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Numerical solution of a non-linear equation

3or71 1



Nonlinear Equations

Objective: Approximate numerically the root of scalar (or vector) non-linear

function f(x), i.e.
find @ € R such that f(a) = 0 in the interval / = (a,b) CR

Y £(x)

a2
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Examples of nonlinear equations

Example 1 (Interest rates). We want to compute the mean interest rate /
of a portfolio over several years. We invest v = 1000 CHF every year. After
5 years, we end up with M = 6000 CHF. The relation between M, v, I, and
the number of years n is:

M:vi(1+l)k:v¥[(1+l)"—1].

k=1

This can be rewritten as: find / such that

F(1) = M_vl%’ (1+/)"—1]=o0. (1)

Therefore, we have to solve a nonlinear equation in /, for which we can't
find an analytical solution.
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Examples of nonlinear equations

Example 2 (State equation of a gas). We
want to determine the volume V occupied by
a gas at temperature T and pressure p. The
state equation (i.e., the equation that relates
p, V,and T)is:

2
<p+ %) (V — Nb) = kNT,
where a and b are two coefficients that
depend on the specific gas, N is the number
of molecules contained in the volume V/, and
k is the Boltzmann constant. We need,
therefore, to solve a nonlinear equation whose
root is V.
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Bisection method (book chap 2.1)

= Compute the root of a continuous function f, i.e., the point « such that
f(a) =0.
» Build a sequence x(9, x(M . x(K) with x(© such that limy_,.. x(¥) = a.

A
Y\ f(x)
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Foundation of the bisection method

Theorem 1 (Theorem 2.1 in book)

Zeros of a continuous function

Let f(x) be a continuous function in | = (a, b), that is f € C°([a, b]).
If f(a)f(b) < O, then there exists at least one zero o € | of the function
f(x).
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Bisection method: algorithm

= Assume there exists an unique zero a € (a, b) of f € C°([a, b]) and
f(a)f(b) <0

® Search « by recursively approximating it with the sequence of mid-points
of subintervals /() of | = (a, b) for which f(x) changes sign
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Bisection method: first step

Then start on /) = (2@ b)) = | = (a, b):
1. We set a® = 3, p(©) = p, and x(© = M.
2. 1f £(x(9) =0, then x(?) is the zero.

3. 1f £(x()) £ 0, then:
31 0 F(x@)F(a?) >0 = the zero a € (x¥, b©), and we define:

(1)

1 1
a O pM Zp0 0 a + b

= X s 2
32 If F(x)F(a?) <0 = the zero a € (a?, x(?), and we define:

W 4 pm
B = x©@ L0 _ j0 ) %



Bisection method: first step

Then start on /) = (2@ b)) = | = (a, b):
1. We set a® = 3, p(©) = p, and x(© = M.
2. 1f £(x(9) =0, then x(?) is the zero.

3. 1f £(x()) £ 0, then:
31 0 F(x@)F(a?) >0 = the zero a € (x¥, b©), and we define:

1 1
JRE NN R R C a + b

2

32 If F(x)F(a?) <0 = the zero a € (a?, x(?), and we define:

W 4 pm
B = x©@ L0 _ j0 ) %

Continue recursively on /() = (a1 p()) . 10 = (a(k) p(K)) il
convergence.



Bisection method: example

f(x)

[

I

Step 0. .
P © a® +p© 1
=== !

I

10 = (a,60) = 1 = (a,b) and
0 _@9+6% _a+b
2 2

0@ =4

10 = (0,5 = I = (a,b)
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Bisection method: example

PACY
Step 1.

Since f (x© f(b(OJ <0
a = 5Oy —p,
1M =(a j b<1>)=( ©)p), and
0 a<l)+b(1) 04y
T2 T2

1
1
I
I
l X
Il

20 bW =p

10 = (@M, M) = (2, )

—_—
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Bisection method: example

Step 2.

