Laura Grigori

EPFL and PSI
slides based on lecture notes/slides from L. Dede/S. Deparis

November 13/20, 2024

PAUL SCHERRER INSTITUT

=PrL



Plan

The general scheme
Splitting methods
Jacobi and Gauss-Seidel methods

Preconditioned Richardson methods
(Preconditioned) Gradient method
(Preconditioned) Conjugate gradient method
Convergence Criteria
Some convergence studies

2061 1



Plan
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[terative methods

(Sec. 6.3 of the book)

Solve the linear system Ax = b, A € R"*" b € R" using an iterative method
consists in building a series of vectors x(¥), k > 0, in R” that converge at the

exact solution x, i.e.:
lim x(A) = x
k— o0

for any initial vector x(®) € R”.
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[terative methods

(Sec. 6.3 of the book)

Solve the linear system Ax = b, A € R"*" b € R" using an iterative method
consists in building a series of vectors x(K) |k >0, in R" that converge at the
exact solution x, i.e.:

lim x(A) = x

k— o0
for any initial vector x(©) € R”.
We can consider the following recurrence relation:

xHD) = Bx) 1 g k>0 (1)

where B € R"™" is a well chosen matrix (depending on A) and g is a vector
(that depends on A and b), satisfying the strong consistency condition:

x=Bx+g. 2)
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The general scheme

Given x = A~ 1b, we getg=(/— B)A‘lb; the iterative method is therefore
completely defined by the matrix B, known as iteration matrix.
By defining the error at step k as

e = x—x( fork=0,1,...

we obtain the following recurrence relation:

ekt — Be(k)  and thus ek*V) = Bk+1e® Kk =0,1,....

because:

ek = x — x(kD) — (Bx + g) — (Bx(k) + g) =B (x — x(k)) = Belk)
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Convergence

Proposition
If the iteration matrix B € R"™" of the iterative method (1) is symmetric
and positive definite (SPD), we have:

1] < (p(8)) 1@,

for k =0,1,..., with p(B) being the spectral radius of B.
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Convergence (continued)

We can show that lim,_,.. e¥) = 0 for all e® (and thus for all x(?) if and
only if limy_ B¥ =0, which occurs for

p(B) <1,

where p(B) is the spectral radius of the matrix B, defined by

p(B) = max|\(B)||

and \;(B) are the eigenvalues of the matrix B.

The smaller the value of p(B), the less iterations are needed to reduce the
initial error of a given factor.
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Construction of an iterative method

Splitting methods
A general way of setting up an iterative method is based on the
decomposition of the matrix A:

A=P—(P-A)

where P is an invertible matrix called preconditioner of A.

Hence,
Ax=b & Px=(P-Ax+b

which is of the form (2), obtaining

B=PP-A)=I-P'A and g=P b
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Splitting methods (continued)

We can define the corresponding iterative method

P(xUHD) —x)y = ¢ k>0

where r(¥) represents the residual at the iteration k: [rk) = b — Ax(K)
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Splitting methods (continued)

We can define the corresponding iterative method
P(xUHD) —x)y = ¢ k>0
where r(¥) represents the residual at the iteration k: [rk) = b — Ax(K)
We can generalize this method as follows:
P(xHD) — x() = qur k>0 (3)
where ay # 0 is a parameter that improves the convergence of the series

(k)
x{k),
The method (3) is called Richardson’s method.
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Splitting methods (continued)

Consider

P(xHD) — x(K) = p2) — (0 >0 26 — xkHD) _ (k)
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Splitting methods (continued)

Consider
p(x(k+1) _ x(k)) — pz(K) — (k) k>0, 20 = x(k+1) _ x(k)
The preconditioned residual z(¥) € R” is the solution of the linear system:
Pz = ¢k for k = 0,1,...,

with P € R"*" being the nonsingular preconditioning matrix.
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Splitting methods (continued)

Consider
p(x(k+1) _ x(k)) — pz(K) — (k) k>0, 20 = x(k+1) _ x(k)
The preconditioned residual z(¥) € R” is the solution of the linear system:
Pz = ¢k for k = 0,1,...,

with P € R"*" being the nonsingular preconditioning matrix.
We observe that:

rHD) = p — Ax(HD) — b — Ax(K) — Az(0) = (k) — Az(K)
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Preconditioned iterative method

Algorithm 6.3: Preconditioned lterative Method

1. Given x(© € R” set r(® = b — Ax(©);

2: for k=0,1,..., until a stopping criterion is satisfied do
3: Solve the linear system Pz(k) = y(k).

