 2 / max(abs(eig(A)));

[t,y]=feuler(dy,[0,10],[1;1],10/(0.1*h_bar),A);

plot(y(1,:), y(2,:)); hold on;

[t,y]=feuler(dy,[0,10],[1;1],10/(h_bar),A);

plot(y(1,:), y(2,:), ’ro’);

[t,y]=feuler(dy,[0,10],[1;1],10/(0.9*h_bar),A);

plot(y(1,:), y(2,:), ’go--’);

83 of 100

We could also consider the case of a nonlinear system of the form

y′(t) = F(t, y(t)),

(for example the system (1)). Consider the Jacobian matrix

J(t) =
∂F

∂y
(t, y(t))

and assume Re{λi (J(t))} < 0 for all i = 1, . . . ,m.
Then the backward Euler method is unconditionally stable, while the forward
Euler method is stable under condition (37), where A = ∂F

∂y .

84 of 100

Example
The nonlinear system

y ′
1(t) = −2y1(t) + sin(y2(t)) + e−t sin(t),

y ′
2(t) = cos(y1(t))− 4y2(t), (39)

with initial conditions y1(0) = y10, y2(0) = y20, can be written as

y′(t) = F(t, y(t)),

where

F(t, y(t)) =

[
−2y1(t) + sin(y2(t)) + e−t sin(t)

cos(y1(t))− 4y2(t)

]
.

Let h > 0 be the time step; for n ∈ N, we set tn = nh and we denote by un
an approximation of the exact solution y(tn) at time tn.

85 of 100

Example
The forward Euler, backward Euler and Crank-Nicolson methods for
approximating the solution y(t) of (39) are written respectively:

forward Euler

{
un+1 = un + hF(tn,un),

u0 = y0,

backward Euler

{
un+1 + hF(tn+1,un+1) = un,

u0 = y0,

Crank-Nicolson

{
un+1 − h

2F(tn+1,un+1) = un +
h
2F(tn,un),

u0 = y0.

It should be noted that at each step of the methods of BE and CN, we must
solve a nonlinear system.

86 of 100

Example
The forward Euler method is explicit (there is not system to solve), but it is
stable conditionally. In this case, the jacobian of F is given by

J =
∂F

∂y
=

[
−2 cos y2

− sin y1 −4,

]
and the eigenvalues are λ1,2 = −3±

√
1− sin y1 cos y2; They are strictly

negative, in particular −3−
√
2 < λ1,2 < −3 +

√
2 < 0, and ρ(J) < 3 +

√
2.

Therefore the stability condition is

h < h̄ =
2

ρ(J)
, for example if h <

2

3 +
√
2
≃ 0.453.

87 of 100

Example
Behaviour of the forward Euler method for the system (39) with initial
condition y0 = [1, 1]⊤: h = 0.1 (blue) and h = 0.8h̄ (red). If we take h ≥ h̄,
we can observe the instability of the method.

88 of 100

Example
We used the following commands:

dy = @(t,y) [-2*y(1) + sin(y(2)) + exp(-t)*sin(t); ...

cos(y(1)) - 4*y(2)]

[t,y] = feuler(dy, [0,100],[1; 1], 100/0.1);

subplot(2,1,1); plot(y(1,:), y(2,:),’o-’); hold on;

J = @(y) [-2, cos(y(2)); -sin(y(1)), - 4];

for i = 1:size(t,2);

rho(i) = max(abs(eig(feval(J, y(:,i)))));

end

subplot(2,1,2);

plot(t,rho, ’o-’);

h_bar = 2/max(rho);

[t,y] = feuler(dy, [0,100],[1; 1], 100/(0.8*h_bar));

subplot(2,1,1);

plot(y(1,:), y(2,:), ’ro-’);

89 of 100

Applications

We return to the example given at the beginning of the chapter.

0 20 40 60 80 100 120
15

20

25

30

35

40

lapins
renard

90 of 100

Example
(prey-predator) (1) We consider the system (1). Let us take an initial
population y1(0) of 40 rabbits, a population y2(0) of 20 foxes and the
Lotka-Volterra equations:{

y ′
1(t) = 0.08 y1(t)− 0.004 y1(t)y2(t),

y ′
2(t) = −0.06 y2(t) + 0.002 y1(t)y2(t).

(40)

We want to study the evolution of the two populations over a period of 10
years. Let us define the vectors:

y(t) =

[
y1(t)
y2(t)

]
, F(t, y) =

[
0.08 y1(t)− 0.004 y1(t)y2(t)
−0.06 y2(t) + 0.002 y1(t)y2(t)

]
,

We can rewrite the system (40) in the general form:

y′(t) = F(t, y), t > 0, y(0) = [y1(0), y2(0)]
T . (41)

91 of 100

Example
All the methods that we have seen so far are applicable to the system (41).
For example, the forward Euler method can be written as

un+1 − un
h

= F(tn,un),

which is equivalent to the system of equations

un+1,1 − un,1
h

= 0.08 un,1 − 0.004 un,1un,2, n ≥ 0

un+1,2 − un,2
h

= −0.06 un,2 + 0.002 un,1un,2, n ≥ 0

u0,1 = y1(0), u0,2 = y2(0).