Since f (x(l)) f (a(l)) <0:
a® =a® p@ = 1) o/
1 = (2@ p@) = (a® xM), and
L a@ +p@ _ a4 x(®

2 2

1® = (a@,0®) = (M, 2V)
—_—
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Computational error of the bisection method

By repeating divisions of this type, we construct the sequence
x© xM . x(K) that satisfies for all k:

1]

O = pk) — g =1 forall k>1,
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Computational error of the bisection method

By repeating divisions of this type, we construct the sequence

x© xM . x(K) that satisfies for all k:
k k K _ D)
O = pk) — g =1 forall k>1,
1(0) b—
0= P 222 o k>0
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Bounding the computational error

Define computational error as

elk) — |X(/<) —al
and the error estimator as

k) . |,(k+1)| _ b—a

& Dk+1




Bounding the computational error

We have: b
~ —a
el < &k .= |jk+1)) = S forall k> 0. (2.1)
This implies that the bisection method is convergent; indeed
lim e =0
k—+o00

since e(k) < &) for all k > 0 and

im &0 = fim 272

—— = 0.
k—+o00 k—+oo 2k+1
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Convergence order

Definition 2 (Definition 2.1 in book)

An iterative method for the approximation of the zero « of the function f(x)
is convergent with order p if and only if
x4 o
lim

Am R e (1)

with p > 0 a real number independent of k, which is called the asymptotic
convergence factor.
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Convergence order

Definition 2 (Definition 2.1 in book)

An iterative method for the approximation of the zero « of the function f(x)
is convergent with order p if and only if

|X(k+1) —qf
lim

Am R e (1)

with p > 0 a real number independent of k, which is called the asymptotic
convergence factor. In the case of linear convergence, i.e., for p =1, we
need 0 < pu < 1.
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No convergence order for bisection method

= The error may not be monotonically convergent, i.e., it is possible that
eltk+t1) > oK) for some k > 0;

m A convergence order cannot be established according to Eq. (1)

[log]
o (k)
gk




No convergence order for bisection method

= The error may not be monotonically convergent, i.e., it is possible that
eltk+t1) > oK) for some k > 0;

m A convergence order cannot be established according to Eq. (1)

The sequence of error estimators {&(K)} is [log]
linearly convergent according to Eq. (1) with (k)
1. . €
p=1and p= 5 indeed: ’é(k)
5(k+1) _ 3)/2k+2 ~(k)
e _bzaR™ L k>0 e®) TN ©

&K T (b—a)/2k 2




Algorithm of bisection method

Algorithm 1 Bisection Method

Require: f, a, b, tol, kmax
Assert: «
1: Set k=0, a® = a, b©® = p, xO = ath, ee(®) = b=a

2
2: while &%) > tol and k < kmax do

3: if f(x()) = 0 then

4. Set a = x¥)

5: return

6: else if £(a¥)f(x¥) < 0 then

7: Set alkt1) = (k) pk+D) — 4 (k)
8: else if £(b))f(x¥) < 0 then

o Set alkrD) = () plk1) = b
10:  endif .

11: Set x(kt1) = ki) plktt) )gb( )

12: Set &(k+1) — pktD) —a(kt1)

13: Set k=k+1

14: end while

15: Set a = x(¥
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Bisection method: example

Example 3. We want to find the zero of the function
f(x) =sin(2x) — 1+ x.
We draw the graph of the function f using Matlab

109 =sin(24) -1 +x
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Bisection method: example

If we apply the bisection method in the interval [—1, 1] with a tolerance of
108 and a maximum number of iterations kmax = 1000, using the following
command in Matlab:

[zero, res, niter] = bisection(f, -1, 1, 1e-8, 1000);

We find the value o = 0.352288462 after 27 iterations.

100 =sin(2x) - 1+x

1 /\/
0 a
—1r
2+
3
—4

-3 -2 -1 0 1 2 3
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Newton method (book, chap 2.2)

Let f : R — R, f € C°(/), be a differentiable function in | = (a, b).
Let x(©) be an initial guess. Consider the equation of the tangent line to the
curve (x, f(x)) at coordinate x(¥) and with slope f/(x(¥)):

y() = F(x9) + F/(x) (x — x09)



Newton method (book, chap 2.2)

Let f : R — R, f € C°(/), be a differentiable function in | = (a, b).
Let x(©) be an initial guess. Consider the equation of the tangent line to the
curve (x, f(x)) at coordinate x(¥) and with slope f/(x(¥)):

y(x) = F(xR) 4 £/ (x1) (x — x0).

Newton method searches the new iterate x(K™1) at the intersection between
the tangent line and the x-axis, i.e.,

y(x) = o.



