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Nonlinear Equations

Objective: Approximate numerically the root of scalar (or vector) non-linear
function f (x), i.e.
find α ∈ R such that f (α) = 0 in the interval I = (a, b) ⊆ R

4 of 71



Examples of nonlinear equations

Example 1 (Interest rates). We want to compute the mean interest rate I
of a portfolio over several years. We invest v = 1000CHF every year. After
5 years, we end up with M = 6000CHF. The relation between M, v , I , and
the number of years n is:

M = v
n∑

k=1

(1 + I )k = v
1 + I

I
[(1 + I )n − 1] .

This can be rewritten as: find I such that

f (I ) = M − v
1 + I

I
[(1 + I )n − 1] = 0. (1)

Therefore, we have to solve a nonlinear equation in I , for which we can’t
find an analytical solution.
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Examples of nonlinear equations

Example 2 (State equation of a gas). We
want to determine the volume V occupied by
a gas at temperature T and pressure p. The
state equation (i.e., the equation that relates
p, V , and T ) is:(

p +
aN2

V 2

)
(V − Nb) = kNT ,

where a and b are two coefficients that
depend on the specific gas, N is the number
of molecules contained in the volume V , and
k is the Boltzmann constant. We need,
therefore, to solve a nonlinear equation whose
root is V .
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Bisection method (book chap 2.1)

■ Compute the root of a continuous function f , i.e., the point α such that
f (α) = 0.

■ Build a sequence x (0), x (1), . . . , x (k), with x (0) such that limk→∞ x (k) = α.
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Foundation of the bisection method

Theorem 1 (Theorem 2.1 in book)
Zeros of a continuous function
Let f (x) be a continuous function in I = (a, b), that is f ∈ C 0([a, b]).
If f (a)f (b) < 0, then there exists at least one zero α ∈ I of the function
f (x).
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Bisection method: algorithm

■ Assume there exists an unique zero α ∈ (a, b) of f ∈ C 0([a, b]) and
f (a)f (b) < 0

■ Search α by recursively approximating it with the sequence of mid-points
of subintervals I (k) of I = (a, b) for which f (x) changes sign
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Bisection method: first step

Then start on I (0) = (a(0), b(0)) = I = (a, b):

1. We set a(0) = a, b(0) = b, and x (0) = a(0)+b(0)

2 .

2. If f (x (0)) = 0, then x (0) is the zero.

3. If f (x (0)) ̸= 0, then:

3.1 If f (x (0))f (a(0)) > 0 =⇒ the zero α ∈ (x (0), b(0)), and we define:

a(1) = x (0), b(1) = b(0), x (1) =
a(1) + b(1)

2

3.2 If f (x (0))f (a(0)) < 0 =⇒ the zero α ∈ (a(0), x (0)), and we define:

b(1) = x (0), a(1) = a(0), x (1) =
a(1) + b(1)

2

Continue recursively on I (1) = (a(1), b(1)), . . . I (k) = (a(k), b(k)) till
convergence.
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Bisection method: example
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Computational error of the bisection method

By repeating divisions of this type, we construct the sequence
x (0), x (1), . . . , x (k) that satisfies for all k :

|I (k)| := b(k) − a(k) ≡ |I (k−1)|
2

for all k ≥ 1,

|I (k)| = |I (0)|
2k

=
b − a

2k
for all k ≥ 0.

13 of 71



Computational error of the bisection method

By repeating divisions of this type, we construct the sequence
x (0), x (1), . . . , x (k) that satisfies for all k :

|I (k)| := b(k) − a(k) ≡ |I (k−1)|
2

for all k ≥ 1,

|I (k)| = |I (0)|
2k

=
b − a

2k
for all k ≥ 0.

13 of 71



Bounding the computational error

Define computational error as

e(k) = |x (k) − α|

and the error estimator as

ẽ(k) := |I (k+1)| = b − a

2k+1
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Bounding the computational error

We have:

e(k) ≤ ẽ(k) := |I (k+1)| = b − a

2k+1
for all k ≥ 0. (2.1)

