Laura Grigori

EPFL and PSI
slides based on lecture notes/slides from L. Dede/S. Deparis

November 27/December 4/11/18, 2024

PAUL SCHERRER INSTITUT

=PrL

Plan

Introduction and the Cauchy problem

Numerical differentiation

Numerical approximation of ODEs

Stability of the numerical methods: zero- and absolute stability
Runge-Kutta methods

Multistep methods

Systems of differential equations
Stability and examples

High order ODEs

2 of 100 1

Plan

Introduction and the Cauchy problem

3 of 100 1

Numerical approximation of ODEs

Problem: Approximate numerically differential equations in the form:

r (y(t% dy(t) d?y(t) dpy(t)) _ o,

dt 7 dt2 7777 dtp

with

= t an independent variable, often associated with the time variable,
m y(t) the solution of the differential problem,

= p the order of the differential equation.

4 of 100 1

Numerical approximation of ODEs

Problem: Approximate numerically differential equations in the form:

with

dy(t) d’y(t) dPy(t)\ _
F(y(t)’ dt ' dez T dt)_O’

= t an independent variable, often associated with the time variable,

m y(t) the solution of the differential problem,

= p the order of the differential equation.

Focus on first-order problems for which p =1, i.e.:

4 of 100

F (y(t), d{f?) =0.

Numerical approximation of ODEs

Problem: Approximate numerically differential equations in the form:

F (1. 2 2y (1)) g

dt 7 dt2 7777 dtp

with

= t an independent variable, often associated with the time variable,
m y(t) the solution of the differential problem,

= p the order of the differential equation.

Focus on first-order problems for which p =1, i.e.:

F (y(t), d{f?) =0.

ODEs of order p > 1 can be recast into systems of ODEs of order p = 1.

4 of 100 1

Example and motivations

Consider two populations, y; and y», where y; are the prey and y» are the
predators. The evolution of the two populations is described by the
simultaneous differential equations

yi(t) = Guya(t) [1 = buya(t) — daya(t)] (1)
y3(t) = = Goya(t) [1 = boys(t) — duya(2)],

where C; and G, represent the growth rates of the two populations. The
coefficients d; and d, govern the type of interaction between the two
populations, while b; and b, are related to the available quantity of
nutrients. The above equation are called the Lotka-Volterra equations.

5 of 100

The Cauchy problem

Definition (8.1)

Consider a continuous function f : Ry x R — R. For given yy € R, we
search y : t € | C Ry — y(t) € R that satisfies the following problem,
called the Cauchy problem:

gz e e

6 of 100 1

Model problem

The model problem is a Cauchy problem:

{ () =1(t,y(1)

where f(t,y) = Ay for some A € R and A < 0.
Such a problem admits the solution:
y(t) = yoeMt=0) for all t € [to, tf]

Often | = (tp, +00)

7 of 100 1

Examples

= A Cauchy problem can be linear, such as:
{ y'(t)=3y(t)—-3t ift>0 (4)
y(0) =1
with f(t,v) = 3v — 3t. The solution is y(t) = (1 — 1/3)e3t +t +1/3.
= We have also nonlinear problems, such as
{ yi(t)=y(t) ift>0 (5)
y(0)=0
with f(t,v) = /v. This problem has got three following solutions :
y(t) =0, y(t) = +/8t3/27, y(t) = —+/8t3/27.
= For the following problem:
{ y'(t)=1+y2%(t) ift>0 (6)
y(0) =0
a solution is a function y(t) = tan(t) where 0 < t < 7, i.e. a local
solution.

8 of 100 1

Well-posedness of the Cauchy problem

Theorem (Cauchy-Lipschitz, proposition 8.1 in the book)
If a function f(t,y) is
1. continuous with respect to both its arguments;

2. Lipschitz-continuous with respect to its second argument, that is, there
exists a positive constant L (named Lipschitz constant) such that

|f(t7)/1)—f(t>}/2)| < L‘)’l_}/2| V}’17}’2€Ra vVt e I7 (7)

Then the solution y = y(t) of the Cauchy problem (2) exists, is unique and
belongs to C1(1).

9 of 100 1

Example
Consider a problem (4) and we check it exists a unique global solution.
In this case f(t,v) = 3v — 3t and we have:

[F(t,y1) — f(t,y2)] = 13y1 — 3t — (3y2 — 3t)| = [3y1 — 3y2| < 3|y1 — o
SO
|f(tay1)_f(t7y2)| < L|Y1—)/2| VYI7Y2€R» vt->07 where L =3.

So f satisfies the assumptions of Theorem 1 and we can say that the
problem (4) has got a unique global solution.

10 of 100 1

Well-posedness of the Cauchy problem

Remark: If the function f(t,y):/ x R — R is C!-continuous in the second
argument y, then it is also Lipschitz continuous in the second argument.
Indeed, we have:

— <
|f(t7y1) f(t7y2)| ~ (tErTI],)a/)E(R

of
ay(t’)’)‘) “Iy1 = yal,

for which L = maxte/ yer ’%(t,y)’-

11 of 100 1

Plan

Numerical differentiation

12 of 100 1

Numerical differentiation

Let y : [a,b] — R be C! and t, € [a, b]. The derivative y’(t,) is given by

y(tn + h) = y(ta)

Vi) i Aot B0
- im Y(tn)_Y(tn_h)’
h—0+ h
I Y(tn+h)_y(tn_h)
m .
h—0 2h

13 of 100 1

Let to, t1,..., tn,, Nn+ 1 be equidistributed nodes at [to, ty,]. Let
h = (tn, — to)/Np be the distance between two consecutive nodes.
Let (Dy), be an approximation of y’(t,). We say

= Forward finite difference if

(Dy)fzwh_y(tn)v n:O,"',Nh_]- (8)

= Backward finite difference if

(Dy)5:M7 n=1,...,N, 9)

= Centered finite difference if

(Dy>5=y(t"“);,,y“”‘”, n=1...Ny—1 (10)

14 of 100 1

15 of 100

O Dt
BN Do
- y(t)
th1 tn thi1

The error in the finite difference

Definition
The difference 7,(h) = |y’(t,) — (Dy)P| is called truncation error in the
point t,. We say that 7, is of order p > 0 if

Ta(h) < ChP,
for a positive constant C.

Thanks to the found estimation, the truncation error of the forward and the
backward finite difference is of order 1; the truncation error of centered finite
difference is of order 2.

16 of 100 1

Plan

Numerical approximation of ODEs

17 of 100 1

The finite difference method

for approximating the Cauchy problem (Chapt. 8.2 in the book)
Let | = [to, t¢] be partitioned into N}, subintervals of equal size h,
o<t <...<tp<tp1<..<tf
where h = t, 1 — t, = “N;ht" is the time step. We denote by
u, an approximation of y(t,).
In the Cauchy problem (2), for t = t,, we have

yl(tn) = f(tnay(tn))'

We want to approximate the derivative y’(t,) in the point t,. We can use a
finite difference differentiation.