Newton method (book, chap 2.2)

Let f : R — R, f € C°(/), be a differentiable function in | = (a, b).
Let x(©) be an initial guess. Consider the equation of the tangent line to the
curve (x, f(x)) at coordinate x(¥) and with slope f/(x(¥)):

y(x) = F(xR) 4 £/ (x1) (x — x0).

Newton method searches the new iterate x(K™1) at the intersection between
the tangent line and the x-axis, i.e.,

y(x) = o.

We deduce the Newton iterate:

(x5

(k+1) — (k) _
X =X f’(x(k))’

k=0,1,2,...,
provided f'(x(K)) # 0 for all k > 0.



Newton method
Starting from the point x(%), the root of f is obtained as the limit of the
sequence {x(K) 1 .

A
y
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Newton method: algorithm

Algorithm 2 Newton Method

Require: f, x(9, tol, kmax

Assert: o

:Set k=0

while stopping criterion is false do
Set x(k+1) — y(K) _ :/((X‘(kk))))
Set k=k+1

end while

. Set o = x(¥

TR w N




Newton method and Taylor expansion

Assume f € C?(1), then the Taylor expansion of f(x) around x(¥) is:

£ (x<k+1)) —f (X(k)) Lf (X(k)) (xU+D) _ 5Ky 4 0 ((X(k+1> _ X(k))z)

2501 71 1



Newton method and Taylor expansion

Assume f € C?(1), then the Taylor expansion of f(x) around x(¥) is:
£ (X(k+1)) —f (X(k)) Lf (X(k)> (xU+D) _ 5Ky 4 0 ((X(k+1) _ X(k))Z)
If £ (x(*+1)) =0, then the Newton method is the first-order approximation

of the Taylor expansion of f(x) around x(¥):;
in order to satisfy this assumption, one needs x(**1) — x(k) to be "small.”
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Convergence

Does this method always converge?
= it depends on the property of the function;

= and on the initial guess x(%) (should be " sufficiently” close to the zero «).

///,@ <D <©

f(x)

26 of 71

£(x)

< x©)




Convergence of the Newton method

Proposition 3 (Proposition 2.2 in book)

If

= fe CYI),

= x( js "sufficiently” close to e € I, and

B f'(a) #0,

then the Newton method is convergent to a, provided that f'(x(K)) # 0 for
all k > 0.



Convergence order of the Newton method

Proposition 4 (Proposition 2.3 in book)

Let I, be a neighborhood of a. If f € C?(l,), x(©) is "sufficiently” close to
a, and f'(a) # 0, then the Newton method is convergent with order 2
(quadratically) to «, provided that f'(x()) # 0 for all k > 0. We have:

xkH) — o 1f7(a)
lim = - ,
k—too (x(K) —a)2 2 /()

following Eq. (1), p = 2 is the convergence order and p = % f(/,,((s)) is the

asymptotic convergence factor.

Proof.

Interpretation as a fixed point iterations method, next lecture ! ]
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Zero multiplicity

Definition 5 (Definition 2.2 in book)
Let f € C™(ly), with m € N such that m > 1.

The zero a € I, is said to be of multiplicity m if £()(a) = 0 for all
i=0,...,m—1and f(™M(a) #0.
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Zero multiplicity

Definition 5 (Definition 2.2 in book)
Let f € C™(1,), with m € N such that m > 1.

The zero a € I, is said to be of multiplicity m if £()(a) = 0 for all
i=0,...,m—1and f(™M(a) #0.

If m =1, the zero « is called simple; otherwise, it is called multiple.

29071 1



Convergence order of Newton, zero multiple

Proposition 6 (Proposition 2.4 in book)

If f € C?(l,) N C™(1,) and x(© s "sufficiently” close to the zero a of
multiplicity m > 1, then the Newton method is convergent with order 1
(linearly) to o, provided that f'(x%)) # 0 for all k > 0. In particular,
following Eq. (1), we have:

k+1)

lim |x( —al
| —_— =
k—+oo  |x(K) — qf K

with p = 1 being the convergence order and 11 € (0,1) the asymptotic
convergence factor.

0071 1



Modified Newton method

m Assume f € C™(l,), with o € I, and m > 1 the multiplicity of a.
® The modified Newton iterate is:

f(xk)
k1) — () _ (<)

AP k=0,1,2,...,

provided f'(x(K)) # 0 for all k > 0.

