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Motivation

The integration is one of the biggest problem that we need to solve in
analysis. Indeed, we often use integrals whose calculation by analytical
method is difficult or even impossible, because there do not exists analytical
expression of the integral. Here are some examples:∫ 1

0

e−x2

dx ,

∫ π/2

0

√
1 + cos2 x dx ,

∫ 1

0

cos x2 dx .

In these cases, we can apply numerical methods to estimate the value of the
given integral.

4 of 55



Example

Example 1. We consider a population of a very large number M of
individuals and we have the height of each individual. The distribution N(s)
of their height (such that ∆N represents the number of individuals whose
height is between s and s +∆s (written also N(s)∆s)) can be represented
by a“bell” function characterized by the mean value s of the height and the
standard deviation σ:

N(s) =
M

σ
√
2π

exp

(
− (s − s)2

2σ2

)
.
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Example (contd)

An instance is provided in the above figure (M = 100 individuals, h = 1.7 meters,
σ = 0.1 meters). The area of the red region gives the number of individuals whose
height is between 1.8 and 1.9 meters.
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Simple integration formulas

Let f : [a, b] → R be a continuous function on an interval [a, b] ⊂ R. We
need to calculate the following quantity by numerical methods

I (f ) =

∫ b

a

f (x)dx .

■ We approximate f (x) in [a, b] with f̃ (x) which is easy to integrate in
[a, b], and obtain

Iq(f ) = I (f̃ ) =

∫ b

a

f̃ (x)dx .

■ Typically for simple formulas, f̃ (x) is a polynomial of degree n
interpolating f (x) in n + 1 nodes in [a, b]
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Composite integration formulas

We consider M subintervals Ik = [xk−1, xk ], k = 1, . . . ,M, where
xk = a+ kH and H = (b − a)/M. Then we have

I (f ) =
M∑
k=1

∫
Ik

f (x)dx ,

We can approximate the exact integral of f on each subinterval Ik by the
integral of a polynomial approximating f on Ik , i.e.:

I (f ) approximated by
M∑
k=1

∫
Ik

Πnf (x)dx =

∫ b

a

ΠH
n f (x)dx .
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Degree of exactness

Definition
A quadrature rule Iq(f ) on the interval [a, b] is exact for a function f if

Iq(f ) =

∫ b

a

f (x)dx .

It is exact of degree r if it is exact for all polynomials of degree less or
equal to r , i.e.

Iq(p) =

∫ b

a

p(x)dx ∀p ∈ Pr ,

but not for all those of degree r + 1. r is called a degree of exactness of the
quadrature rule. (In other words, the degree of exactness of the quadrature
rule is the largest integer r ≥ 0 for which the approximate value of the
integral of any polynomial of degree less or equal to r (obtained by the
quadrature rule) is equal to the exact value).
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Simple and composite integration formulas

We consider the following integration formula (called simple):

■ Mid-point formula

■ Trapezoidal formula

■ Simpson formula

and their composite formulations.
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Mid-point formula

Consider f ∈ C 0([a, b]),

Imp(f ) = I (Π0f ) = (b − a)f

(
a+ b

2

)
, (1)

where Π0f (x) is the polynomial of degree 0 interpolating f (x) at the
midpoing x̄ = a+b

2 .
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Composite mid-point quadrature formula

This formula is obtained by replacing, on each subinterval Ik , the function f
with a constant polynomial Π0f that is equal to the value of f in the middle
of Ik (look at following figure) : We obtain the composite midpoint
quadrature formula.

I cmp(f ) := I (ΠH
0 f ) = H

M∑
k=1

f (xk), (2)

where

xk =
xk−1 + xk

2
,

and ΠH
0 f (x) is the piecewise polynomial of degree 0 interpolating f (x) at the

mid-points {x̄k}Mk=1
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Composite mid-point quadrature formula
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Integration error: mid-point quadrature

■ Mid-point quadrature formula. If f ∈ C 2([a, b]), then

emp(f ) := I (f )− Imp(f ) =
(b − a)3

24
f ′′(ξ), for some ξ ∈ [a, b]

■ Composite mid-point quadrature formula. If f ∈ C 2([a, b]), then

ecmp(f ) := I (f )− I cmp(f ) =
b − a

24
H2f ′′(ξ), for some ξ ∈ [a, b]

Definition
We define the order of an integration formula by the order of the error with
respect to H.
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Proof of error for simple midpoint formula