4: Set x(k+1) = x(k) 4 Z(k),

5: Set rlkt1) = ¢(k) — Az(K);

6: end for
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Preconditioned iterative method

Algorithm 6.3: Preconditioned lterative Method

1. Given x(© € R” set r(® = b — Ax(©);

2: for k=0,1,..., until a stopping criterion is satisfied do
3: Solve the linear system Pz(k) = (k).

4: Set x(k+1) = x(k) 4 Z(k),

5: Set rlkt1) = ¢(k) — Az(K);

6: end for

Stopping criterion
m At the first kK > 0 for which

sl < tol
e <"

[ < tol or

for some tolerance tol

= Also limit the maximum number of iterations by some knax that is
"sufficiently large”
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Preconditioned iterative method: remarks

= Each iteration requires solving the linear system Pz(k) = ¢(K)

= P chosen such that the cost of solving Pz(¥) = r(¥) is small enough
For example a diagonal or triangular P matrix would comply with this
criterion.

m For convergence of the iterative method, aim at obtaining p(B) < 1,
where B = — P71
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Plan

Jacobi and Gauss-Seidel methods
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Jacobi method

If the elements of the diagonal of A are non zero, we can write
P, =D = diag(a11, 32, .., an)

D with the diagonal part of A being:

D,-,-—{O sii]j

aj  sii=j.

The Jacobi method corresponds to this choice with oy =1 for all k.
We deduce:
Dx ) =p — (A—-D)xW Kk >o0.
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By components:

1 n
X§k+1)::ﬁ bi—'z'a,-jxj(k) , i=1...,n. 4)
J=Lj#i

The Jacobi method can be written under the general form
x(kH1) = Bx(K) 1 g

with

B=B,=D'(D-A)=1-D"'A g=g,=D"b.
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Gauss-Seidel method

This method is defined as follows:

1 i—1 n

(k+1) Z (k+1) } : (k) ;

X; :; b’._ auxj — a’JX_[ s I:].,...,n.
" j=1 Jj=it+1

This method corresponds to (1) with Pgs = D — E and a, = 1 (Vk > 0)
where E is the lower triangular matrix

Ej = —aj sii>j
E;j=0 sii<j

(lower triangular part of A without the diagonal and with it's element's sign

inverted).
That is we solve at each iteration:

(D — E)x+Y) = p— (A— (D — E))x¥
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We can write this method under the form (3), with the iteration matrix
B = Bgs given by

Bes = (D~ E) }(D—E—A)|

and
gcs = (D — E)7'b.
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Example
Given the matrix

We have then

Thus, the iteration matrix for the Jacobi method is

0 2 -3 4

o gmeia | o860 76 a3
By=D(D-A)=1=D7A=1 gn1 1011 0 1211
~13/16 —14/16 —15/16 0
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Example

For defining the matrix A and extracting its diagonal D and its lower
triangular part E (without the diagonal and the sign inverted) with Matlab,
we use the commands

> A =1[1,2,3,4;5,6,7,8;9,10,11,12;13,14,15,16];
>> D = diag(diag(A));
>> E = - tril(A,-1);

These allow us, for exemple, to compute the iteration matrix Bgs for the
Gauss-Seidel method in the following way:

>> B_GS = (D-E)\(D-E-A);

We find:

0.0000 —2.0000 —3.0000 —4.000
0.0000 1.6667 1.3333  2.0000
0.0000 0.1212 1.2424  0.3636
0.0000 0.0530  0.1061 1.1591

Bgs =
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Convergence

We have the following convergence results:
m (Prop 6.9) If A is nonsingular and strictly diagonally dominant by row,

ie.,
|aji| > Z lagl, i=1,...,n,

J=1,nj#i

then Jacobi and Gauss-Seidel methods converge.
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Convergence