® Requires knowledge or estimation of the multiplicity m
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Convergence order of modified Newton method

Proposition 7 (Proposition 2.5 in book)

If f € C?(I,) N C™(ly), with m > 1 the multiplicity of the zero o € 1, and
x©) js “sufficiently” close to «,

then modified Newton is convergent with order 2 to «, provided that
f'(x(K)) £ 0 for all k > 0.

2071 1



Stopping criterion for Newton

= Since a is unknown, the error (k) = |x(k) — | is also unknown
= need to use estimators

3o 71 1



Stopping criterion for Newton

= Since a is unknown, the error (k) = |x(k) — | is also unknown
= need to use estimators

m Criterion based on difference of succesive iterates (discuss next lecture)
stop algorithm when &) < tol, where

k—1 H
k) _ {'5( k>0 500 L ) 0 g > 0.

tol+1 ifk=0

3o 71 1



Stopping criterion for Newton

= Since a is unknown, the error (k) = |x(k) — | is also unknown
= need to use estimators

m Criterion based on difference of succesive iterates (discuss next lecture)
stop algorithm when &) < tol, where

S0 _ {|§<k—1>| if k>0

with 60 .= x(k+1) _ (K for k> 0.
tol+1 ifk=0 -

m Criterion based on residual

&) = |r| with r9) .= F(x(9)),  for k >0

3o 71 1



Criterion based on residual

Satisfactory, &) ~ ¢(*) Unsatisfactory, &%) > ¢®) Unsatisfactory, &%) < e®)
(error overestimated) (error underestimated)
KA

} k
vk k) e

of x o NCEEE

(k) f) ok
f(x) f(x)
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Newton method: algorithm

Algorithm 3 Newton's Method

Require: f, x(0, tol, kmax
Assert: o

1. Set k=0, 80 =tol +1

2: while &%) > tol and k < knay do
3 Set xthh) = x( [

a:  Set &ktD) — |x(k+1) _ (k)|

5: Set k=k+1

6: end while

7: Set a = x(®)
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Quasi-Newton methods

= Approximate f’ (x(¥)) by computationally feasible g% ~ " (x(K)).

® Quasi-Newton iterate is

k
slk+1) — (k) _ M, k=0,1,2
q(k)

3601 71 1



Quasi-Newton methods

= Approximate f’ (x(¥)) by computationally feasible g% ~ " (x(K)).
® Quasi-Newton iterate is

k
(et 0 _FO) o
e

" Rope method:

g = w,fm all k>0,a € (a,b)

3601 71 1



Quasi-Newton methods

= Approximate f’ (x(¥)) by computationally feasible g% ~ " (x(K)).
® Quasi-Newton iterate is

k
(et 0 _FO) o
e

" Rope method:

g = w,fm all k>0,a € (a,b)

1 Secant method (order of convergence p = 1.6 if zero « is simple):

(k) (k—1)
w _ F(x)—f(x )
97 = @ e forallk>1

3601 71 1



Rope and secant method at iterate x(¥)

) _ f(x(K)) — F(x(k=1)

q(k) _ f(b) — f(a) q(k
b—a x(K) — x(k=1) 7
for all k > 0, € (a, b) forall k >1
Rope method Secant method
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Fixed point of a function

Definition 2.4: Given the iteration function ¢ : [a, 5] C R — R, we say that
«a € R is a fixed point of ¢ if and only if ¢(a) = a.

X a1 Qg Qg X

An unique fixed point Multiple fixed points No fixed point
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Fixed point iterations (chap 2.3 in book)

Find the roots of nonlinear f(x) = 0 by solving the equivalent problem:
¢:[a,b] = R. x—¢(x)=0,
where ¢ must have the following property:
¢(a) = aif and only if f(a) =0

= Search for zeros of f by determining the fixed points of ¢

w0071 1



Fixed point iterations (chap 2.3 in book)

Find the roots of nonlinear f(x) = 0 by solving the equivalent problem:
¢:[a,b] = R. x—¢(x)=0,

where ¢ must have the following property:
¢(a) = aif and only if f(a) =0

= Search for zeros of f by determining the fixed points of ¢

Idea: It could be computed by the following algorithm:
X+ — (xR k> 0.