18 of 100 1

Forward Euler approximates y’(t,) with forward finite differences as
uth_UH = f(tm un)

Upi1 = Up + hf(t,, u, for n=0,1,..., N, —1
{ + (tn, Un) (1)

Uo = Yo

Backward Euler approximates y’(t,.1) with backward finite differences as
un+1h—u,, = f(tn+1> Un+1)

(12)

Uny1 = Up + hf(tni1, Uns1) for n=0,1,...,N,—1
o = Yo

19 of 100 1

Remark

® The forward Euler is explicit because u,y1 depends on u, explicitly:

(forwardEuler) Upt1 = U + hf(tn, up).

® The backward Euler is implicit because u,11 is implicitly defined in terms
of u,:
(backwardEuler) Upy1 = Up + hf (the1, Ups1).

20 of 100 1

Backward Euler with Newton method

In general, for the backward Euler, we have to solve a nonlinear equation at each time step.
Fixed point iterations: Note that (backward Euler) is equivalent to a fixed point problem with

Upt1 = ¢(Un+1) = un + hf(tai1, Upy1) (13)
We can solve this problem thanks to the following iterations
u,‘:rrll :qb(u:H), k=0,1,2,... (14)
The Newton method: Starting from the equation:
F(unt1) = unt1 — ¢(Unt1) = tnp1 — up — hf(tpi1, Ung1) =0, (15)

we use the following iterations:

{0 F(ukys)

k+1 _ k nt1) K n+1 _

Upp1 = Upp1 — Fr(uk) =Upy1 — 1= o (uk 1)7 k=0,1,2,. (16)
n+1 n+

In both cases, we have limj_, oo u5+1 = Upy1-

21 of 100 1

Example
Consider the following differential equation

! _ 2

y(t) = —t2(t), t>0)
y(0) =2.

We want to solve this equation using forward Euler and backward Euler

methods, in the interval [0, 4] with N, = 20 subintervals (it is equivalent to

a time step h = 0.2). We approximate the exact solution y(t,) at times

t, = nh, n=0,1,...20 (therefore t, = 0.2,0.4,0.6,...) by a numerical

solution u,.

In Matlab, the forward Euler method can be used by:

>> h = 0.2; % the time step
>> u(l) = 2; % the initial value
>> t = [0:h:4]; % vector of time t(n
>> for n=1:20; % loop ‘‘for’’
u(n+1) = u@) +h * (-t(@ * u(@)"2);
end;
>> plot(t,u); % we draw the graph

22 of 100 1

We can also use the functions feuler and beuler:
= Forward Euler
>> f = Q(t,y) -t.*xy. 2;
>> Nh = 20; tspan = [0 4]; yO = 2;
>> [t_EP, y_EP] = feuler(f, tspan, yO, Nh);
Output variables t_EP and y_EP contain sequences of the times t, and
the values u, respectively.

® Backward Euler
The function beuler uses the same syntax:

>> [t_ER, y_ER] = beuler(f, tspan, yO, Nh);

23 of 100 1

Comparison between the exact solution and those obtained by forward and
backward Euler methods.

oG

18- N - - sol-ex 1
\ —e— Euler prog.
16- \ —&— Euler retr 1

y(t)

® Euler prog.: Forward Euler

m Euler retr.: Backward Euler

24 of 100 1

Crank-Nicolson method

Derived from the integral of the ODE using the trapezoidal rule, that is

thy1 dy thi1 thi1
%= [T) = =yt [e e)
th dt th t,

n

Crank-Nicolson method

h
Unyl = Up + 5 [f(tn, un) + F(tnt1, Uns1)], forn=0,1,...,Ny—1,

o = Yo
(18)

25 of 100 1

Crank-Nicolson method

Derived from the integral of the ODE using the trapezoidal rule, that is

thy1 dy thi1 thi1
%= [T) = =yt [e e)
th dt th t,

n

Crank-Nicolson method

h
Unyl = Up + 5 [f(tn, un) + F(tnt1, Uns1)], forn=0,1,...,Ny—1,

Uo = Yo
(18)
Crank—Nicolson method is an implicit method.

25 of 100 1

Crank-Nicolson method

Since Crank-Nicolson is implicit, it requires solving the nonlinear equation
foreach n=0,1,..., N, — 1:

find vpp1 0 FN(upp1) =0 foralln=0,1,..., Ny — 1.

with ug = yo, where

h
FnCN(.y) =Y —Unp— 2 [f(tn; Un) + f(tn+1a)/)] :
If Newton method is used, then one needs the first derivative of FEN(y),

which reads
h Of

(FnCN)/(Y) =1- 5 @(%HJ)’

26 of 100 1

Heun method

Heun method is an explicit method which consists of two stages: compute
up, 1 as in forward Euler and then compute u,y; as in Crank-Nicolson but
replacing u,11 by 4

upy = up+ hf(ty, uy),
Upi1 = u,,—|—g [f(tn,u,,) + f(t,,+1,u:+1)] , forn=0,1,... N,—1

Up = Yo
(19)

27 of 100 1

Error analysis of the methods

Definition
The error associated with the numerical approximation of the Cauchy
problem at t, is e, := |y, — up| for some n =0,1,..., N,. If one has:

en < ChP,

where C > 0 is independent of h, then the method has convergence order
p > 0 (order of accuracy of the method).

28 of 100 1

Error analysis of the methods

Definition
The error associated with the numerical approximation of the Cauchy
problem at t, is e, := |y, — up| for some n =0,1,..., N,. If one has:

en < ChP,

where C > 0 is independent of h, then the method has convergence order
p > 0 (order of accuracy of the method).

= If the solution of the Cauchy problem is y € C?(/), then the forward and
backward Euler methods converge with order p =1 in h.

= If the solution of the Cauchy problem is y € C3(/), then the
Crank—Nicolson and Heun methods converge with order p = 2 in h.

28 of 100 1

Error analysis of the methods

The error &, = y, — u, = (yn — u) + (uf — u,) depends on two
contributions: Consider Forward Euler, computed from y,—1 and u,—1,
U:; = Yn-1+ hf(tnfh}/nfl)
Up = Up—1 + hf(tnfh unfl)

u 7p(h) = (yn — u}})/h is called the local truncation error. It converges to 0
because the error of numerical differentiation converges to 0.

B u, — u} represents propagation of the error from the previous step. We
can prove it converges to 0 using that f is Lipschitz continuous.

29 of 100

Plan

Stability of the numerical methods: zero- and absolute stability

30 0f 100 1

Stability conditions

The choice of time step h is not arbitrary. For forward Euler, we will see
later that if A is not small enough then stability problems may arise.

For example, if we consider the problem

{ i’((ot))::lt2y(t) for t e Ry (20)

then the solution is

y(t) =e7*,

We can observe that behavior with respect to h of forward and backward
Euler methods are very different.