We will use the second mean value theorem of integration:
If f , g ∈ C 0([a, b]) and g(x) ≥ 0 or g(x) ≤ 0 for all x ∈ ([a, b]), then∫ b

a

f (x)g(x)dx = f (ξ)

∫ b

a

g(x)dx for some ξ ∈ [a, b]
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Proof for simple midpoint formula

Consider Taylor expansion of f (x) around x̄ , with x̄ = a+b
2 ,

f (x) = f (x̄) + f ′(x̄)(x − x̄) +
1

2
f ′′(η(x))(x − x̄)2

for some η(x) ∈ [a, b]. Compute the integral of the expansion:

I (f ) = Imp(f ) + f ′(x̄)

∫ b

a

(x − x̄) dx +
1

2
f ′′(ξ)

∫ b

a

(x − x̄)2 dx ,

for some ξ ∈ [a, b], using the second mean value theorem. Since∫ b

a

(x − x̄) dx = 0 and

∫ b

a

(x − x̄)2 dx =
(b − a)3

12
, then

emp(f ) := I (f )− Imp(f ) =
(b − a)3

24
f ′′(ξ), for some ξ ∈ [a, b]
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Proof of error for composite midpoint formula

Use Taylor expansion on the interval Ik = [xk−1, xk ] in the point
x̄k = (xk−1 + xk)/2. We have∫

Ik

[f (x)− f (x̄k)] dx =

∫
Ik

f ′(x̄k)(x − x̄k)dx +
1

2

∫
Ik

f ′′(ξ(x))(x − x̄k)
2dx ,

where ξ(x) ∈ Ik . Furthermore, we have∫
Ik

f ′(x̄k)(x − x̄k)dx = 0,

and thanks to mean value theorem for integration we have ∃ξk ∈ Ik :∫
Ik

f ′′(ξ(x))(x − x̄k)
2dx = f ′′(ξk)

∫
Ik

(x − x̄k)
2dx =

H3

12
f ′′(ξk).

So: ∫
Ik

[f (x)− f (x̄k)] dx =
H3

24
f ′′(ξk).
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Trapezoidal formula

Consider f ∈ C 0([a, b]),

It(f ) := I (Π1f ) = (b − a)
f (a) + f (b)

2
(3)

where Π1f (x) is the polynomial of degree 1 interpolating f (x) at the nodes
a and b.
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Composite trapezoidal formula

If, on each subinterval Ik , we replace f with the interpolating polynomial
Π1f (x) of degree 1 at the nodes xk−1 and xk , then we obtain the composite
trapezoidal formula:

I ct (f ) := I (ΠH
1 f ) =

H

2

M∑
k=1

[f (xk) + f (xk−1)] =
H

2
[f (a) + f (b)] + H

M−1∑
k=1

f (xk).

(4)
where ΠH

1 f (x) is the piecewise polynomial of degree 1 interpolating f (x) and
the nodes {xk}Mk=0 of the interval [a, b].
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Composite trapezoidal formula
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Integration error: trapezoidal formula

■ Trapezoidal formula. If f ∈ C 2([a, b]), then

et(f ) := I (f )− It(f ) = − (b − a)3

12
f ′′(ξ), for some ξ ∈ [a, b]

■ Composite trapezoidal formula. If f ∈ C 2([a, b]), then

ect (f ) := I (f )− I ct (f ) = −b − a

12
H2f ′′(ξ), for some ξ ∈ [a, b]
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Degree of exactness for mid-point quadrature

Remark The mid-point quadrature formulas have degree of exactness 1

■ If f ∈ P1, f
′′(x) = 0 for all x ∈ R

■ The errors emp(f ) and ecmp(f ) are identically zero for all polynomials of
degree less than or equal to 1.
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Integration error: simple formulas

■ Mid-point quadrature formula. If f ∈ C 2([a, b]), then

emp(f ) := I (f )− Imp(f ) =
(b − a)3

24
f ′′(ξ), for some ξ ∈ [a, b]

■ Trapezoidal formula. If f ∈ C 2([a, b]), then

et(f ) := I (f )− It(f ) = − (b − a)3

12
f ′′(ξ), for some ξ ∈ [a, b]
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Integration error: composite formulas