Indeed, if x(X) — o and if ¢ is continuous on [a, b], then the limit « satisfies

d(a) = a.

w0011 1



Fixed point iterations (example)

Starting from the point x(%), the sequence {x(¥)} converges to the fixed
point .

20 JRENNETNEY
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Example

Consider f(x) =sin(2x) — 1 + x = 0. We can rewrite it in two different
fashions. Using f(a) + a = «,
x = ¢1(x) = 1 — sin(2x),

or setting f(x) =0,

1
X = ¢a(x) = 5 arcsin(l —x), 0<x<L
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Global convergence in an interval

Proposition 8 (Proposition 2.7)
Consider iteration function ¢ : R — R and the fixed point iterations.

1. If ¢ € C%([a, b]) and ¢(x) € [a, b] for all x € [a, b], then there exists at
least one fixed point « € [a, b] of ¢(x).

o 1



Global convergence in an interval

Proposition 8 (Proposition 2.7)
Consider iteration function ¢ : R — R and the fixed point iterations.

1. If ¢ € C%([a, b]) and ¢(x) € [a, b] for all x € [a, b], then there exists at
least one fixed point « € [a, b] of ¢(x).

2. If, in addition, 3L € [0,1) s.t.

lp(x1) — ¢(x2)| < Lixi — xo

for all x1,x, € [a, b], then the fixed point « is unique in [a, b] and the
fixed point iterations algorithm converges, for all the initial guesses
x( ¢ [a, b]:

lim x®) =«
k—+oc0

o 1



Proof of Proposition 2.7

1. Existence Consider the function g(x) = ¢(x) — x

Since ¢(x) € [a, b] for all x € [a, b], we have g(a) = f(a) —a >0 and
g(b) = f(b) — b <0, for which g(a)g(b) <O0.

By applying the theorem of zeros of a continuous function, there exists at
least a zero « of g(x) in [a, b]; i.e. ¢ has at least one fixed point in [a, b].

2. Uniqueness Indeed should two different fixed points exist, a; and ap,
then
la1 — o] = [p(au) — ¢(a2)| < Llew — aa| < [a1 — ay|

which cannot be. There exists a unique fixed point « € [a, b] of ¢



Proof of Proposition 2.7 (contd)

Convergence
Let x(O) € [a, b] and x(+1) = ¢(x(K)). We have

0.< D — o] = [9(x) — §la)| < Lix) —a] < -+ < L0 — al,

i.e. B
|X( ) — Oé| S Lk.
X® o]

Because L < 1, for k — oo, we obtain

lim [x¥) —a| < lim Lk =o0.
k— o0 k—o00

So, for all x(® € [a, b], the sequence {x(K)} defined by x(k*1) = ¢(x(¥)),
k > 0, converges to a when k — oco.
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Global convergence in an interval

Proposition 9 (Proposition 2.8)
If € CY([a, b]), ¢(x) € [a, b] for all x € [a, b], and

|¢'(x)] <1 forall xE€|a,b],

then there exists a unique fixed point « € [a, b], and
the fixed point iterations method converges for all x(%) € [a, b] with at least
linear order (i.e., order 1), that is:

x(k+1) _

lim % = ¢/(a),

k—+oo xK) — ¢

with ¢'(«) being the asymptotic convergence factor.
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Global convergence in an interval

Proposition 9 (Proposition 2.8)
If € CY([a, b]), ¢(x) € [a, b] for all x € [a, b], and

|¢'(x)] <1 forall xE€|a,b],

then there exists a unique fixed point « € [a, b], and
the fixed point iterations method converges for all x(%) € [a, b] with at least
linear order (i.e., order 1), that is:
(k+1) _
lim " = ¢/(a),

k—+oo xK) — ¢

with ¢'(«) being the asymptotic convergence factor.

Note: If 0 < |¢'(«)| < 1, then for any constant C s.t. |¢/(a)] < C < 1, if k
is large enough, we have:

XD _ o] < CxK) — q.

46071 1



Local convergence in a neighborhood of «

Theorem 10 (Theorem 2.9)

Lagrange Mean Value Theorem. If the function g € C*([a, b]), then
there exists £ € (a, b) such that

g(a) — g(b) = g'(§)(a - b).