This implies that the bisection method is convergent; indeed

lim
k→+∞

e(k) = 0

since e(k) ≤ ẽ(k) for all k ≥ 0 and

lim
k→+∞

ẽ(k) = lim
k→+∞

b − a

2k+1
= 0.
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Convergence order

Definition 2 (Definition 2.1 in book)
An iterative method for the approximation of the zero α of the function f (x)
is convergent with order p if and only if

lim
k→+∞

|x (k+1) − α|
|x (k) − α|p

= µ, (1)

with µ > 0 a real number independent of k , which is called the asymptotic
convergence factor. In the case of linear convergence, i.e., for p = 1, we
need 0 < µ < 1.
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No convergence order for bisection method

■ The error may not be monotonically convergent, i.e., it is possible that
e(k+1) > e(k) for some k ≥ 0;

■ A convergence order cannot be established according to Eq. (1)

The sequence of error estimators {ẽ(k)} is
linearly convergent according to Eq. (1) with
p = 1 and µ = 1

2 ; indeed:

ẽ(k+1)

ẽ(k)
=

(b − a)/2k+2

(b − a)/2k+1
=

1

2
for all k ≥ 0.
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Algorithm of bisection method

Algorithm 1 Bisection Method
Require: f , a, b, tol, kmax

Assert: α
1: Set k = 0, a(0) = a, b(0) = b, x (0) = a+b

2 , ee(0) = b−a
2

2: while ẽ(k) > tol and k < kmax do
3: if f (x (k)) = 0 then

4: Set α = x (k)

5: return
6: else if f (a(k))f (x (k)) < 0 then

7: Set a(k+1) = a(k), b(k+1) = x (k)

8: else if f (b(k))f (x (k)) < 0 then

9: Set a(k+1) = x (k), b(k+1) = b(k)

10: end if

11: Set x (k+1) = a(k+1)+b(k+1)

2

12: Set ẽ(k+1) = b(k+1)−a(k+1)

2
13: Set k = k + 1
14: end while
15: Set α = x (k)
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Bisection method: example

Example 3. We want to find the zero of the function
f (x) = sin(2x)− 1 + x .
We draw the graph of the function f using Matlab
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Bisection method: example

If we apply the bisection method in the interval [−1, 1] with a tolerance of
10−8 and a maximum number of iterations kmax = 1000, using the following
command in Matlab:

[zero, res, niter] = bisection(f, -1, 1, 1e-8, 1000);

We find the value α = 0.352288462 after 27 iterations.
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Newton method (book, chap 2.2)

Let f : R → R, f ∈ C 0(I ), be a differentiable function in I = (a, b).
Let x (0) be an initial guess. Consider the equation of the tangent line to the
curve (x , f (x)) at coordinate x (k) and with slope f ′(x (k)):

y(x) = f (x (k)) + f ′(x (k))(x − x (k)).

Newton method searches the new iterate x (k+1) at the intersection between
the tangent line and the x-axis, i.e.,

y(x (k+1)) = 0.

We deduce the Newton iterate:

x (k+1) = x (k) − f (x (k))

f ′(x (k))
, k = 0, 1, 2, . . . ,

provided f ′(x (k)) ̸= 0 for all k ≥ 0.
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Newton method

Starting from the point x (0), the root of f is obtained as the limit of the
sequence {x (k)}∞k=0.
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Newton method: algorithm

Algorithm 2 Newton Method

Require: f , x (0), tol, kmax

Assert: α
1: Set k = 0
2: while stopping criterion is false do

3: Set x (k+1) = x (k) − f (x (k))
f ′(x (k))

4: Set k = k + 1
5: end while
6: Set α = x (k)
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Newton method and Taylor expansion

Assume f ∈ C 2(I ), then the Taylor expansion of f (x) around x (k) is:

f
(
x (k+1)

)
= f

(
x (k)

)
+ f ′

(
x (k)

)
(x (k+1) − x (k)) + O

(
(x (k+1) − x (k))2

)
If f

(
x (k+1)

)
= 0, then the Newton method is the first-order approximation

of the Taylor expansion of f (x) around x (k);
in order to satisfy this assumption, one needs x (k+1) − x (k) to be ”small.”
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Convergence

Does this method always converge?
■ it depends on the property of the function;
■ and on the initial guess x (0) (should be ”sufficiently” close to the zero α).
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Convergence of the Newton method

Proposition 3 (Proposition 2.2 in book)
If

■ f ∈ C 1(I ),

■ x (0) is ”sufficiently” close to α ∈ I , and

■ f ′(α) ̸= 0,

then the Newton method is convergent to α, provided that f ′(x (k)) ̸= 0 for
all k ≥ 0.
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Convergence order of the Newton method

Proposition 4 (Proposition 2.3 in book)
Let Iα be a neighborhood of α. If f ∈ C 2(Iα), x

(0) is ”sufficiently” close to
α, and f ′(α) ̸= 0, then the Newton method is convergent with order 2
(quadratically) to α, provided that f ′(x (k)) ̸= 0 for all k ≥ 0. We have:

lim
k→+∞

x (k+1) − α

(x (k) − α)2
=

1

2

f ′′(α)

f ′(α)
,

following Eq. (1), p = 2 is the convergence order and µ = 1
2
f ′′(α)
f ′(α) is the

asymptotic convergence factor.

