

Numerical Differentiation

Laura Grigori

EPFL and PSI

slides based on lecture notes/slides from L. Dede/S. Deparis

October 15, 2024

Finite Differences Schemes

Forward and backward finite differences

Centered finite differences

Goals

Given $f \in C^1((a, b))$, approximate $f'(x)$ for some $x \in (a, b) \subseteq \mathbb{R}$

Examples:

- For known function $f(x)$, it might be too expensive to explicitly evaluate $f'(x)$ for some $x \in (a, b)$
- Numerical derivation is necessary if only the set of data couples $\{(x_i, y_i)\}_{i=0}^n$ is provided and not $f(x)$ from which these are eventually obtained
 - It might still be required to have the first derivative of the unknown function $f(x)$ at one or all the nodes $\{x_i\}_{i=0}^n$

Finite Differences Schemes

Forward and backward finite differences

Centered finite differences

Forward and backward finite differences

Definition (4.1)

Given a function $f(x)$ and the step size $h > 0$, the approximation of $f'(\bar{x})$ at some $\bar{x} \in (a, b) \subseteq \mathbb{R}$ by the **forward finite differences scheme** is defined as:

$$\delta_+ f(\bar{x}) := \frac{f(\bar{x} + h) - f(\bar{x})}{h}, \quad (1)$$

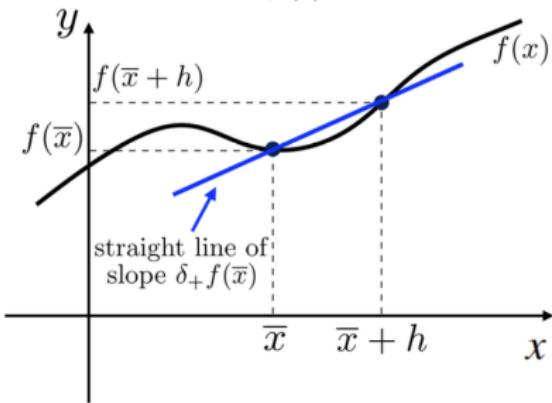
while by the **backward finite differences scheme** as:

$$\delta_- f(\bar{x}) := \frac{f(\bar{x}) - f(\bar{x} - h)}{h}. \quad (2)$$

Forward and backward finite differences

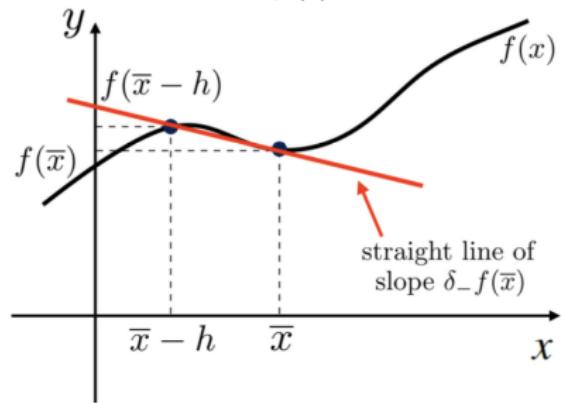
Forward finite differences

$$\delta_+ f(\bar{x})$$



Backward finite differences

$$\delta_- f(\bar{x})$$



$$\delta_+ f(\bar{x}) := \frac{f(\bar{x} + h) - f(\bar{x})}{h}$$

$$\delta_- f(\bar{x}) := \frac{f(\bar{x}) - f(\bar{x} - h)}{h}$$

Error of forward/backward finite differences

Proposition (4.1)

If $f \in C^2((a, b))$ and $\bar{x} \in (a, b)$, the error $E_+ f(\bar{x})$ for forward finite differences scheme is:

$$E_+ f(\bar{x}) := f'(\bar{x}) - \delta_+ f(\bar{x}) = -\frac{1}{2} h f''(\xi_+) \quad \text{for some } \xi_+ \in [\bar{x}, \bar{x} + h], \quad (3)$$

while the error $E_- f(\bar{x})$ for backward finite differences is:

$$E_- f(\bar{x}) := f'(\bar{x}) - \delta_- f(\bar{x}) = \frac{1}{2} h f''(\xi_-) \quad \text{for some } \xi_- \in [\bar{x} - h, \bar{x}]. \quad (4)$$