■ Composite mid-point quadrature formula. If f ∈ C 2([a, b]), then

ecmp(f ) := I (f )− I cmp(f ) =
b − a

24
H2f ′′(ξ), for some ξ ∈ [a, b]

■ Composite trapezoidal formula. If f ∈ C 2([a, b]), then

ect (f ) := I (f )− I ct (f ) = −b − a

12
H2f ′′(ξ), for some ξ ∈ [a, b]
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Example
We consider I (f ) =

∫ 1

0
f (x)dx where f (x) = cos(x2): the following figure

shows the error of integration |I cmp(f )− I (f )| (composite midpoint
quadrature formula) and |I ct (f )− I (f )| (composite trapezoidal formula) with
respect to the number of subintervals M.
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Simpson formula

Consider f ∈ C 0([a, b]),

Is(f ) := I (Π2f ) =
b − a

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
(5)

where Π2f (x) is the polynomial of degree 2 interpolating f (x) at the nodes
a, b, and a+b

2 .

27 of 55



Composite Simpson quadrature formula

The Simpson formula can be obtained by replacing f by composite
interpolating polynomial ΠH

2 f (x) of degree 2. In particular, ΠH
2 f (x) is a

composite continuous function which on each subinterval Ik is obtained as
the interpolating polynomial of f with nodes

xk−1, xk =
xk−1 + xk

2
and xk (see the following figure).

Then we obtain the composite Simpson quadrature formula:

I cs (f ) := I (ΠH
2 f ) =

H

6

M∑
k=1

[f (xk−1) + 4f (xk) + f (xk)] . (6)
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Composite Simpson quadrature formula
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Integration error: simple formulas

■ Mid-point quadrature formula. If f ∈ C 2([a, b]), then

emp(f ) := I (f )− Imp(f ) =
(b − a)3

24
f ′′(ξ), for some ξ ∈ [a, b]

■ Trapezoidal formula. If f ∈ C 2([a, b]), then

et(f ) := I (f )− It(f ) = − (b − a)3

12
f ′′(ξ), for some ξ ∈ [a, b]

■ Simpson quadrature formula. If f ∈ C 4([a, b]), then

es(f ) := I (f )− Is(f ) = − (b − a)5

180 · 16
f (4)(ξ), for some ξ ∈ [a, b]
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Integration error: composite formulas

■ Composite mid-point quadrature formula. If f ∈ C 2([a, b]), then

ecmp(f ) := I (f )− I cmp(f ) =
b − a

24
H2f ′′(ξ), for some ξ ∈ [a, b]

■ Composite trapezoidal formula. If f ∈ C 2([a, b]), then

ect (f ) := I (f )− I ct (f ) = −b − a

12
H2f ′′(ξ), for some ξ ∈ [a, b]

■ Composite Simpson quadrature formula. If f ∈ C 4([a, b]), then

ecs (f ) := I (f )− I cs (f ) = − b − a

180 · 16
H4f (4)(ξ), for some ξ ∈ [a, b]

Definition
We define the order of an integration formula by the order of the error with
respect to H.
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Degree of exactness

Let us take into account the simple midpoint formula, the trapezoidal and
the Simpson. We can link a degree of exactness to the formulas.
In particular, we can show that Ipm and It has degree of exactness equal to
1; the Simpson formula has degree of exactness equal to 3.

Composite formula Dg. of exact. Ord. with respect to H
Midpoint (2) 1 2

Trapezoidal (4) 1 2
Simpson (6) 3 4
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Midpoint formula
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Simpson formula
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Example

Example 1. We consider a population of a very large number M of
individuals and we have the height of each individual. The distribution N(s)
of their height (such that ∆N represents the number of individuals whose
height is between s and s +∆s (written also N(s)∆s)) can be represented
by a“bell” function characterized by the mean value s of the height and the
standard deviation σ:

N(s) =
M

σ
√
2π

exp

(
− (s − s)2

2σ2

)
.
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Example (contd)

An instance is provided in the above figure (M = 100 individuals, h = 1.7 meters,
σ = 0.1 meters). The area of the red region gives the number of individuals whose
height is between 1.8 and 1.9 meters.
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Example 1 (contd). Let us consider the example of computing the height
of individuals. To compute the number of individuals whose height is
between 1.8 and 1.9 meters we use the composite Simpson formula with 100
subintervals (simpsonc command):

>>N = @(h,M,hbar,sigma) M/(sigma*sqrt(2*pi))*exp(-(h-hbar).^2./(2*sigma^2))

>> M = 100; hbar = 1.7; sigma = 0.1;

>> int = simpsonc(1.8, 1.9, 100, N, M, hbar, sigma)

ans =

13.5905

We therefore estimate that the number of individuals in this range of height
is 13.6 % of the population.
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Interpolatory quadrature formulas

Goal: Provide a generalization of the previous simple formulas.