Proof.
Interpretation as a fixed point iterations method, next lecture !
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Zero multiplicity

Definition 5 (Definition 2.2 in book)
Let f ∈ Cm(Iα), with m ∈ N such that m ≥ 1.

The zero α ∈ Iα is said to be of multiplicity m if f (i)(α) = 0 for all
i = 0, . . . ,m − 1 and f (m)(α) ̸= 0.

If m = 1, the zero α is called simple; otherwise, it is called multiple.
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Convergence order of Newton, zero multiple

Proposition 6 (Proposition 2.4 in book)
If f ∈ C 2(Iα) ∩ Cm(Iα) and x (0) is ”sufficiently” close to the zero α of
multiplicity m > 1, then the Newton method is convergent with order 1
(linearly) to α, provided that f ′(x (k)) ̸= 0 for all k ≥ 0. In particular,
following Eq. (1), we have:

lim
k→+∞

|x (k+1) − α|
|x (k) − α|

= µ,

with p = 1 being the convergence order and µ ∈ (0, 1) the asymptotic
convergence factor.
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Modified Newton method

■ Assume f ∈ Cm(Iα), with α ∈ Iα and m ≥ 1 the multiplicity of α.

■ The modified Newton iterate is:

x (k+1) = x (k) −m
f (x (k))

f ′(x (k))
, k = 0, 1, 2, . . . ,

provided f ′(x (k)) ̸= 0 for all k ≥ 0.

■ Requires knowledge or estimation of the multiplicity m
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Convergence order of modified Newton method

Proposition 7 (Proposition 2.5 in book)
If f ∈ C 2(Iα) ∩ Cm(Iα), with m ≥ 1 the multiplicity of the zero α ∈ Iα, and
x (0) is “sufficiently” close to α,

then modified Newton is convergent with order 2 to α, provided that
f ′(x (k)) ̸= 0 for all k ≥ 0.
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Stopping criterion for Newton

■ Since α is unknown, the error e(k) = |x (k) − α| is also unknown
=⇒ need to use estimators

■ Criterion based on difference of succesive iterates (discuss next lecture)
stop algorithm when ẽ(k) < tol , where

ẽ(k) =

{
|δ(k−1)| if k > 0

tol + 1 if k = 0
with δ(k) := x (k+1) − x (k) for k ≥ 0.

■ Criterion based on residual

ẽ(k) = |r (k)| with r (k) := f (x (k)), for k ≥ 0
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Criterion based on residual
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Newton method: algorithm

Algorithm 3 Newton’s Method

Require: f , x (0), tol, kmax

Assert: α
1: Set k = 0, ẽ(0) = tol + 1
2: while ẽ(k) > tol and k < kmax do

3: Set x (k+1) = x (k) − f (x (k))
f ′(x (k))

4: Set ẽ(k+1) = |x (k+1) − x (k)|
5: Set k = k + 1
6: end while
7: Set α = x (k)
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Quasi-Newton methods

■ Approximate f ′
(
x (k)

)
by computationally feasible q(k) ≈ f ′

(
x (k)

)
.

■ Quasi-Newton iterate is

x (k+1) = x (k) − f (x (k))

q(k)
, k = 0, 1, 2, . . .