31 of 100 1

Stability conditions (forward Euler)

EP stands for Forward Euler

32 of 100

Stability conditions (backward Euler)

—y
—s—ER,h=1.1
—=—ER,h=09)
1.5
1
05
oL -
-05F
b
1.5
2 L L L L Il L Il L L
0 1 2 3 4 5 6 7 8 9 10

ER stands for Backward Euler
33 of 100 1

Stability of the numerical methods: zero-stability

(Chapt. 8.2.6 in the book)

Zero-stability: Property of a method to control the propagation of numerical
perturbations for bounded intervals [s.t. |I| < +o0o which are relatively
small.

Example with Forward Euler:

{ Upt1 = Up + hf(tn, up) for n=0,1,..., N, —1 (21)
Up = Yo
Perturbed system
Znr1 = zp + h(f(tn, z,) + pn for n=0,1,..., N, —1
+ (f(tn, 2n) + pn) (22)
Zp=Yyo+tp

o0

Zero-stability

35 of 100 1

Zero-stability

Definition (8.3.)

A numerical method for the approximation of ODEs is zero-stable if
Jho > 0,C > 0,e0 > 0 s.t., Vh € (0, ho] and Ve € (0, &¢],

if |pn]l <eVn=0,...,Np, then |z, — u,| < Ce¥Vn=0,..., Ny, where

B p, is size of the perturbation introduced at the step t,,

B z, is solution that would be obtained by applying the numerical method
to a perturbed ODE,

m (C is constant independent of h but dependent on |/|,

® ¢ is the maximum size of the perturbation.

Based on Lax—Richtmeyer equivalence Theorem 1.1, a consistent method for
the approximation of ODEs is convergent if and only if is zero—stable.

35 of 100 1

Zero-stability

Definition (8.3.)

A numerical method for the approximation of ODEs is zero-stable if
Jho > 0,C > 0,e0 > 0 s.t., Vh € (0, ho] and Ve € (0, &¢],

if |pn]l <eVn=0,...,Np, then |z, — u,| < Ce¥Vn=0,..., Ny, where

B p, is size of the perturbation introduced at the step t,,

B z, is solution that would be obtained by applying the numerical method
to a perturbed ODE,

m (C is constant independent of h but dependent on |/|,

® ¢ is the maximum size of the perturbation.

Based on Lax—Richtmeyer equivalence Theorem 1.1, a consistent method for
the approximation of ODEs is convergent if and only if is zero—stable.
All previous methods are consistent, convergent and zero-stable.

35 of 100 1

The absolute stability (on unbounded intervals)

For given A € R, A < 0, we consider the model problem:

y'(t) = Ay(t) for t e Ry
23
{ y(to) = yo (23)
The solution is
y(t) = yoe (t=1), In particular, tlim y(t) = 0.
—00

Let tg < t1 < ... < tp < thr1 < ...such that t, = nh and where the time
step h > 0 is fixed.

woro0

The absolute stability (on unbounded intervals)

For given A € R, A < 0, we consider the model problem:

y'(t) = Ay(t) for t e Ry
23
{ y(to) = yo (23)
The solution is
y(t) = yoe (t=1), In particular, tlim y(t) = 0.
—00

Let tg < t1 < ... < tp < thr1 < ...such that t, = nh and where the time
step h > 0 is fixed.

We say that a numerical scheme associated to the model problem is
absolutely stable if lim,_,o u, = 0.

wor00

The absolute stability (on unbounded intervals)

For given A € R, A < 0, we consider the model problem:

y'(t) = Ay(t) for t e Ry
23
{ y(to) = yo (23)
The solution is
y(t) = yoe (t=1), In particular, tlim y(t) = 0.
—00

Let tg < t1 < ... < tp < thr1 < ...such that t, = nh and where the time
step h > 0 is fixed.

We say that a numerical scheme associated to the model problem is
absolutely stable if lim,_,o u, = 0.
= unconditionally if lim, .o u, =0 for all h > 0,

= conditional if
limp oo tn =0 for all h > 0 such that h < hnax, for some hpax > 0.

3 of 100 1

Stability function

Consider our model problem:

{ y'(t) = Ay(t) for te R, AeR,A<0
y(to) = yo

Definition (8.5)
The stability function associated with a numerical method is the complex
function R(z) : C — C such that, when applied to the model problem we

have:
up = R(hA)up—1 = [R(hN)]"yo for n=0,1,...

37 of 100 1

Stability function

Consider our model problem:

{ y'(t) = Ay(t) for te R, AeR,A<0
y(to) = yo

Definition (8.5)
The stability function associated with a numerical method is the complex
function R(z) : C — C such that, when applied to the model problem we

have:
up = R(hA)up—1 = [R(hN)]"yo for n=0,1,...

Proposition
A method is absolutely stable if and only if |R(h)\)| < 1.

37 of 100 1

Forward Euler for the model problem

e For the forward Euler:
Unt1 = (1 + Ah)up, where u, = (1+ Ah)"yp, Vn>0. (25)
Stability function:
RFE(Z) =1+z

If 1+ Ah < —1, then |up| — oo when n — oo, therefore forward Euler is

unstable.
To ensure stability, we need to limit the time step h, by imposing the

stability condition :

|14+ Ah| <1 hence 0 < h<2/|A|

3 of 100 1

Backward Euler

e For the backward Euler:

1 1 "
= — = > .
Upt1 <1 —)\h) up and therefore u, (1 — /\h) Yo, Vn>0

Stability function:
1

11—~z

RBE(Z) _

Because lim,_, o uy, = 0, it is unconditionally stable (it is stable for any
h>0).

39 of 100 1

Crank-Nicolson

e For the Crank-Nicolson:

h
un+1 = Up + E(Aun +)\U,H,l)

Upp1 = (W) Up and therefore u, = (W) Yo, Vn>0.

Stability function:
1422
1-2z/2

Because h > 0,\ < 0 then |[RN(h))| and lim,_so u, = 0, it is
unconditionally stable (it is stable for any h > 0).

RCN(Z)

wor00

Heun method

e For the Heun method:

h
5+ (F(tn, un) + F(tni1, 07,1))

h h
= u,+ 5 ()\u,, +)\u,fﬂ)) =u, + E(Au,, + Aup + hAuy))

Upt1 = Up+

h 2
Upyl = (1+h)\+(;\)> Up

Stability function:

Z2

2
Setting |R"(h\)| < 1 we obtain Heun is conditionally absolutely stable if

RA(z)=1+2z+

0 < h < hpax with hpax = W

41 of 100 1

Region of absolute stability

Tm{h X} Tm{h A}
+1 A
A m
-2\ -1 0 Re{h A} OWM
~1
FORWARD EULER BACKWARD EULER
TIm{hA\} Tm{h A}

+1.78
0 Re{h A} —2{/0 Re{h A}
1.78

CRANK-NICOLSON HEUN

Definition
The region of absolute stability of a numerical method applied to the model
problem is the set in the complex plane

A:={zeC:|R(2)| < 1},

where R(z) : C — C is the stability polynomial.