We have the following convergence results:
m (Prop 6.9) If A is nonsingular and strictly diagonally dominant by row,

ie.,
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Convergence

We have the following convergence results:

m (Prop 6.9) If A is nonsingular and strictly diagonally dominant by row,

ie.,
|aji| > Z lagl, i=1,...,n,

J=1,.nj#i

then Jacobi and Gauss-Seidel methods converge.

u (Prop 6.10) If A is symmetric positive definite (SPD), then Gauss-Seidel
method converges (Jacobi maybe not).

m (Prop 6.11) Let A be a tridiagonal nonsingular matrix whose diagonal
elements are all non-zero. Then the Jacobi and the Gauss-Seidel methods
are either both divergent or both convergent. In the latter case,
p(Bgs) = p(By)?, Gauss-Seidel converges faster.
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Preconditioned Richardson methods

(Sec. 6.3.4)

Consider the following iterative mehod:

P(x*+D) — x(0)) = g r 0, k > 0. (5)

If cx = o (a constant) this method is called stationary preconditioned
Richardson method; otherwise dynamic preconditioned Richardson method
when «ay varies during the iterations.

The matrix P is called preconditioner of A.
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Algorithm

Algorithm 6.4: Dynamic preconditioned Richardson method
1. Given x(9 € R”, set r(® = b — Ax(;

2: for k =0,1,..., until a stopping criterion is satisfied do
3: Solve the linear system Pz(K) = ¢(k);

4 Choose ay;

5 Set x(kt1) = x(k) 4 o, 2(K):

6: Set r(k+1) = ¢(k) — o, AZ(K).

7: end for

Observe that:

rF1) = b — Ax(KHD) = b — Ax(F) — 0 AzK) = ¢(K) — o AZ(9).
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Dynamic iteration matrix

The dynamic preconditioned Richardson method is defined as:
XD = B x4 gy,

where k=0,1,2,....
The dynamic iteration matrix is given by:

By =1 — axPA,
and the iteration vector is:

gk = akalb.

= Since «ay varies with k, convergence properties change with the iteration
number k

m Spectral radius of p(By) changes, which must satisfy p(By) < 1 for the
method to converge
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Convergence of stationary preconditioned Richardson

Proposition (6.12)

If A and P € R™"™ are nonsingular, then stationary preconditioned
Richardson method converges to x € R” for all x(©) € R if and only if

a [ \(PA)

<2Re(N(P'A)), foralli=1,...,n,

with o # 0, where {\;(P71A)}"_, are eigenvalues of P71A.
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Convergence of stationary preconditioned Richardson

Proposition (6.12)

If A and P € R™"™ are nonsingular, then stationary preconditioned
Richardson method converges to x € R” for all x(©) € R if and only if

a [ \(PA)

<2Re(N(P'A)), foralli=1,...,n,

with o # 0, where {\;(P71A)}"_, are eigenvalues of P71A.

Corollary ( 6.13)

If A and P € R™*" are nonsingular with all eigenvalues {\;(P71A)}"_, real,
then the stationary preconditioned Richardson method converges to x € R"
for all x©) € R" if and only if

0<aX(PrA) <2, foralli=1,...,n.
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Choices of ay

If A and P are symmetric positive definite, then there are two optimal
criteria to choose o:

1. Stationary case:

2
ak:aopt:ﬁv kZO?
min max

where A\pin and Apax represent the larger and the smaller eigenvalue of
the matrix P7LA.