□ Rope method:

q(k) =
f (b)− f (a)

b − a
, for all k ≥ 0, α ∈ (a, b)

□ Secant method (order of convergence p = 1.6 if zero α is simple):

q(k) =
f (x (k))− f (x (k−1))

x (k) − x (k−1)
, for all k ≥ 1
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Rope and secant method at iterate x (k)

q(k) =
f (b)− f (a)

b − a
, q(k) =

f (x (k))− f (x (k−1))

x (k) − x (k−1)
,

for all k ≥ 0, α ∈ (a, b) for all k ≥ 1
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Fixed point of a function

Definition 2.4: Given the iteration function ϕ : [a, b] ⊆ R → R, we say that
α ∈ R is a fixed point of ϕ if and only if ϕ(α) = α.
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Fixed point iterations (chap 2.3 in book)

Find the roots of nonlinear f (x) = 0 by solving the equivalent problem:

ϕ : [a, b] → R. x − ϕ(x) = 0,

where ϕ must have the following property:

ϕ(α) = α if and only if f (α) = 0

=⇒ Search for zeros of f by determining the fixed points of ϕ

Idea: It could be computed by the following algorithm:

x (k+1) = ϕ(x (k)), k ≥ 0.

Indeed, if x (k) → α and if ϕ is continuous on [a, b], then the limit α satisfies
ϕ(α) = α.
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Fixed point iterations (example)

Starting from the point x (0), the sequence {x (k)} converges to the fixed
point α.
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Example

Consider f (x) = sin(2x)− 1 + x = 0. We can rewrite it in two different
fashions. Using f (α) + α = α,

x = ϕ1(x) = 1− sin(2x),

or setting f (x) = 0,

x = ϕ2(x) =
1

2
arcsin(1− x), 0 ≤ x ≤ 1.
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Global convergence in an interval

Proposition 8 (Proposition 2.7)
Consider iteration function ϕ : R → R and the fixed point iterations.

1. If ϕ ∈ C 0([a, b]) and ϕ(x) ∈ [a, b] for all x ∈ [a, b], then there exists at
least one fixed point α ∈ [a, b] of ϕ(x).

2. If, in addition, ∃L ∈ [0, 1) s.t.

|ϕ(x1)− ϕ(x2)| ≤ L|x1 − x2|

for all x1, x2 ∈ [a, b], then the fixed point α is unique in [a, b] and the
fixed point iterations algorithm converges, for all the initial guesses
x (0) ∈ [a, b]:

lim
k→+∞

x (k) = α
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Proof of Proposition 2.7

1. Existence Consider the function g(x) = ϕ(x)− x
Since ϕ(x) ∈ [a, b] for all x ∈ [a, b], we have g(a) = f (a)− a ≥ 0 and
g(b) = f (b)− b ≤ 0, for which g(a)g(b) ≤ 0.
By applying the theorem of zeros of a continuous function, there exists at
least a zero α of g(x) in [a, b]; i.e. ϕ has at least one fixed point in [a, b].

2. Uniqueness Indeed should two different fixed points exist, α1 and α2,
then

|α1 − α2| = |ϕ(α1)− ϕ(α2)| ≤ L|α1 − α2| < |α1 − α2|

which cannot be. There exists a unique fixed point α ∈ [a, b] of ϕ
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Proof of Proposition 2.7 (contd)

Convergence
Let x (0) ∈ [a, b] and x (k+1) = ϕ(x (k)). We have

0 ≤ |x (k+1) − α| = |ϕ(x (k))− ϕ(α)| ≤ L|x (k) − α| ≤ · · · ≤ Lk+1|x (0) − α|,

i.e.
|x (k) − α|
|x (0) − α|

≤ Lk .

Because L < 1, for k → ∞, we obtain

lim
k→∞

|x (k) − α| ≤ lim
k→∞

Lk = 0.

So, for all x (0) ∈ [a, b], the sequence {x (k)} defined by x (k+1) = ϕ(x (k)),
k ≥ 0, converges to α when k → ∞.
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Global convergence in an interval

Proposition 9 (Proposition 2.8)
If ϕ ∈ C 1([a, b]), ϕ(x) ∈ [a, b] for all x ∈ [a, b], and

|ϕ′(x)| < 1 for all x ∈ [a, b],

then there exists a unique fixed point α ∈ [a, b], and
the fixed point iterations method converges for all x (0) ∈ [a, b] with at least
linear order (i.e., order 1), that is:

lim
k→+∞

x (k+1) − α

x (k) − α
= ϕ′(α),

with ϕ′(α) being the asymptotic convergence factor.