Local convergence in a neighborhood of «

Proposition 2.10 — Ostrowski, local convergence in a neighborhood
of the fixed point. If ¢ € C*(/,), with I, a neighborhood of the fixed point
a of ¢(x), and

|¢/(a)] <1,
then, if the initial guess x(9) is “sufficiently” close to «, the fixed point
iterations method converges with at least linear order (i.e., order 1), that is:

x(k+1) _ g

lim 2 = ¢/(a),

k—4o00 X(k) —a

with ¢'(«) being the asymptotic convergence factor.
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Proof

We only show that the method is at least linearly convergent.
Lagrange Theorem 2.9: there exists £ € (a,x(¥) s.t.

XD o (X(k)) —da) =4 <£(k)> (X(k) _ a) ,

If limy_ss00 x5 = v, then also limy_ 400 £K) = @, and hence
X1 — o

lim "% = lim W@W):dm)

k—+00 X(k) — k—+00
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Examples

Some examples on how the value ¢'(«) influences the convergence.
Convergent cases:

0< ¢ (a) <1, -1<¢'(a) <O.

v 4 ¥y=x

y=x~

y=0 ()

. e -
X®  x® x
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Examples

Some examples on how the value ¢’(«) influences the convergence.
Divergent cases:

¢'(a) > 1,
y=0 (x)

y=x"
- =

. L - oo
@  xO x «
X X0 x© o H 0} X x
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= If |¢' ()| < 1 and x(O) is “sufficiently” close to «,
the method converges to « with at least linear order

= If [¢'(a)] =1
the method may either converge or diverge

= If |¢/(a)] > 1 and x(O) +# q,
the convergence of the method to « is impossible

52071 1



Local convergence in a neighborhood of the fixed point

Proposition 11 (Proposition 2.11 in book)

If $ € C2(l,), with I, a neighborhood of the fixed point a of ¢(x),
¢'(a) =0, and ¢ () # 0, then, if the initial guess x(©) is “sufficiently”
close to «, the fixed point iterations method converges with order 2,

i x(k+1) _ 1
i

k—>T 2 2
< (<)

with 14" () being the asymptotic convergence factor.
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Local convergence in a neighborhood of the fixed point

Proposition 11 (Proposition 2.11 in book)

If $ € C2(l,), with I, a neighborhood of the fixed point a of ¢(x),
¢'(a) =0, and ¢ () # 0, then, if the initial guess x(©) is “sufficiently”
close to «, the fixed point iterations method converges with order 2,

x(k+1) — 1

lim % = 24" (),

k—+o00 (X(k) _ a) 2

with 14" () being the asymptotic convergence factor.
Proof: Using the Taylor series for ¢ with x = «, we have

A = (x99 — 6(0) = (@) — o) + LD —ap?,

where £ is between x() and a. So, we have

LD _a g )
kl—>moo (x(k) — )2 = 2 2 7
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Generalization of the result

Proposition 12 (Proposition 2.12 in book)

If ¢ € CP(ln) for p > 1, with I, a neighborhood of the fixed point o of
d(x), () =0 foralli=1,...,p—1, and ¢\P)(a) # 0, then, if the initial
guess x(0 js “sufficiently” close to o, the fixed point iterations method
converges with order p, that is:

x(k+1) _

1
im — 4P
k—|I>TOO (X(k) o a)P pld) (04)7

with ﬁ(ﬁ)(”)(a) being the asymptotic convergence factor.
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Example

Consider f(x) =sin(2x) — 1 4+ x = 0. We have used the fixed point

algorithms using the two functions ¢; and ¢, with initial value x(©) = 0.7.
Remember that both have the same fixed point «.

x = ¢1(x) = 1 —sin(2x),

x = ¢o(x) = %arcsin(l -x), 0<x<1.

>> [pl,resl,niterl] = fixpoint(phil, 0.7, 1le-8, 1000);
>> [p2,res2,niter2] fixpoint(phi2, 0.7, 1le-8, 1000);

The fixed point algorithm with the first function does not converge, while
with the second one it converges to o = 0.352288459558650 in 44 iterations.