42 of 100

Region of absolute stability

TIm{hA\} TIm{h A}

+1 A

0 1 0 Re{h A} OUZ Re{h A}

=1

FORWARD EULER BACKWARD EULER

Tm{hA} Tm{hA}

+1.78
. ()
0 Re{h A} ,zUo Re{h A}

—1.78
CRANK-NICOLSON HEUN

Definition
A numerical method is A-stable if it is unconditionally absolutely stable for
the model problem for all A € C such that Re(\) < 0.

® Backward Euler and Crank-Nicolson methods are A-stable.

® Forward Euler and Heun methods are not A-stable.

43 of 100

Example

Let's solve the problem (20) for A = —2 and yy = 1 at interval [0, 10] using
forward and backward Euler methods with h = 0.9 and h = 1.1. Here are
the Matlab/Octave commands for the case h = 0.9. Note that, even if
f(t,y) does not depend on t, it must be defined in Matlab/Octave as a
function of (t,y).

>> f = @(t,x) -2*x; h=0.9; tspan=[0 10]; Nh = 10/h; y0=1;

>> [t_ep, y_ep] = feuler(f, tspan, yO, Nh);

>> [t_er, y_er] = beuler(f, tspan, yO, Nh);

>> t = linspace(0, 10, 11); sol_ex = Q(t) exp(-2*t);

>> plot(t, sol_ex(t), ’b’, t_ep, y_ep, ’ro-’, t_er, y_er’, ’go-’)

The following figure shows obtained solutions for h = 0.9 (on the left) and
h=1.1 (on the right) and the exact solution.

woro0

y) =-2 y(lb

v = -2y 6
== sol-ex * sol-ex
—e— Euler prog. -6— Euler prog.
08 —a— Euler retr 4 —&— Euler retr

06},]
. 2
0.4r |\ 4
\
\
o2t | 1 =
K = 0
0 AR S S
-02] -2

y()

Example

Comparison of solutions that we obtain by the forward and backward Euler
methods for h = 0.9 (on the left, stable) and h = 1.1 (on the right,
unstable) (stability condition for forward Euler: |A| =2 = h < 2/|\| =1).

45 of 100 1

Plan

Runge-Kutta methods

46 of 100 1

Runge-Kutta methods

® One-step methods for the numerical approximation of ODEs

® The approximate solution up41 is determined by evaluating f(t,y) at s
stages in the interval [t,, ty11].

= The general Runge-Kutta method for approximating the Cauchy problem
is:

{Un+1_un+h2?_1biKiv n:0717"'7Nh_17

up = Yo,
where
s
Kio=f|tatchu+h> aKi|, i=1...s, (8.9)
=1
for some coefficients ¢ = (cy,...,¢)" €R®, b= (by,...,bs)T € R®, and

A € RS, with (A); = aj for i, j=1,...,s.

47 of 100 1

Runge-Kutta and Butcher's array
For a given Runge-Kutta method,

(26)

un+1:un+hzf:1biKi, nzO,l,...,Nh—l,
Up = Yo,

where

s
Kio=f|tatchu+h> aKi|, i=1...s, (8.9)
j=1

the coefficients are stored in the so-called Butcher's array as:

c| A
b

48 of 100

Runge-Kutta and Butcher's array
For a given Runge-Kutta method,

(26)

un+1:un+hzf:1biKi, nzO,l,...,Nh—l,
Up = Yo,

where
s
Kio=f|tatchu+h> aKi|, i=1...s, (8.9)
j=1
the coefficients are stored in the so-called Butcher's array as:

c| A
b

= |f Ais stored from the bottom-left “corner,” the Runge-Kutta method is
explicit, if aj =0for j > i foralli=1,...,s;
® otherwise, the Runge-Kutta method is implicit.

48 of 100

Runge-Kutta methods of order 1

Explicit Runge-Kutta with s =1 (RK1) In this case, Eq. (26) becomes:

Upy1 = Up+ hbiKy, n=0,1,..., Ny —1,
Up = Yo,
where
K1 = f(t,, + c1hyu, + hallKl).

By setting ¢; =0, by =1, and a;; = 0, i.e., with the following Butcher’s

array:
0|0
1

49 of 100

Runge-Kutta methods of order 1

Explicit Runge-Kutta with s =1 (RK1) In this case, Eq. (26) becomes:

Upy1 = Up+ hbiKy, n=0,1,..., Ny —1,
Up = Yo,

where
K1 = f(t,, + c1hyu, + hallKl).

By setting ¢; =0, by =1, and a;; = 0, i.e., with the following Butcher’s
array:
00
1

RK1 corresponds to forward Euler

49 of 100

Runge-Kutta methods of order 1

Implicit Runge-Kutta with s = 1 In this case, Eq. (26) becomes:

{u,,+1:u,,+hb1K17 n=01,... Ny—1,

up = Yo,

where
K1 = f(fn +ah,u, + hallKl).

With the following Butcher's array,

50 of 100

Runge-Kutta methods of order 1

Implicit Runge-Kutta with s = 1 In this case, Eq. (26) becomes:

{u,,+1:u,,+hb1K17 n=01,... Ny—1,

Up = Yo,

where
K1 = f(fn +ah,u, + hallKl).

With the following Butcher's array,

we obtain backward Euler

50 of 100

Runge-Kutta methods of order 2

If we integrate the equation y’(t) = f(t, y(t)) between t, and t,;1, we obtain:

tht1
Yitna) = y(t) = [(e y(©)e (27)
tn
Remark
Numerical integration methods (Chapt. 4.2 in the book)
J(ty(t) J(ty(t)
tn tut1/ tny1 4;”, trt1

We want to approximate the integral of the function f(t, y(t)). If we use the midpoint formula, we
approximate the area below the curve by the area of a rectangle that has as a basis h and as a height
the value of the function at time t, + h/2 (see figure on the left). If we use the trapezoidal formula,
we approximate the area below the curve by the area of a trapezoid that has as basis both values of the
function at times t, and t,41 and as a height h (see figure on the right).

51 of 100

Using trapezoidal formula, we find the following implicit method, that is
called Crank-Nicolson or trapezoidal method :

h
Upy1 — Up = E [f(tn, Un) + f(tn+17 Un+1)] 5 Vn Z 0. (28)

This method is unconditionally stable when it is applied to the model
problem (20).

If we modify the schema (28) (changing to explicit) then we obtain the
Heun method:

h
Upi1 — Uy = 2 [f(tn, un) + f(tns1, un + hf(ty, un))] . (29)

Both methods (Crank-Nicolson and Heun) are of order 2 with respect to h.

52 of 100 1

Runge-Kutta methods of order 2

Explicit Runge-Kutta with s =2 (RK2) In this case, Eq. (26) becomes:

Upr1 = Up + hbi K1 + hbo Ky, n=0,1,... Np—1,
o = Yo,

where
Ki = f(tn + ah, up + hau K1 + h312K2) , K= f(tn + ch, up + hax K1 + hazsz) .