Note: If 0 < |ϕ′(α)| < 1, then for any constant C s.t. |ϕ′(α)| < C < 1, if k
is large enough, we have:

|x (k+1) − α| ≤ C |x (k) − α|.
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Local convergence in a neighborhood of α

Theorem 10 (Theorem 2.9)
Lagrange Mean Value Theorem. If the function g ∈ C 1([a, b]), then
there exists ξ ∈ (a, b) such that

g(a)− g(b) = g ′(ξ)(a− b).
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Local convergence in a neighborhood of α

Proposition 2.10 — Ostrowski, local convergence in a neighborhood
of the fixed point. If ϕ ∈ C 1(Iα), with Iα a neighborhood of the fixed point
α of ϕ(x), and

|ϕ′(α)| < 1,

then, if the initial guess x (0) is “sufficiently” close to α, the fixed point
iterations method converges with at least linear order (i.e., order 1), that is:

lim
k→+∞

x (k+1) − a

x (k) − a
= ϕ′(α),

with ϕ′(α) being the asymptotic convergence factor.
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Proof

We only show that the method is at least linearly convergent.
Lagrange Theorem 2.9: there exists ξ(k) ∈ (a, x (k)) s.t.

x (k+1) − α = ϕ
(
x (k)

)
− ϕ(α) = ϕ′

(
ξ(k)

)(
x (k) − α

)
,

If limk→+∞ x (k) = α, then also limk→+∞ ξ(k) = α, and hence

lim
k→+∞

x (k+1) − α

x (k) − α
= lim

k→+∞
ϕ′

(
ξ(k)

)
= ϕ′(α).
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Examples

Some examples on how the value ϕ′(α) influences the convergence.
Convergent cases:
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Examples

Some examples on how the value ϕ′(α) influences the convergence.
Divergent cases:
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■ If |ϕ′(α)| < 1 and x (0) is “sufficiently” close to α,
the method converges to α with at least linear order

■ If |ϕ′(α)| = 1
the method may either converge or diverge

■ If |ϕ′(α)| > 1 and x (0) ̸= α,
the convergence of the method to α is impossible
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Local convergence in a neighborhood of the fixed point

Proposition 11 (Proposition 2.11 in book)
If ϕ ∈ C 2(Iα), with Iα a neighborhood of the fixed point α of ϕ(x),
ϕ′(α) = 0, and ϕ′′(α) ̸= 0, then, if the initial guess x (0) is “sufficiently”
close to α, the fixed point iterations method converges with order 2,

lim
k→+∞

x (k+1) − α(
x (k) − α

)2 =
1

2
ϕ′′(α),

with 1
2ϕ

′′(α) being the asymptotic convergence factor.

Proof: Using the Taylor series for ϕ with x = α, we have

x (k+1) − α = ϕ(x (k))− ϕ(α) = ϕ′(α)(x (k) − α) +
ϕ′′(ξ)

2
(x (k) − α)2,

where ξ is between x (k) and α. So, we have

lim
k→∞

x (k+1) − α

(x (k) − α)2
= lim

k→∞

ϕ′′(ξ)

2
=

ϕ′′(α)

2
.
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Generalization of the result

Proposition 12 (Proposition 2.12 in book)
If ϕ ∈ C p(Iα) for p > 1, with Iα a neighborhood of the fixed point α of
ϕ(x), ϕ(i)(α) = 0 for all i = 1, . . . , p− 1, and ϕ(p)(α) ̸= 0, then, if the initial
guess x (0) is “sufficiently” close to α, the fixed point iterations method
converges with order p, that is:

lim
k→+∞

x (k+1) − α(
x (k) − α

)p =
1

p!
ϕ(p)(α),

with 1
p!ϕ

(p)(α) being the asymptotic convergence factor.
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Example

Consider f (x) = sin(2x)− 1 + x = 0. We have used the fixed point

algorithms using the two functions ϕ1 and ϕ2 with initial value x (0) = 0.7.
Remember that both have the same fixed point α.

x = ϕ1(x) = 1− sin(2x),

x = ϕ2(x) =
1

2
arcsin(1− x), 0 ≤ x ≤ 1.

>> [p1,res1,niter1] = fixpoint(phi1, 0.7, 1e-8, 1000);

>> [p2,res2,niter2] = fixpoint(phi2, 0.7, 1e-8, 1000);

The fixed point algorithm with the first function does not converge, while
with the second one it converges to α = 0.352288459558650 in 44 iterations.