2. Dynamic case:

(20N Tk

U= 20T Az

k>0,

where z(X) = P=1¢(kK) js the preconditioned residual.
This method is also called preconditioned gradient method.
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Case P =1

If P =1 and A is symmetric definite positive, we get the folowing methods:

® Stationary Richardson if we choose:

2
Q) = Qlopt = . 6
g Pt /\min(A) + /\max(A) ( )
= Gradient if : (AT (6]
_ ()
= Giyramr K20 ()
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Convergence of Richardson for SPD matrices

When A and P are SPD and with the two optimal choices for a, we can
show that the preconditioned Richardson method converges to x when
k — oo for all the choices of x(0) € R"™" and that

K(P~1A) -1
K(P1A) +1

k
)IM”—AM k>0, (8

|M“—xAs(

where ||v[la = V/vT Av and K(P~'A) is the condition number of P~1A.
Remark If A and P are SPD, we have that

K(P~'A) = i”’a_x.
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Convergence of Richardson for SPD matrices

Proof for stationary Richardson The iteration matrix of the method is
given by B, = | — aP~1A, where the eigenvalues of B, are of the form

1 — ;. The method is convergent if and only if |1 — a);| < 1 for
i=1,...,n, therefore -1 <1 —aXj<lfori=1,...,n Asa >0, thisis
the equivalent to —1 < 1 — aA.x, from where the necessary and sufficient
for convergence remains @ < 2/Anax. Consequently, p(B,) is minimal if

1 — aAmax = @Amin — 1, i.e., for aope = 2/(Amin + Amax). By substitution,
we obtain

2)\min _ )\max - )\min
)\min + )\max N )\min + )\max

Popt = P(Bopt) =1- aopt)\min =1-

what allows us to complete the proof. (I
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Gradient methods

For A SPD, solve Ax = b by minimizing the quadratic function

1
#(x) = 5xTAx—loTx

Vo(x) = Ax—b=0
The new iterate is computed in the direction given by

re=—v ¢(x*))

and «ay chosen such that it minimizes the error in this direction.
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Gradient methods

Theorem (Gradient method)
If A and preconditioner P are SPD, the optimal choice for «y is given by

(r,20)
W= agh gy K20 ©)
where
z(K) = p=1¢(k), (10)
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Proof We have
r) = b — Ax(K) = A(x — x(K)) = —Aek) (11)

and thus, using (10),
P~1Ae) = —z(K), (12)

where e(¥) = x — x(K) represents the error at step k. We also have:

e(k+1) (k+1)( ) (/ _ anlA) e(k).
——_———
Ba
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We notice that, in order to update the residual, we have the relation

r(HD) — () _ g A7) = (k) — g Ap~1¢(K),
Thus, expressing as || - ||a the vector norm associated to the scalar product
(x,¥)a = (Ax,y), what means, [|x]la = (Ax,x)*/? we can write

||e(k+1)||i _ (Ae(k+1 k+1)) ( (k+1) e(k+1))

= —(r ) — AP 1K) el — o p— lAe(k))
—(r) ) - o(r "),P LAe() + (AzK) k)]
—a?(Az(9, P~ Aelh)
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Now we choose « as the ay that minimises ||e(**1)(a)||a

a

le*@)llal =0

a=aok
We then obtain

1 (r(k)’ P_]-Ae(k)) + (Az(k)’ e(k)) 1 _(r(k), Z(k)) + (,42(")7 e(k))
=3 (A2, P~14e(9) ) ~(Az), ()

and using the equality (Az(¥), e(K)) = (z(K)| Ae(K) knowing that A is
symmetric definite positive, and noting that Ae() = —r(k) we find
(r(k)7z(k))

T Az, 2(0)
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Preconditioned gradient method

The preconditioned gradient method can be written as:
Let x(9 be given, set r® = b — Ax(®), then for k >0,

Pz(k) — (k)
(z(k))Tr(k)

A = —F~—+
(z(k))TAz(k)

LD — 9 4 28
r(HD) — () _ o AR,

We have to apply once A and inverse P at each iteration. P should then be
such that the resolution of the associated system results easy (i.e. it requires
a reasonable amount of cumputing cost). For example, we can choose a

diagonal P (like in the gradient or stationary Richardson cases) or triangular.
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For the stationary and the dynamic case, we can prove that, if A and P are
SPD, the series {x(¥)} given by the Richardson method (stationary and

dynamic) converges towards x when k — oo, and

K(P~1A)—1\*
[e®]a = x*) —x||a < (K(PHA)+1> [x© — x|, k>0, | (13)

where ||v||a = VvT Av and K(P~1A) is the conditioning of the matrix P~1A.
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Remark. In the case of the gradient method or the Richardson stationary
method the error estimation becomes