Then, we consider the following Butcher's array:

for which we obtain the RK2 method, i.e., the Heun method (8.7), where:

K1 = f(t,,, U,,), K, = f(t,,+1, un + hKl)

53 of 100 1

Runge-Kutta methods of order 2

Explicit Runge-Kutta with s =2 (RK2) In this case, Eq. (26) becomes:

Upr1 = Up + hbi K1 + hbo Ky, n=0,1,... Np—1,
o = Yo,

where
Ki = f(tn + ah, up + hau K1 + h312K2) , K= f(tn + ch, up + hax K1 + hazsz) .

Then, we consider the following Butcher's array:

for which we obtain the RK2 method, i.e., the Heun method (8.7), where:

K1 = f(t,,, U,,), K, = f(t,,+1, un + hKl)
RK2 corresponds to Heun method

53 of 100 1

Runge-Kutta methods of order 2

Runge-Kutta with s = 2 In this case, Eq. (26) becomes:
Upt1 = Up+ hbi K1 + hbo Ky, n=10,1,..., Ny —1,
{Uo = Yo,
where
Ki = f (tn + c1h, un + haun Ki + haioKz), Ko = f (tn + Gh, un + hasi Ki + han K>) .
Consider the following Butcher’s array:

0l o o
112 1/2

54 of 100

Runge-Kutta methods of order 2
Runge-Kutta with s = 2 In this case, Eq. (26) becomes:

Upt1 = Up + hbi K1 + hbo Ky, n=0,1,... Ny —1,
up = Yo,

where

Ki = (tn + c1h, un + haun K1 + ha2Kz), Kz = f (tn + c2h, un + han K1 + hax K2) .

Consider the following Butcher’s array:

0l o o
112 1/2

this corresponds to Crank-Nicolson method

54 of 100

Runge-Kutta method of order 4

Obtained by considering the integration of the Simpson method:

Ki = f(t,,, U,,)7
h h

Ko = f(tn+ =, un + = K1),

Un+1:un+ﬁ(K1+2K2+2K3+K4), ? (+2 u +2 1)
6 where: h h

Up = Yo K3:f(t,,+§7un+§K2),

Ks = f(tns1, un + hK3).

and the corresponding Butcher's array is:

NN O

ol O ONIF O
wH ONIF O O
wHEHE O O O
oHO O O O

soro0 [

In the following table we summarize the characteristics of the methods:

Method Explicit/Implicit Stability w.r.to h
Forward Euler Explicit Conditionally 1
Backward Euler Implicit Unconditionally 1
Crank—Nicolson Implicit Unconditionally 2

Heun Explicit Conditionally 2
Runge—Kutta Explicit Conditionally 4

ssori00 [

Regions of absolute stability A for RK1, RK2, RK4

Im{h \}

e{;z/\}

57 of 100

Example
Let us consider the Cauchy problem

{y’(t) — (0.1 — cos(t)), t>0
y(0)=1

We solve this problem by the forward Euler and Heun methods on the
interval [0,12] with a time step h = 0.4.

>> f = @(t,y) (cos(t) - 0.1)x*y;

>> h = 0.4; tspan = [0 12]; yO = 1; Nh = 12/h;
>> % forward Euler

>> [t_ep, y_ep] = feuler(f, tspan, yO, Nh);

>> % Heun

>> [t_heun, y_heun] = heun(f, tspan, y0, Nh);

ssorio0 [

Example

The first of the following figures shows the solutions obtained by both
methods and the exact solution y(t) = e~91t+sn(t) Note that the solution
obtained by the Heun method is much more precise than the forward Euler
method.

Moreover, we can see that if we reduce the time step, the solution obtained
by the forward Euler method approximates the exact solution. The second
figure shows the solutions obtained with h = 0.4,0.2,0.1,0.05 using the
following commands:

>> sol_ex = @(t) exp(-0.1xt + sin(t));
>> t = [0:0.01:12];
>> plot(t, sol_ex(t), ’b--’); hold on;
>> h=0.4; Nh = 12/h;
>> for i=1:4
[t_ep, y_ep]l = feuler(f, tspan, yO0, Nh);
plot(t_ep, y_ep)
Nh = Nh*2;
end

59 of 100 1

Example

Comparison of solutions obtained by the forward Euler and Heun methods
for h = 0.4.

25

- - sol-ex
—e— Euler prog.
—=— Heun

0.5

60 of 100

Example

Euler progressive
y) =-y(
25

Solutions obtained by the forward Euler method for different time steps

0.1t-cos (t))

0.5

61 of 100

Example

We want to estimate the order of convergence of these two methods. For
this we will solve the problem with different time steps and we will compare
the results obtained at time t = 6 with the exact solution.

>> h=0.4; Nh = 12/h; t=6; y6 = sol_ex(t);
>> for i=1:5
% foreward Euler
[t_ep, y_ep] = feuler(f, tspan, yO, Nh);
err_ep(i) = abs(y6 - y_ep(fix(Nh/2)+1));
% Heun
[t_heun, y_heun] = heun(f, tspan, yO, Nh);
err_heun(i) = abs(y6 - y_heun(fix(Nh/2)+1));
Nh = Nhx*2;
end
>> h=[0.4, 0.2, 0.1, 0.05, 0.025];
>> loglog(h,err_ep,’b’,h,err_heun,’r’)

The following figure shows, in logarithmic scale, errors of both methods
depending on h. Clearly, the forward Euler method converges with order 1
and Heun method converges with order 2.

62 of 100 1

Example

Errors of the forward Euler and Heun methods in the calculation of y(6).
Note that a scale is logarithmic.

|y(6)-u, (6)]

63 of 100 1

Plan

Multistep methods

o0

Multistep methods for ODEs

® The approximate solution up1 is obtained by using uy, ..., u,—p for some
p >0, with p 4+ 1 being the number of steps,

® A multistep method for approximating the Cauchy problem (2) is:
Upy1 = Zajunj—i—thft,, —jsUn—j), n=p,....,N,—1, (8.10)
j=—1

given uo, ..., up, for some coefficients {a;}7_, and {b;}7__;, which
determine the multistep method.

If b_; = 0, the method is explicit; otherwise, it is implicit.

65 of 100 1

Multistep methods for ODEs

A multistep method is consistent if and only if:

—iajzl and zp:jaj+ i b; =1.
j=0 j=0

=1

66 of 100 1

One-step methods p =0

From eq. (8.10) of multistep methods we obtain:

Upy1 = aoUn + hb—lf(tn+1, Un+1) + thf(tm un)7 n=0,1,...,Ny—1,

given ug.

67 of 100 1

One-step methods p =0

From eq. (8.10) of multistep methods we obtain:

Upt1 = aoUp + hb_lf(tn+1, Un+1) + /‘Ibof()’.‘n7 u,,), n=0,1,..., Ny, — 1,

given ug.