Indeed, ¢](a) = —1.5237713 and ¢5(r) = —0.65626645.
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Stopping criterion for fixed point iterations

Estimate the error e(k) = |x(K) — a| by the difference of succesive iterates
stop algorithm when &) < tol, where

(k=1)|
é(“:{'le' ;: 2(1) with 68 = () _ (0 for k> 0,
(o] | =

= If ¢ € C(l,), by Lagrange Mean Value Theorem,
3¢ between x9) and o s.t. xKFD—a = p(xFN)—p(a) = ¢/ (£F)(xF) —a)
= We also have:
XD o = XD (0 (0 = 5, 4 XK — o
= We obtain 1
X — o = fﬁ(g(k))ék
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Stopping criterion for fixed point iterations

1
Ky _ =
S I RO

In a neighbourhood of a, ¢'(£()) ~ ¢/(a)

= if ¢/() is near to 1, the test is not satisfactory since e(k) <« &(k+1)

if ¢'(a) = 0, the criterion is optimal (second order methods)

if ¢'(a) = 0, the criterion is satisfactory
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Newton method as a fixed point iterations method

Consider the iterate of the Newton method

f(x(k)
() (x)

(k+1) L SO
X F(x®)’

k=0,1,2,...,

The Newton method is a fixed point method x(*t1) = ¢(x(¥)) for the
function:
f(x)

- f(x)

We deduce properties of the Newton method from those of ¢p(x)

on(x) = x
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Proposition 13 (Proposition 2.13 in book)

Iff e C™(l,), with I, a neighborhood of the zero a and m — 1 the
multiplicity of «, for the iteration function xy(x) of Eq. (2.8), we have

Sla) =1~

m

Proof. The proof is reported in Exercises Series 4
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Convergence of Newton method, a simple zero

For Newton, the zero o € I, is said to be of multiplicity m if £()(a) = 0 for
alli=0,...,m—1and f("(a) £ 0.
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Convergence of Newton method, a simple zero

For Newton, the zero a € 1, is said to be of multiplicity m if f()(a) = 0 for
alli=0,...,m—1and f("(a) £ 0.

If m=1, f(a=0), and f'(a) # 0, the zero « is called simple; otherwise, it
is called multiple.
Remark 2.14 From Proposition 2.13, if « is a simple zero (m = 1), we have

Py(@)=1-—=1-1=0.
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Convergence of Newton method, a simple zero

Corollary 14 (Corollary 2.14 from book)

If f € C%(l,), a is a simple zero (m = 1), and x©) is “sufficiently” close to
«, then the Newton method converges with order 2 (quadratically). Indeed:

xkH) — o1 1f"(a)
|. _— = — " = —
PR (x(0) — a)2 2¢"’ @) 2 f'(a)’

where fy/(c) is the second derivative of the Newton iteration function at c.
Proof.

Considering ¢n(x) = x — ff,(();)), apply Propositions 2.11, 2.12, and
Proposition 2.13. ]
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Convergence of Newton method, multiplicity m > 1

Corollary 15 (Corollary 2.15 from book)

If f € C™(1,), a is a zero of multiplicity m > 1, and x(©) is “sufficiently”
close to «, then the Newton method converges with order 1 (linearly),

(k+1) _ 1
X a .1
kﬂToo xk) —a (@) =1 m 7 0.
Proof.
Considering ¢n(x) = x — % apply Proposigtion 2.10 and Proposition
2.13. Cl
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Examples of nonlinear equations

Example 1 (Interest rates). We want to compute the mean interest rate /
of a portfolio over several years. We invest v = 1000 CHF every year. After
5 years, we end up with M = 6000 CHF. The relation between M, v, I, and
the number of years n is:

1 141
M = K=v—— "—1].
v (14 D)f=v —a+n" -1
k=1
This can be rewritten as: find / such that

F(1) = M_vl%’ (1+/)"—1]=o0. (1)

Therefore, we have to solve a nonlinear equation in /, for which we can't
find an analytical solution.
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Example 1 (Interest rates)

We draw the graph of
141

f(h=M-v [(1+1)"-1]

on the interval [0.010.3] with M = 6000, v = 1000, and n = 5:
>> £=@(x) 6000-1000% (1+x).*((1+x)."5 - 1)./x;

>> I = [0.01:0.001:0.3];

>> grid on;plot(I,feval(f,x));
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Example 1 (Interest rates)