K(A) —1\*
W9 xla s (ear) KO -xla k0. ()

Remark. If A and P are symmetric definite positive, we have

Amax(P7LA)

KA =S Pa)
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Conjugate gradient (Hestenes, Stieffel, 52)
(Sec. 6.3.6)

When A is SPD, there exists a very efficient and effective method to
iteratively solve the system: the conjugate gradient method

® Solve Ax = b by minimizing the quadratic function

o(x) = %XTAX —b'x
vVo(x) = Ax—b=0
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Conjugate gradient (Hestenes, Stieffel, 52)
(Sec. 6.3.6)

When A is SPD, there exists a very efficient and effective method to
iteratively solve the system: the conjugate gradient method

® Solve Ax = b by minimizing the quadratic function

o(x) = %XTAxbex

Té(x) = Ax—b=0
Start from x(©), p(® = ¢(®) and compute the new iterate as:

xKHD) = x(0) 4 o, pk)
where py is A-conjugate (A-orthogonal) to all previous search directions,
p® T Ap) = 0, for all i < k

and ay chosen to minimize ¢(x*+t1)) = $(x(*) + a,p()) with respect to a.
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Conjugate gradient method

Compute the new search direction A-conjugate to previous ones by using
Gram-Schmidt:

T Ap(k+1
p(k+1) — pk+1) _ Z p() " Ar(k+1) 0

7.[)
= O Ap()

It can be shown that p(**1) is already A-conjugate to all previous search
directions, except last one. We obtain:

p() T Aplk+1)

(k+1) — p(k+1) _ _
P Pip®) P = p() 7 Ap)
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Conjugate gradient method

Let x(9 be given; we compute r® = b — Ax®), p(o) = r(® then for k >0,

p) (k)
= Ti
pk) " Apo)
x(k+1) — X(k) _|_ akp(k)
r(k‘H-) — r(k) — akAp(k)
p) T Ap(kt1)

p) 7 A?
pltd) = Bip)
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Precondtioned Conjugate gradient method

(Sec. 6.3.6)

When A and P are SPD, we use the preconditioned conjugate gradient
method

Let x(©) be given; we compute r® = b — Ax(®), z(0) = p~14(0)
p(o) = 2(0 then for k >0,

p( )T (k)

p() T Ap(k)
(k+1) — x(K) J qpk)
Pt — (k) _ o ApK)

Pz(k+1) — p(k+1)
p() T pglk+1)

p( T Ap(k)
pk+1) = k+1 — Bpt)
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Convergence of conjugate gradient

Proposition (6.16)

If A and P € R™" are SPD, the conjugate gradient converges to x € R"™"
for all x©°) € R™ in at most n iterations (in exact arithmetic). The error
estimate is given by

2ck Ky(P~1A) — 1

x4 —x]|a < Lﬂ( [ —x|a, k>0 withc = VHK(PTA) -1
l+c \/KQ(PflA)—Fl

(15)

ool 1



Convergence Criteria for iterative methods
(Sec. 6.3.7)

= Stop the iterative method when error estimator &) < tol.

® Possible error estimators and associated stopping criteria:
U The (absolute) residual, for which

~(k k
&) = ).

where r'¥) denotes the residual at iteration k.
O The relative residual, for which

200 _ o _ Il
rel — Trel T ||bH

is used to estimate the relative error

w . llx=x®|

o = ———, for x # 0.
[l

0 The difference of successive iterates, for which

8 = |16Y]|, where 6% := x* D — x* " for k > 0.
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Convergence Criteria for iterative methods

We have the following error bound:
If A is SPD, then

Ir]

(k) _

rel T

[l

In case of a preconditioned system:

(0 . X9 —x|
el I
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Example
Let's consider the following linear system:

2X1 + X = 1
{ X1 + 3X2 =0 (17)

whose matrix is A = 2 ;) is SPD. The solution to this system is
-1/5=-0.2.

X1:3/5:0.6 et xp =
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Example
Some convergence studies

® A is strictly diagonal dominant by row. Hence Jacobi and Gauss-Seidel
methods converge.