® Forward Euler: ag =1, b_1 =0, and by =1

67 of 100 1

One-step methods p =0

From eq. (8.10) of multistep methods we obtain:

Upt1 = aoUp + hb_lf(tn+1, Un+1) + /‘Ibof()’.‘n7 u,,), n=0,1,..., Ny, — 1,

given ug.

® Forward Euler: ag =1, b_1 =0, and by =1
® Backward Euler: ag =1, b_1 =1, and by =0

67 of 100 1

One-step methods p =0

From eq. (8.10) of multistep methods we obtain:

Upy1 = aoup + hb—lf(tn+1, Un+1) + thf(tm un)7

n=0,1,...,N,—1,
given ug.

® Forward Euler: ag =1, b_1 =0, and by =1
® Backward Euler: ag =1, b_1 =1, and by =0

= Crank-Nicolson: ag =1, b_1 = 3, and by = 3

67 of 100

Common multistep methods

m AB3 (explicit Adam—Bashforth) method with order of accuracy 3, which
is a 3-step method (p = 2). From multistep eq. (8.10), we have:

h
Upi1 = un—l—ﬁ [231 (tn,) — 16 (tn—1, Un—1) + 5F (tn—2, Un—2)], n=2,.., Nj

for which the coefficients are:

23 16 5

bi=-T, b=

a0 , d1 = az , 1 , 0 12° 1 12° 12

66 of 100 1

Common multistep methods

m AB3 (explicit Adam—Bashforth) method with order of accuracy 3, which
is a 3-step method (p = 2). From multistep eq. (8.10), we have:

Upi1 = u,,—l— [23f(t,,,u,,)—16f(t,, 1,Un—1) + 5f(th—2,up—2)], n=2,..,N
for which the coefﬁaents are:
23 16 5

1, e =3 =0, bi=0 b= b=-2 py=
ao , a1 =a) 1 » b= b 1 by 1

® AM4 (implicit Adam—Moulton) method with order of accuracy 4, which
is a 3-step method (p = 2). From multistep eq. (8.10), we have:

Upy1 = Un+ [gf(n+1, un+1) + 19f(t,,, Un) - 5f(tn,1, U,,,l) + 7“(tn727 Un72)] ;

with the coeff|c1ents.

80:1, 31282:0, bflzf7 b():f blz—f b2:7.

66 of 100 1

Regions of absolute stability .4 for AB3 and AM4

Im{h A}

—y

0 K Re{h A}

-1
— AB3
— AM4
2
-3 2 -1 0

AB3 and AM4 are consistent and zero-stable. They are also conditionally
absolutely stable.

69 of 100

Plan

Systems of differential equations
Stability and examples

70 of 100 1

Systems of differential equations
(Chapt. 8.3 in the book)

Definition
Let us consider the interval | = (ty, tr) C R, then the vector—valued Cauchy
problem reads:

%(t) =f(t,y(t)) foralltel,

y(to) = Yo, (1)

findy:/ - R" s.t.: {

where m > 1, f(t,y) : | x R™ — R™ is given and assumed to be continuous
in both arguments. We have:

n(t) A(t.y)
y(t)=1 : |, and f(t,y)= r
ym(t) fn(t,)

71 0f 100 1

Systems of differential equations

Definition
Consider f(t,y) = Ay(t) + g(t) and obtain the following system of ODEs
which is non-homogeneous with constant coefficients.

N — Ay(t) +g(t),t > 0,
dt
{Y(O) = Yo, .

where A € R™*™ and g(t) € R™.

72 of 100 1

Systems of differential equations

Definition
Consider f(t,y) = Ay(t) + g(t) and obtain the following system of ODEs
which is non-homogeneous with constant coefficients.

N — Ay(t) +g(t),t > 0,
dt
{Y(O) = Yo, .

where A € R™*™ and g(t) € R™.

If g(t) =0 for all t € (to, tf] the system is in homogeneous form.

72 of 100 1

Systems of differential equations

Definition
Consider f(t,y) = Ay(t) + g(t) and obtain the following system of ODEs
which is non-homogeneous with constant coefficients.

A = Ay(t) +g(t). £ > 0,
(32)
y(o) = Yo,
where A € R™*™ and g(t) € R™.
If g(t) =0 for all t € (to, tf] the system is in homogeneous form.
If A has m distinct eigenvalues)\; and associated eigenvectors v;,
Jj=1,...,m, the solution is y = ZJ";I C;eNtv;, where C; depends on the

initial data.

72 of 100 1

Linear system

Example
The system

“2(8) + ya(t) + et
31(t) — 4y (1) (33)

y10, ¥2(0) = ya0, can be written as (32), where

(3
)=

with initial conditions y1(0

yl(t) -2 1 et Y10
t) = s = s t) = , = .
Rt I ot P R L R
Let h > 0 be the time step; for n € N, we set t, = nh, g, = g(t,) and we
denote by u, an approximation of the exact solution y(t,) at time t,.

73 of 100 1

©-method

Let § € R such that 6 € [0, 1]; then, the 6—method for the approximation of
the Cauchy problem (2) is:

{un+1 = up+ h[(1 = 0)F(tn, up) + OF(tnss, uns1)] for n=0,...,Ny—1,

Up = Yo-
(34)

74 of 100 1

©-method

Let § € R such that 6 € [0, 1]; then, the 6—method for the approximation of
the Cauchy problem (2) is:

{un+1 = up+ h[(1 = 0)F(tn, up) + OF(tnss, uns1)] for n=0,...,Ny—1,
Up = Yo-

(34)
The f—method is
m explicit for 6 =0,
= implicit for 6 € (0, 1].

74 of 100 1

From the numerical point of view, the methods introduced in the scalar case
can be extended to systems of differential equations. For example, the
forward Euler method (11) becomes:

h

{U"H_u":f(tmun):Au,,—kg,, forn=012..... N ~1 (35,
Up = Yo,

while the backward Euler method (12) becomes:

h

{ Unid =8 (g1 1) = Alpss + Enpn for n=0,1,2,... Ny—1
Up = Yo,
(36)

75 of 100 1

FE, BE, and CN as ©-methods

One iteration of ©-methods is:

{un+1 = up + h[(1 = 0)F(tn, up) + OF (tns1, Uns1)]

Uo = Yo-

We obtain:

forward Euler (© = 0)

U,i1 = u, + hAu, + hg, = (I + hA)u, + hg,
Uo = Yo

76 of 100 1

FE, BE, and CN as ©-methods

One iteration of ©-methods is:
up1 =u, + h[(1—0)(tn,uy) + 0F (thi1, uni1)]
Up = Yo-

We obtain:

n = Up hA n h n = / hA n h n
forward Euler (© = 0) {u +1 = Un + hAu, + hg, = (I + hA)u, + hg
up = Yo
(I - hA)un+1 =u,+ hgn+1

backward Euler (© = 1) {
Up = Yo

76 of 100 1

FE, BE, and CN as ©-methods

One iteration of ©-methods is:
up1 =u, + h[(1—0)(tn,uy) + 0F (thi1, uni1)]
Up = Yo-