® The root of f is between 0.05 and 0.1.

m Apply the bisection method on the interval [0.05,0.1] with a tolerance
1075

>> [zero,res,niter]=bisection(f,0.05,0.1,1e-5,1000);

= The approximate solution after 12 iterations is x = 0.061407470703125.
= Apply the Newton method with initial guess x(®) = 0.05

>> df=0(x) 1000*x((1+x)."5.*x(1-5%x) - 1)./(x.72);
>> [zero,res,niter]=newton(f,df,.05,1e-5,1000);

= The result is approximately the same, but we need only 3 iterations
® The interest rate is 6.14%.
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Examples of nonlinear equations

Example 2 (State equation of a gas). We want to
determine the volume V occupied by a gas at
temperature T and pressure p. The state equation
(i.e., the equation that relates p, V, and T) is:

al?
<p+ W) (V — Nb) = kNT,

where a and b are two coefficients that depend on the

specific gas, N is the number of molecules contained

in the volume V/, and k is the Boltzmann constant.

We consider the carbon dioxide (COy), for which a = 0.401 Pa - m® and
b=427x1075m3.

We search the volume occupied by N = 1000 molecules of CO; at temperature
T = 300K and pressure p = 3.5 x 107 Pa.

We know that the Boltzmann constant is k = 1.3806503 x 10~23 Joule - K—1.
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Example 2 (State equation of a gas)

We draw the graph of the function

al?
f(V)=(p+ T ) (V= Nb) — kNT
for V > 0. We do not consider V < 0 (it does not have physical sens),
because V is the volume of gas.

We use the commands in Matlab:

>> a=0.401; b=42.7e-6; p=3.5e7; T=300; N=1000; k=1.3806503e-23;
>> f =0(x,p,T,a,b,N,k) (p+a*x((N./x).~2)) .*(x-N*b) -k*N*T;

>> x=[0.03:0.001:0.1];

>> plot(x,f(x,p,T,a,b,N,k))

>> grid on
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Example 2 (State equation of a gas)

We obtain the graph of the function f(V):

10°

\
racine de la fonction (V)
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Example 2 (State equation of a gas)

We see that there is a zero for 0.03 < V < 0.1. If we apply the bisection
method on the interval [0.03,0.1] with a tolerance of 10712

[zero, res, niter] = bisection(f,0.03,0.1,1 x 107*2,1000, p, T, a, b, N, k);

then we find, after 36 iterations, the value V = 0.0427.

If we use the Newton method with the same tolerance, starting from the
initial point x(® = 0.03,

>> df = e(x,p,T,a,b,N,k) -2*a*xN"2/ (x"3)*(x - Nxb) + (p + a*x((N)/(x))."2);
>> [zero,res,niter] = newton(f, df, 0.03, le-12, 1000, p, T, a, b, N, k);
then we find the same solution after 6 iterations.

The conclusion is that the volume V occupied by the gas is 0.0427 m3.
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Modified Newton method

For the iterate of the modified Newton method

f(x)

(k+1) — (k) _ py 2\
X =X mf’(x(k))’

k=0,1,2,...,
associate the iteration function ¢,n(x) defined as:
f(x)
Pmn(x) = x — mW,

where m is the multiplicity of the zero a.
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Convergence of modified Newton

Proposition 16 (Proposition 2.16 from book)

Iff € C™(ly), with I, a neighborhood of the zero o and m — 1 the
multiplicity of «, for the iteration function ¢m,n(x), we have

qb;n,\,(a):l—g:Ofora//mzl.

Proof.

The result follows analogously to that of Proposition 2.13, reported in exercise series [



Convergence of modified Newton

Proposition 16 (Proposition 2.16 from book)

Iff € C™(ly), with I, a neighborhood of the zero o and m — 1 the
multiplicity of «, for the iteration function ¢m,n(x), we have

qb;n,\,(a):l—g:Ofora//mzl.

Proof.

The result follows analogously to that of Proposition 2.13, reported in exercise series [

Corollary 17 (Corollary 2.17 from book)

If f € C?(l,) N C™(1l,), a is a zero of multiplicity m — 1, and x(©) is
“sufficiently” close to «, then the modified Newton method converges with
order 2 (quadratically).

Proof.
From Proposition 2.11, 2.12, 2.16. O
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