Error of forward/backward finite differences

Proof of Prop. 4.1 (Forward finite differences scheme)

Consider the Taylor expansion of $f(\bar{x} + h)$ around \bar{x} , obtaining

$$f(\bar{x} + h) = f(\bar{x}) + f'(\bar{x})h + \frac{1}{2}f''(\xi_+)h^2 \quad \text{for some } \xi_+ \in [\bar{x}, \bar{x} + h].$$

Since the error is:

$$E_+ f(\bar{x}) := f'(\bar{x}) - \delta_+ f(\bar{x}),$$

the result follows.

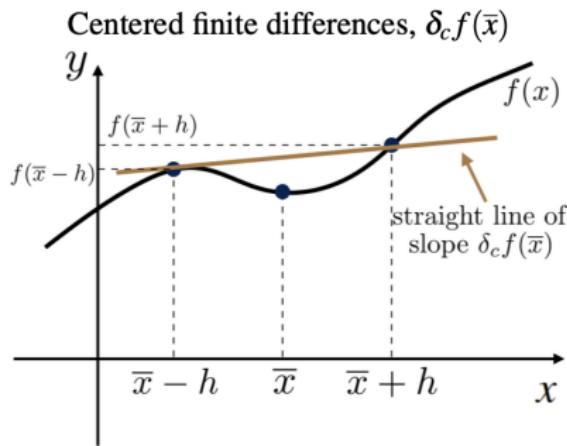
Remarks for forward/backward finite differences

- The forward and backward finite differences schemes are methods of order 1;
the errors $E_+ f(\bar{x})$ and $E_- f(\bar{x})$ converge to zero with order 1 in the step size h
- If $f \in \mathbb{P}_1$, we have $\delta_+ f(\bar{x}) = \delta_- f(\bar{x}) = f'(\bar{x})$ for all $\bar{x} \in \mathbb{R}$.

Centered finite differences

Definition 4.2 Given $f(x)$ and step size $h > 0$, the approximation of $f'(\bar{x})$ at some $\bar{x} \in (a, b) \subseteq \mathbb{R}$ by the **centered finite differences scheme** is defined as:

$$\delta_c f(\bar{x}) := \frac{f(\bar{x} + h) - f(\bar{x} - h)}{2h}. \quad (5)$$



Error of centered finite differences

Proposition (4.2)

If $f \in C^3((a, b))$ and $\bar{x} \in (a, b)$, the error $E_c f(\bar{x})$ associated with the centered finite differences scheme is:

$$E_c f(\bar{x}) := f'(\bar{x}) - \delta_c f(\bar{x}) = -\frac{1}{12} h^2 [f'''(\xi_+) + f'''(\xi_-)]$$

for some $\xi_+ \in [\bar{x}, \bar{x} + h]$ and $\xi_- \in [\bar{x} - h, \bar{x}]$.

Error of centered finite differences

Proof of Prop. 4.2 Consider the Taylor expansion of $f(\bar{x} + h)$ around x ,

$$f(\bar{x} + h) = f(\bar{x}) + f'(\bar{x})h + \frac{1}{2}f''(\bar{x})h^2 + \frac{1}{6}f'''(\xi_+)h^3 \quad \text{for some } \xi_+ \in [\bar{x}, \bar{x} + h];$$

similarly, the Taylor expansion of $f(\bar{x} - h)$ around x is

$$f(\bar{x} - h) = f(\bar{x}) - f'(\bar{x})h + \frac{1}{2}f''(\bar{x})h^2 - \frac{1}{6}f'''(\xi_-)h^3 \quad \text{for some } \xi_- \in [\bar{x} - h, \bar{x}].$$

Then, by applying the definition of the error $E_c f(\bar{x})$, the result follows.