We obtain:

forward Euler (© = 0)

U,i1 = u, + hAu, + hg, = (I + hA)u, + hg,
Uo = Yo

backward Euler (© = 1) {(I — hAUn 11 = o+ b

Up = Yo

I =2 A)uny = (I + 5A), + 4 (g0 + g0
Crank-Nicolson (@:1/2) {(2)U +1 (+2) +2(g +g +1)

Uo = Yo

76 of 100 1

FE, BE, and CN as ©-methods

One iteration of ©-methods is:

{un+1 = up + h[(1 = 0)F(tn, up) + OF (tns1, Uns1)]

Up = Yo.
We obtain:
n = u, hA n h n = / hA n h .

forward Euler (© = 0) Uni1 = Uy + hAu, + hgy = (I + hA)u, + hg

Uo = Yo

I_ hA n = n h n
backward Euler (© = 1) (JUni1 = U, + hgni1

Uo = Yo

I— hA n = I ﬁA h N .
Crank-Nicolson (© = 1/2) {(3 A1 = (14 FA)u + 3 (8 + 8nt1)

Up = Yo

Implicit methods (BE and CN), solve a linear system at each step with the
matrix | — hA and | — gA, respectively.

76 of 100 1

The error associated with the numerical approximation of the Cauchy
problem (2) at t = t, is e, := ||y, — u,||2 for some n=10,1,..., N If

en < ChP,

C a positive constant independent of h, then the method has convergence
order p > 0.

Method Explicit/Implicit | Order of convergence
Forward Euler Explicit 1 (ify € C3(1))
Backward Euler Implicit if y € C2(1))

1 (()
Crank—Nicolson Implicit 2 (ify e C3(1)
2 (()

)
Heun Explicit if y € C3(1))

77 of 100

Heun method for systems of ODEs

Heun method is not a #—method, but can be deduced by applying the
reasoning to a system of ODEs, to obtain:

uy,, = u,+ hf(t,,up),
h
Uper = U, + > [f(tn, un) + F(tor1,upq)], n=0,..., Ny — 1,
uo = Yo

78 of 100 1

Stability

Consider a non-homogeneous system of ODEs with constant coefficients,
f(t,y) = Ay +g(t).
Assume that eigenvalues of A satisfy
Re{\i(A)} <Oforalli=1,...,m,

then a numerical method is absolutely stable if if the condition on the
stability function R (as in Def. 8.5 in lecture notes) is satisfied for all the
eigenvalues, that is,

IR(hA(A) <1, fori=1,....m,

79 of 100 1

Stability

Under the assumptions in the previous slide, we obtain:
= Forward Euler is conditionally absolutely stable for h > 0 s.t.

|1+ hX(A) <1, fori=1,...,m,
or

2 2

h< =
maxj=1,..p|A\j| p(A)

: (37)

where p(A) is the spectral radius of A,
® Heun method is conditionally absolutely stable for h > 0 s.t.

(h\i(A))?

|1+ hXi(A) + 5

| <1, fori=1,...,m.

= Backward Euler and Crank-Nicolson are unconditionally absolutely stable.

oorio0

Example

Linear system
The system

(t) = 3nl(t) —4n(t)

with initial conditions y1(0) = y10, ¥2(0) = y20, can be written as (32), where

yl(t) -2 1 et Y10
t) = ., A= , t) = , = .
y(t) [)@(t)} {3 —4 8(t) 0 Yo Y20
Let h > 0 be the time step; for n € N, we set t, = nh, g, = g(t,) and we
denote by u, an approximation of the exact solution y(t,) at time t,.

{50 = 0 enlg e (38)
) =

81 of 100 1

The forward Euler method is explicit (there is no linear system to solve), but
it is stable conditionally. In this case, the eigenvalues of A are A\; = —1 and
A2 = —b; they are strictly negative, so the condition (37) on h is satisfied.
p(A) = 5, so the stability condition is

- 2

h<h=-.
5

82 of 100 1

Example
Behavior of the forward Euler method for the system ((38)) with initial
condition yo = [1,1]7 and different values of the time step h.

1.2 T T T T T T

| | ——0.1h
—_—— ’1

0.9k

0.8

041

0.2

-0.2 0 0.2 0.4 06 0.8 1 12

A=[-21; 3 -4];

dy = @(t,y,A) Axy + [exp(-t); 0];

h_bar = 2 / max(abs(eig(4)));

[t,yl=feuler(dy, [0,10],[1;1],10/(0.1%h_bar),A);
plot(y(1,:), y(2,:)); hold on;

[t,yl=feuler(dy, [0,10],[1;1],10/(h_bar),A);
plot(y(1,:), y(2,:), ’ro’);

[t,yl=feuler(dy, [0,10],[1;1],10/(0.9%h_bar),A);
plot(y(1,:), y(2,:), go--");

mor0

We could also consider the case of a nonlinear system of the form

(for example the system (1)). Consider the Jacobian matrix

OF
YORS

(t,y(1))

and assume Re{\;(J(t))} <Oforalli=1,..., m.
Then the backward Euler method is unconditionally stable, while the forward
Euler method is stable under condition (37), where A = g—;.

sorio0

Example
The nonlinear system

yi(t) = =2y(t) +sin(y2(t)) + e “sin(t),
(1) cos(y1(t)) — 4ya(t), (39)

with initial conditions y1(0) = y10, y2(0) = y20, can be written as

y'(t) = F(t,y(1)),

where
F(t,y(t) = _2y1(t2£(§'1"((£y)2>(?)4; (et) sin(t)

Let h > 0 be the time step; for n € N, we set t, = nh and we denote by u,
an approximation of the exact solution y(t,) at time t,.

soro0

Example

The forward Euler, backward Euler and Crank-Nicolson methods for
approximating the solution y(t) of (39) are written respectively:

forward Euler

u,i1 = u, + hF(t,, u,),
Up = Yo,

Upt1 + hF(tn+17 un+1) = Up,

backward Euler
Up = Yo,

Upt1 — gF(tn—}—la un+1) =u,+ gF(tm un);

Crank-Nicolson
Up = Yo.

It should be noted that at each step of the methods of BE and CN, we must
solve a nonlinear system.

worio0

Example

The forward Euler method is explicit (there is not system to solve), but it is
stable conditionally. In this case, the jacobian of F is given by

_OF | =2 cosys
9y |—sinyr —4,

and the eigenvalues are A\; > = =3+ /1 —sin y; cos yo; They are strictly
negative, in particular =3 —v/2 < \1» < —3++/2 <0, and p(J) < 3+ V2.
Therefore the stability condition is

J

2
~ (0.453.
3442

h<h=—=, forexampleif h<

87 of 100 1

Example

Behaviour of the forward Euler method for the system (39) with initial
condition yo = [1,1]T: h= 0.1 (blue) and h = 0.8h (red). If we take h > h,
we can observe the instability of the method.