92 of 100

Example
The command heun can solve system of differential equations. First we
must write a function that define the system:

>> fun2 = @(t,y) [0.08*y(1) - 0.004*y(1)*y(2);

-0.06*y(2) + 0.002*y(1)*y(2)]

Then we can solve the system using:

>> y0=[40 20]; tspan=[0 120]; Nh=40;

>> [t,y] = heun(fun2, tspan, y0, Nh);

>> plot(t,y(:,1),’b’, t,y(:,2),’r’)

The first column of y contains the solution y1, while the second column
contains y2. The following figure shows the evolution of the two populations.

93 of 100

Example
Evolution of populations of rabbits and foxes over 10 years.

0 20 40 60 80 100 120
15

20

25

30

35

40

lapins
renard

94 of 100

Plan

Introduction and the Cauchy problem

Numerical differentiation

Numerical approximation of ODEs

Stability of the numerical methods: zero- and absolute stability

Runge-Kutta methods

Multistep methods

Systems of differential equations

High order ODEs

95 of 100

Second order ODEs

Given I = (t0, tf) ⊂ R, then a second-order ODE reads:

find y : I → R s.t.:


d2y
dt2 (t) = f

(
t, y(t), dy

dt (t)
)
, for all t ∈ I ,

dy
dt (t0) = y1,0,

y(t0) = y0,0,

(42)

where f (t, y ,w2) : I × R× R → R and y0,0 and y1,0 is initial data.

Introduce w2(t) : I → R s.t. w2(t) =
dy
dt (t) for all t ∈ I . Obtain:

find y ,w2 : I → R s.t.:


dw2

dt (t) = f (t, y(t),w2(t)), for all t ∈ I ,
dy
dt (t) = w2(t), for all t ∈ I ,

w2(t0) = y1,0,

y(t0) = y0,0.

(43)

96 of 100

Second order ODEs

Given I = (t0, tf) ⊂ R, then a second-order ODE reads:

find y : I → R s.t.:


d2y
dt2 (t) = f

(
t, y(t), dy

dt (t)
)
, for all t ∈ I ,

dy
dt (t0) = y1,0,

y(t0) = y0,0,

(42)

where f (t, y ,w2) : I × R× R → R and y0,0 and y1,0 is initial data.

Introduce w2(t) : I → R s.t. w2(t) =
dy
dt (t) for all t ∈ I . Obtain:

find y ,w2 : I → R s.t.:


dw2

dt (t) = f (t, y(t),w2(t)), for all t ∈ I ,
dy
dt (t) = w2(t), for all t ∈ I ,

w2(t0) = y1,0,

y(t0) = y0,0.

(43)

96 of 100

Second order ODEs

Thus we need to solve the system of ODEs:

find y ,w2 : I → R s.t.:


dw2

dt (t) = f (t, y(t),w2(t)), for all t ∈ I ,
dy
dt (t) = w2(t), for all t ∈ I ,

w2(t0) = y1,0,

y(t0) = y0,0.

(44)

that can be written as the Cauchy problem for a system of ODEs (31):

y(t) =

[
w2(t)
y(t)

]
, f(t, y) =

[
f (t, y ,w2)
w2(t)

]
, y0 =

[
y1,0
y0,0

]
,

where y : I → R2 and f(t, y) : I × R2 → R2.

97 of 100

General high order ODEs

Consider I = (t0, tf) ⊂ R. A high-order ODE of order m ≥ 2 is:

find y : I → R s.t.:



dmy
dtm (t) = f

(
t, y(t), dy

dt (t), . . . ,
dm−1y
dtm−1 (t)

)
, for all t ∈ I ,

dm−1y
dtm−1 (t0) = ym−1,0,
...

y(t0) = y0,0,

(45)
where f (t, y ,w2, . . . ,wm) : I × R× R× · · · × R → R has m + 1 arguments,
and {yk,0}m−1

k=0 is the initial data.

98 of 100

General high order ODEs

Introduce the auxiliary variables wk(t) : I → R s.t.:

wk(t) =
dk−1y

dtk−1
(t) for all t ∈ I , and for k = 2, . . . ,m.

Rewrite general high-order ODE as a system of ODEs:

find y ,w2, . . . ,wm : I → R s.t.:



dwm
dt

(t) = f (t, y(t),w2(t), . . . ,wm(t)) , for all t ∈ I ,
dwm−1

dt
(t) = wm(t), for all t ∈ I ,

...
dy
dt
(t) = w2(t), for all t ∈ I ,

wm(t0) = ym−1,0,
...

w2(t0) = y1,0,

y(t0) = y0,0.

99 of 100

General high order ODEs

find y ,w2, . . . ,wm : I → R s.t.:



dwm
dt

(t) = f (t, y(t),w2(t), . . . ,wm(t)) , for all t ∈ I ,
dwm−1

dt
(t) = wm(t), for all t ∈ I ,

...
dy
dt
(t) = w2(t), for all t ∈ I ,

wm(t0) = ym−1,0,
...

w2(t0) = y1,0,

y(t0) = y0,0.

The system can be recast in the general form of the Cauchy problem (31):

y(t) =


wm(t)

...
w2(t)
y(t)

 , f(t, y) =


f (t, y ,w2, . . . ,wm)

wm

...
w2

 , y0 =


ym−1,0

...
y1,0
y0,0

 .

where y : I → Rm and f(t, y) : I × Rm → Rm.

100 of 100

	Introduction and the Cauchy problem
	Numerical differentiation
	Numerical approximation of ODEs
	Stability of the numerical methods: zero- and absolute stability
	Runge-Kutta methods
	Multistep methods
	Systems of differential equations
	Stability and examples

	High order ODEs