Definition (Definition 5.6)
Let us consider a function f (x) ∈ C 0([a, b]). Then a (simple) interpolatory
quadrature formula is defined as:

Ĩ (f ) := I (f̃ ) =
n∑

j=0

αj f (yj),

where f̃ (x) is a function interpolating f (x) at the n + 1 quadrature nodes
{yj}nj=0 ⊂ [a, b], and {αj}nj=0 are the corresponding quadrature weights, with
n ≥ 0.

Different choices possible for f̃ (x), which should be easy to integrate.
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Using Lagrange interpolating polynomials

In general, if we choose f̃ (x) = Πnf (x)

I (f̃ ) =

∫ b

a

Πnf (x)dx ,

where Πnf is the Lagrange interpolating polynomial (of degree n ≥ 0) of the
function f at the nodes x0, . . . , xn:

I (f̃ ) =

∫ b

a

Πnf (x)dx =

∫ b

a

n∑
k=0

f (xk)φk(x)dx =
n∑

k=0

[∫ b

a

φk(x)dx

]
︸ ︷︷ ︸

αk

f (xk)

φk ∈ Pn : φk(xi ) = δik , k, i = 0, · · · , n

is the k-th characteristic La-
grange polynomial.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1
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Using Lagrange interpolating polynomials

We have the general formula:

Ĩ (f ) := I (f̃ ) =
n∑

j=0

αj f (xj), (7)

where xj are the quadrature nodes and αj are the quadrature weights (look
at the following table).

Formula xk αk

Midpoint (1) x0 =
1

2
(a+ b) α0 = b − a

Trapezoidal (3) x0 = a, x1 = b α0 = α1 =
1

2
(b − a)

Simpson (5) x0 = a, x1 =
1

2
(a+ b), α0 = α2 =

1

6
(b − a),

x2 = b α1 =
2

3
(b − a)
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Error with Lagrange interpolating polynomials

The integration error is given by:

|I (f )− I (f̃ )| =

∣∣∣∣∣
∫ b

a

f (x)dx −
∫ b

a

Πnf (x)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

(f − Πnf )(x)dx

∣∣∣∣∣
≤ max

x∈[a,b]
|f (x)− Πnf (x)|︸ ︷︷ ︸

interpolation error

(b − a)

Increasing n is not a good strategy to reduce the integration error
|I (f )− I (f̃ )|.
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Integrating constant functions

Minimum objective: exactly integrate constant functions f (x) = C for any
n ≥ 0.
Since I (f ) = I (C ) = C (b − a), we set

n∑
j=0

αj f (yj) =
n∑

j=0

αjC = C (b − a),

for which we obtain the following condition on the quadrature weights:

n∑
j=0

αj = b − a for all n ≥ 0,

regardless of the position of the quadrature nodes.
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Reference interval

Provide general quadrature formulas that can be applied to functions f (x) in
any interval [a, b] by using a reference interval:

■ Specify quadrature nodes {ȳj}nj=0 and weights {ᾱj}nj=0 in the reference
interval [−1, 1]

■ Recover quadrature nodes and weights for the general interval [a, b] as:

yj =
a+ b

2
+

b − a

2
ȳj for j = 0, . . . , n,

and

αj =
b − a

2
ᾱj for j = 0, . . . , n,

respectively.
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Gauss–Legendre quadrature formulas

Proposition
For m > 0, the quadrature formula

∑n
j=0 ᾱj f (ȳj) has degree of exactness

m + n iff it is of interpolatory type and ωn+1(x) =
∏n

i=0(x − ȳi ) satisfies:∫ 1

−1

ωn+1(x)p(x)dx = 0, for all p ∈ Pm−1

Corollary
The maximum degree of exactness is r = 2n + 1.
This is given by taking ωn+1(x) proportional to the Legendre polynomial
Ln+1(x) of degree n + 1.
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Gauss–Legendre quadrature formulas

■ Family of interpolatory quadrature formulas that approximate f (x) using
Legendre polynomials

■ Legendre polynomials {Lk(x)}n+1
k=0 in the interval [−1, 1] are recursively

defined as:

L0(x) = 1,

L1(x) = x ,

Lk+1(x) =
2k + 1

k + 1
xLk(x)−

k

k + 1
Lk−1(x) for k = 1, . . . , n.