1 T T
N
05| ~
£ a e
3 ERReeees006-0-0—0—0—0 0
S~
o o
05 . . . d— . .
0 o1 0z 03 o T o o8 09 1
1
—~
o
+
~—3s}
D
Qasf
arsp
37|
a65|
0 10 20 30 40 st 60 70 80 %0 100

sorio0

Example
We used the following commands:

dy = @(t,y) [-2*y(1) + sin(y(2)) + exp(-t)*sin(t);
cos(y(1)) - 4xy(2)]

[t,y] = feuler(dy, [0,100],[1; 1], 100/0.1);

subplot(2,1,1); plot(y(1l,:), y(2,:),’0-?); hold on;

J = @e(y) [-2, cos(y(2)); -sin(y(1)), - 4];
for i = 1:size(t,2);

rho(i) = max(abs(eig(feval(J, y(:,1)))));
end

subplot(2,1,2);
plot(t,rho, ’0-’);

h_bar = 2/max(rho);

[t,y] = feuler(dy, [0,100],[1; 1], 100/(0.8%h_bar));

subplot(2,1,1);
plot(y(1,:), y(2,:), ’ro-’);

89 of 100 1

Applications

We return to the example given at the beginning of the chapter.

90 of 100

351

301

251

20¢

—o— lapins
—=— renard

20

40

60

100

120

Example

(prey-predator) (1) We consider the system (1). Let us take an initial
population y;(0) of 40 rabbits, a population y»(0) of 20 foxes and the
Lotka-Volterra equations:

yi(t) = 0.08 y1(t) — 0.004 y1(t)y2(t), (40)
y5(t) = —0.06 ya(t) + 0.002 y1 (t)y2(t).

We want to study the evolution of the two populations over a period of 10
years. Let us define the vectors:

() [0.08y1(t) — 0.004 y1(t)y(t)
y(t) = Bz(f)]’ F(ty) = _0.06yy2(t)+0.002yy1(t)yyz(t) ’

We can rewrite the system (40) in the general form:

y'(t) = F(t,y), t>0, y(0) = [y1(0), y2(0)] . (41)

91 of 100 1

Example
All the methods that we have seen so far are applicable to the system (41).
For example, the forward Euler method can be written as

y = F(ty, up),

which is equivalent to the system of equations

% = 0.08 1 — 0.004 Up1pp, n>0

% = —0.06 tpp +0.002 Up1Upp, 1 >0

uo,1 = y1(0), wo2 = y2(0).

92 of 100 1

Example

The command heun can solve system of differential equations. First we
must write a function that define the system:

>> fun2 = @(t,y) [0.08%y(1) - 0.004*y(1)*y(2);
-0.06*y(2) + 0.002xy(1)*y(2)]

Then we can solve the system using:

>> y0=[40 20]; tspan=[0 120]; Nh=40;
>> [t,y] = heun(fun2, tspan, yO, Nh);
>> plot(t,y(:,1),’b’, t,y(:,2),’r’)

The first column of y contains the solution y;, while the second column
contains y». The following figure shows the evolution of the two populations.

93 of 100 1

Example
Evolution of populations of rabbits and foxes over 10 years.

406 T T T T T
—e— lapins
—&— renard
35F q
301 q
251
20 q
15 . . h . .
0 20 40 60 80 100 120

9 of 100 1

Plan

High order ODEs
95 of 100 '

Second order ODEs

Given | = (to, tr) C R, then a second-order ODE reads:

eL(t) = (t y(t), dt(t)) forall t € 1,
findy:/ — Rs.t.: %(to) Y10,

y(to) = Y0,0,

(42)

where f(t,y,wz) : | x R xR — R and yg0 and y; o is initial data.

woro0

Second order ODEs

Given | = (to, tr) C R, then a second-order ODE reads:

CZ/Ty(t) (t y(t), dt(t)> forall t €1,

findy :/ — Rs.t.: %(to) Y1.05 (42)
() 0,05

where f(t,y,wz) : | x R xR — R and yg0 and y; o is initial data.

Introduce wy(t) : | = R s.t. wa(t) = %(t) for all t € [. Obtain:

s (£) = £(t,y(t), wo(t)), forall tel,

& (t) = wy(t), forall tel

find y,wo | — R st d dt) =welt), foralltel, (43)
w2(to) = y1,0,
y(to) = yo,0-

woro0

Second order ODEs

Thus we need to solve the system of ODEs:

() = F(t, y(t), wo(t)), forall t €,

(1) = wy(t), foralltel
find y,ws : | = R st gt (£) = wa(t), forall €/, (44)

wo(to) = 1,0,

y(to) = yo,0-

that can be written as the Cauchy problem for a system of ODEs (31):
W2(t) f(t7y7 W2):| |:.y1 0:|
t)= , f(t, =) = NE
=[] =[] we= e
where y : | — R? and f(t,y) : | x R? — R2,

97 of 100 1

General high order ODEs

Consider | = (tp, tr) C R. A high-order ODE of order m > 2 is:

gE(t) = (y(t), %(¢), ..., 4t 1(t)), forall t €1,
dm— 1
findy: / — R st S (to) = ym—1,0,

y(to) = 0,0,

(45)

where f(t,y,wa,...,Wp): I X RXxR X --- xR —R has m+ 1 arguments,
and {yk0}7=, is the initial data.

9 of 100 1

General high order ODEs

Introduce the auxiliary variables wy(t) : I — R s.t.:

dk—ly

wk(t)zm(t) foralltel, andfork=2,...,m.

Rewrite general high-order ODE as a system of ODEs:

find y, ws, ...

99 of 100

W (£) = £ (t,y(t), wa(t), ..., wm(t)), forall t €1,

dwg’t_l(t) = Wm(t), for all t € I,

%(t) =w(t), foralltel,

S Wm | — R st
Wm(to) = Ym-1,0,

wa(to) = 1,0,
y(to) = yo,0-

General high order ODEs

B () = £ (£, y(t), wa(t), . .., wim(t)), forall t € I,

dw:fl(t) = wn(t), foralltel,

D(t) = wo(t), foralltel,

find y,wo, ..., wm: I — Rs.t.:
Wm(to) = Ym—1,0,

wa(to) = y1,0,
y(to) = yo,0-

The system can be recast in the general form of the Cauchy problem (31):

W”"(t) f(t7y7 W27---7Wm) Ym—1,0
. Wm .
y(t) = :) f(t7 y) = .) Yo = :
WQ(t) : y1,0
Y(t) w2 Y0,0

wherey : [— R™ and f(t,y) : | x R™ — R™.
100 of 100 1

	Introduction and the Cauchy problem
	Numerical differentiation
	Numerical approximation of ODEs
	Stability of the numerical methods: zero- and absolute stability
	Runge-Kutta methods
	Multistep methods
	Systems of differential equations
	Stability and examples

	High order ODEs