Remarks

- The centered finite differences scheme is a method of order 2
the error $E_c f(\bar{x})$ converges to zero with order 2 in the step size h
- If $f \in \mathbb{P}_2$, we have $\delta_c f(\bar{x}) = f'(\bar{x})$ for all $\bar{x} \in \mathbb{R}$

Approximating $f'(x)$ at multiple nodes

Goal: Approximate $f'(x)$ at multiple and equally spaced nodes in the interval $[a, b]$, that is $x_i = a + ih$ for all $i = 0, \dots, n$, with

$$h = \frac{b - a}{n}; \quad x_0 = a \text{ and } x_n = b$$

- Consider the centered finite differences scheme at the nodes internal to the interval $[a, b]$, as:

$$\delta_c f(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} \quad \text{for all } i = 1, \dots, n-1$$

- Approximate $f'(x_0)$ and $f'(x_n)$ with the forward and backward finite differences schemes:

$$\delta_+ f(x_0) = \frac{f(x_1) - f(x_0)}{h} \quad \text{and} \quad \delta_- f(x_n) = \frac{f(x_n) - f(x_{n-1})}{h}.$$

→ Method of order 2 for internal nodes $\{x_i\}_{i=1}^{n-1}$ and order 1 for x_0 and x_n

Approximating $f'(x)$ at multiple nodes

Goal: Approximate $f'(x)$ at multiple and equally spaced nodes in the interval $[a, b]$, that is $x_i = a + ih$ for all $i = 0, \dots, n$, with

$$h = \frac{b - a}{n}; \quad x_0 = a \text{ and } x_n = b$$

- Consider the centered finite differences scheme at the nodes internal to the interval $[a, b]$, as:

$$\delta_c f(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} \quad \text{for all } i = 1, \dots, n-1$$

- Approximate $f'(x_0)$ and $f'(x_n)$ with the forward and backward finite differences schemes:

$$\delta_+ f(x_0) = \frac{f(x_1) - f(x_0)}{h} \quad \text{and} \quad \delta_- f(x_n) = \frac{f(x_n) - f(x_{n-1})}{h}.$$

→ Method of order 2 for internal nodes $\{x_i\}_{i=1}^{n-1}$ and order 1 for x_0 and x_n

Approximating $f'(x)$ at multiple nodes

Goal: Approximate $f'(x)$ at multiple and equally spaced nodes in the interval $[a, b]$, that is $x_i = a + ih$ for all $i = 0, \dots, n$, with

$$h = \frac{b - a}{n}; \quad x_0 = a \text{ and } x_n = b$$

- Consider the centered finite differences scheme at the nodes internal to the interval $[a, b]$, as:

$$\delta_c f(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} \quad \text{for all } i = 1, \dots, n-1$$

- Approximate $f'(x_0)$ and $f'(x_n)$ with the forward and backward finite differences schemes:

$$\delta_+ f(x_0) = \frac{f(x_1) - f(x_0)}{h} \quad \text{and} \quad \delta_- f(x_n) = \frac{f(x_n) - f(x_{n-1})}{h}.$$

→ Method of order 2 for internal nodes $\{x_i\}_{i=1}^{n-1}$ and order 1 for x_0 and x_n

Approximating $f'(x)$ at multiple nodes

Restore the full convergence order 2 in h for all the nodes $\{x_i\}_{i=0}^n$ using the following finite differences schemes at x_0 and x_n :

$$\delta_{c,0}f(x_0) = \frac{-3f(x_0) + 4f(x_1) - f(x_2)}{2h}$$

and

$$\delta_{c,n}f(x_n) = \frac{f(x_{n-2}) - 4f(x_{n-1}) + 3f(x_n)}{2h}$$

because

- $\delta_{c,0}f(x_0) = (\Pi_{2,\{x_0, x_1, x_2\}} f)'(x_0)$ where $(\Pi_{2,\{x_0, x_1, x_2\}} f)'(x)$ is polynomial of degree 2 interpolating $f(x)$ at $\{x_i\}_{i=0}^2$
- $\delta_{c,n}f(x_n) = (\Pi_{2,\{x_{n-2}, x_{n-1}, x_n\}} f)'(x_n)$ where $(\Pi_{2,\{x_{n-2}, x_{n-1}, x_n\}} f)'(x)$ is polynomial of degree 2 interpolating $f(x)$ at $\{x_i\}_{i=n-2}^n$