Indeed, ϕ′
1(α) = −1.5237713 and ϕ′

2(α) = −0.65626645.
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Stopping criterion for fixed point iterations

■ Estimate the error e(k) = |x (k) − α| by the difference of succesive iterates
stop algorithm when ẽ(k) < tol , where

ẽ(k) =

{
|δ(k−1)| if k ≥ 1

tol + 1 if k = 0
with δ(k) := x (k+1) − x (k) for k ≥ 0.

■ If ϕ ∈ C 1(Iα), by Lagrange Mean Value Theorem,

∃ξ(k) between x (k) and α s.t. x (k+1)−α = ϕ(x (k))−ϕ(α) = ϕ′(ξ(k))(x (k)−α)

■ We also have:

x (k+1) − α = x (k+1) − x (k) + x (k) − α = δk + x (k) − α

■ We obtain

x (k) − α = − 1

1− ϕ′(ξ(k))
δk
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Stopping criterion for fixed point iterations

e(k) = x (k) − α = − 1

1− ϕ′(ξ(k))
δk

In a neighbourhood of α, ϕ′(ξ(k)) ≈ ϕ′(α)

■ if ϕ′(α) is near to 1, the test is not satisfactory since e(k) ≪ ẽ(k+1)

■ if ϕ′(α) = 0, the criterion is optimal (second order methods)

■ if ϕ′(α) ≈ 0, the criterion is satisfactory
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Newton method as a fixed point iterations method

Consider the iterate of the Newton method

x (k+1) = x (k) − f (x (k))

f ′(x (k))
, k = 0, 1, 2, . . . ,

The Newton method is a fixed point method x (k+1) = ϕ(x (k)) for the
function:

ϕN(x) = x − f (x)

f ′(x)
.

We deduce properties of the Newton method from those of ϕN(x)
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Proposition 13 (Proposition 2.13 in book)
If f ∈ Cm(Iα), with Iα a neighborhood of the zero a and m − 1 the
multiplicity of α, for the iteration function xN(x) of Eq. (2.8), we have

ϕ′
N(α) = 1− 1

m
.

Proof. The proof is reported in Exercises Series 4
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Convergence of Newton method, α simple zero

For Newton, the zero α ∈ Iα is said to be of multiplicity m if f (i)(α) = 0 for
all i = 0, . . . ,m − 1 and f (m)(α) ̸= 0.

If m = 1, f (α = 0), and f ′(α) ̸= 0, the zero α is called simple; otherwise, it
is called multiple.
Remark 2.14 From Proposition 2.13, if α is a simple zero (m = 1), we have

ϕ′
N(α) = 1− 1

m
= 1− 1 = 0.
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Convergence of Newton method, α simple zero

Corollary 14 (Corollary 2.14 from book)
If f ∈ C 2(Iα), α is a simple zero (m = 1), and x (0) is “sufficiently” close to
α, then the Newton method converges with order 2 (quadratically). Indeed:

lim
k→+∞

x (k+1) − α(
x (k) − α

)2 =
1

2
ϕ′′
N(α) =

1

2

f ′′(α)

f ′(α)
,

where f ′′N (α) is the second derivative of the Newton iteration function at α.

Proof.
Considering ϕN(x) = x − f (x)

f ′(x) , apply Propositions 2.11, 2.12, and

Proposition 2.13.
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Convergence of Newton method, multiplicity m > 1

Corollary 15 (Corollary 2.15 from book)
If f ∈ Cm(Iα), α is a zero of multiplicity m > 1, and x (0) is “sufficiently”
close to α, then the Newton method converges with order 1 (linearly),

lim
k→+∞

x (k+1) − α

x (k) − α
= ϕ′

N(α) = 1− 1

m
̸= 0.

Proof.
Considering ϕN(x) = x − f (x)

f ′(x) , apply Proposigtion 2.10 and Proposition
2.13.
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Examples of nonlinear equations

Example 1 (Interest rates). We want to compute the mean interest rate I
of a portfolio over several years. We invest v = 1000CHF every year. After
5 years, we end up with M = 6000CHF. The relation between M, v , I , and
the number of years n is:

M = v
n∑

k=1

(1 + I )k = v
1 + I

I
[(1 + I )n − 1] .