■ Legendre polynomials are orthogonal:∫ 1

−1

Ln+1(x)Lk(x) dx = 0 for all k = 0, . . . , n.
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Exemple of Legendre polynomials

Consider Legendre polynomials for n = 3 in [−1, 1]:

L0(x) = 1,

L1(x) = x ,

L2(x) =
3

2
xL1(x)−

1

2
L0(x),

L3(x) =
5

3
xL2(x)−

2

3
L1(x),

L4(x) =
7

4
xL3(x)−

3

4
L2(x).
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Gauss–Legendre quadrature formulas

Definition (5.7)
Let us consider a function f (x) ∈ C 0([a, b]). Then the Gauss–Legendre
quadrature formula for n ≥ 0 over the reference interval [−1, 1] is:

IGL,n =
n∑

j=0

ᾱGL
j f

(
ȳGL
j

)
,

where:
ȳGL
j := zeros of Ln+1(x) for all j = 0, . . . , n,

ᾱGL
j :=

2[
1−

(
ȳGL
j

)2
] [

L′n+1

(
ȳGL
j

)]2 for all j = 0, . . . , n.
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Formulas and degree of exactness

■ Degree of exactness of the Gauss–Legendre quadrature formula is
r = 2n + 1 for all n ≥ 0.

■ Quadrature nodes and weights of the Gauss–Legendre quadrature
formulas over [−1, 1] for n = 0, 1, 2:

n Nodes {ȳGL
j }nj=0 Weights {ᾱGL

j }nj=0 r

0 0 2 1 (mid-point formula)

1
{
− 1√

3
, 1√

3

}
{1, 1} 3

2
{
−
√

3
5 , 0,

√
3
5

} {
5
9 ,

8
9 ,

5
9

}
5
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Gauss–Legendre-Lobatto quadrature

Extend the concept of maximizing the degree of exactness by including the
boundaries of the interval as quadrature nodes.

Definition ( 5.8)
Let us consider a function f (x) ∈ C 0([a, b]). Then the
Gauss–Legendre–Lobatto quadrature formula for n ≥ 1 over the reference
interval [−1, 1] is:

IGLL,n =
n∑

j=0

ᾱGLL
j f

(
ȳGLL
j

)
,

where:

ȳGLL
0 := −1, ȳGLL

n := +1, and ȳGLL
j := zeros of L′n(x) for all j = 1, . . . , n−1.

ᾱGLL
j :=

2

n(n + 1)

1(
Ln

(
ȳGLL
j

))2 for all j = 0, . . . , n.

51 of 55



Formulas and degree of exactness

■ Degree of exactness of Gauss–Legendre-Lobatto quadrature is r = 2n − 1
for all n ≥ 1.

■ Quadrature nodes and weights of Gauss–Legendre-Lobatto quadrature
over [−1, 1] for n = 1, 2, 3:

n Nodes {ȳGLL
j }nj=0 Weights {ᾱGLL

j }nj=0 r

1 {−1,+1} {1, 1} 1 (trapezoidal formula)
2 {−1, 0,+1}

{
1
3 ,

4
3 ,

1
3

}
3 (Simpson’s formula)

3
{
−1,− 1√

5
,+ 1√

5
,+1

} {
1
6 ,

5
6 ,

5
6 ,

1
6

}
5
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Plan

Examples and motivation

Simple and Composite integration formulas

Integration error: summary

Interpolatory Quadrature Formulas

Numerical Integration in Multiple Dimensions

53 of 55



Numerical Integration in Multiple Dimensions

■ Integration of continuous functions f : Ω → R, with Ω ⊂ Rd for d ≥ 2,
based on generalization of quadrature formulas

■ The formula will be:

I (f ) =

∫
Ω

f (x)dx

■ Simple formulas defined in reference domains, as e.g. trapezoids and
triangles for d = 2 or tetrahedrons for d = 3

■ Composite formulas used for complex domains

54 of 55



Example of numerical quadrature in 2D
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