This can be rewritten as: find I such that

f (I ) = M − v
1 + I

I
[(1 + I )n − 1] = 0. (1)

Therefore, we have to solve a nonlinear equation in I , for which we can’t
find an analytical solution.
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Example 1 (Interest rates)

We draw the graph of

f (I ) = M − v
1 + I

I
[(1 + I )n − 1]

on the interval [0.010.3] with M = 6000, v = 1000, and n = 5:
>> f=@(x) 6000-1000*(1+x).*((1+x).^5 - 1)./x;

>> I = [0.01:0.001:0.3];

>> grid on;plot(I,feval(f,x));
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Example 1 (Interest rates)

■ The root of f is between 0.05 and 0.1.

■ Apply the bisection method on the interval [0.05, 0.1] with a tolerance
10−5

>> [zero,res,niter]=bisection(f,0.05,0.1,1e-5,1000);

■ The approximate solution after 12 iterations is x = 0.061407470703125.

■ Apply the Newton method with initial guess x (0) = 0.05

>> df=@(x) 1000*((1+x).^5.*(1-5*x) - 1)./(x.^2);

>> [zero,res,niter]=newton(f,df,.05,1e-5,1000);

■ The result is approximately the same, but we need only 3 iterations

■ The interest rate is 6.14%.
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Examples of nonlinear equations

Example 2 (State equation of a gas). We want to
determine the volume V occupied by a gas at
temperature T and pressure p. The state equation
(i.e., the equation that relates p, V , and T ) is:(

p +
aN2

V 2

)
(V − Nb) = kNT ,

where a and b are two coefficients that depend on the

specific gas, N is the number of molecules contained

in the volume V , and k is the Boltzmann constant.

We consider the carbon dioxide (CO2), for which a = 0.401Pa ·m6 and
b = 42.7× 10−6 m3.
We search the volume occupied by N = 1000 molecules of CO2 at temperature
T = 300K and pressure p = 3.5× 107 Pa.

We know that the Boltzmann constant is k = 1.3806503× 10−23 Joule · K−1.
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Example 2 (State equation of a gas)

We draw the graph of the function

f (V ) =

(
p +

aN2

V 2

)
(V − Nb)− kNT

for V > 0. We do not consider V < 0 (it does not have physical sens),
because V is the volume of gas.

We use the commands in Matlab:

>> a=0.401; b=42.7e-6; p=3.5e7; T=300; N=1000; k=1.3806503e-23;

>> f =@(x,p,T,a,b,N,k)(p+a*((N./x).^2)).*(x-N*b)-k*N*T;

>> x=[0.03:0.001:0.1];

>> plot(x,f(x,p,T,a,b,N,k))

>> grid on
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Example 2 (State equation of a gas)

We obtain the graph of the function f (V ):
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Example 2 (State equation of a gas)

We see that there is a zero for 0.03 < V < 0.1. If we apply the bisection
method on the interval [0.03, 0.1] with a tolerance of 10−12:

[zero, res, niter] = bisection(f , 0.03, 0.1, 1× 10−12, 1000, p,T , a, b,N, k);

then we find, after 36 iterations, the value V = 0.0427.
If we use the Newton method with the same tolerance, starting from the
initial point x (0) = 0.03,

>> df = @(x,p,T,a,b,N,k) -2*a*N^2/ (x^3)*(x - N*b) + (p + a*((N)/(x)).^2);

>> [zero,res,niter] = newton(f, df, 0.03, 1e-12, 1000, p, T, a, b, N, k);

then we find the same solution after 6 iterations.

The conclusion is that the volume V occupied by the gas is 0.0427m3.
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Modified Newton method

For the iterate of the modified Newton method

x (k+1) = x (k) −m
f (x (k))

f ′(x (k))
, k = 0, 1, 2, . . . ,

associate the iteration function ϕmN(x) defined as:

ϕmN(x) = x −m
f (x)

f ′(x)
,

where m is the multiplicity of the zero α.
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Convergence of modified Newton

Proposition 16 (Proposition 2.16 from book)
If f ∈ Cm(Iα), with Iα a neighborhood of the zero α and m − 1 the
multiplicity of α, for the iteration function ϕmN(x), we have

ϕ′
mN(α) = 1− m

m
= 0 for all m ≥ 1.

Proof.
The result follows analogously to that of Proposition 2.13, reported in exercise series

Corollary 17 (Corollary 2.17 from book)
If f ∈ C 2(Iα) ∩ Cm(Iα), α is a zero of multiplicity m − 1, and x (0) is
“sufficiently” close to α, then the modified Newton method converges with
order 2 (quadratically).

Proof.
From Proposition 2.11, 2.12, 2.16.
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