® A is nonsingular, tridiagonal with non-zero diagonal elements. Then
p(Bgs) = p(B,)?. Therefore we expect a quicker convergence of
Gauss-Seidel w.r.t. Jacobi.

® Ais SPD, hence the gradient and the conjugate gradient methods
converge. Moreover (see error estimates), the CG shall converge faster.
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Example
We want to approximate the solution with an iterative methode starting with

(0) 1
x@O =) =(1].
L0 z
2 2
_3
r® =p— Ax© = <_g>
2

V34
If@ll2 = /(¢) Tr® = = ~ 2.9155,

We can see that

and
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Example
Jacobi method

xk) = Bx(W 4+ g, k>0, whereB;=I/—D*Aandg,;=D'b.

-t
- 9O-0

and p(By) = max|\;i(B,)| = max(abs(eig(B;))) = 0.4082.

We have

O NI
W~ O
N~
RN
=N
w =
~_
Il
7 N\
)
Wl
o |
NI
N~
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Example

For k = 0 (first iteration) we find:

1 1 1
1) _ g 40 _ (0 —3\(1 5V [ 3\~ 025
@ =exre= (5 F) (1) (6) = () = (Lozmm):

Notice that

W=

® _r a _ (08333
r’=b-Ax _<0.75

and [[fM|, = 1.1211.

50 of 61



Example
Gauss-Seidel method

x) = Beox(®) 4 ggs, k>0, where Bgs = (D — E)"}D — E — A)

and ggs = (D — E)~'b.
We have

2 0 0 -1 5
r=(i3) (0 0)= (2
1 3 0 O f% %
L) 1 1
w4 DO-(4)
6 3 6

In this case p(Bgs) = max|\i(Bgs)| = max(abs(eig(Bgs))) = 0.1667.
We can verify that p(Bgs) = p(By)>.

o
~
N\
o o

|
©
~~_

Il
O\
o o
= |

Nl
~
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Example
For k = 0 (first iteration) we find:

1 1 1
-somton b ) () (3)- (4) (52
X GsX + ggs + ~ .
0o t)\3 -1 - —0.0833

We have

WD b ax®) = <0~5833> and [[¢@]|, = 0.5833.
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Example
Preconditioned gradient method with P = D

1 2 1) /(1 —3
(0) — — (0) et — fd 2
We set r b — Ax (0) (1 3) (;) (_g)

For kK = 0, we have:

PZ(O) = r(O) = Z(O) — P_lr(o) = (_

OO W

(2(9)T¢(©) 77
(20)TAz(0) 107

@ 0 o @ [ 04603
X7 =xT Aoz _(0.0997

Qg =

0.1791
rH) =0 — 0420 = (_0.1612> and [|r®||, = 0.2410.
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Example
Conjugated preconditioned gradient method with P = D
We set r® = b — Ax(®), z2(0) = p~1¢(0) and p(® =z, For k = 0, we have:
(p©)Tr(® (z(0)T¢(
YT (pO)TAp® ~ (20T Az
x(D = x4 p@ = xO 4 2@
r® = ¢ — 4,4p@ = ¢ — A2

We see that the first iteration x(!) matches with the one obtained by the
preconditioned gradient method.
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Example

We then complete the first iteration of the preconditioned conjugate
gradient method:

e @ _ po1.) _ ( 0.0896
Pri=rt e =l _(0.0537

By = (Ap(O))TZ(l) _ (AZ(O))TZ(l)
° T (Ap®)TApO) ~ (Az(0))TZ2)

1 — @) _ © _ 1) _ 50 _ ( 0.0838
P = fop =2 oz = <—0.0602 :

= —0.0077
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Example
At the second iteration, with the four different methods, we have:

Method x r IERIE
. 0.6667 —0.2500
Jacobi <—0.0833> (—0.4167> 0.4859

0.5417
—0.1806

0.6070 —0.0263
PG <—O.1877> (—0.0438> 0.0511

0.60000 ~0.2220\ g 16
—0.2000 (0.3886) 10 4.4755-10

Gauss-Seidel (0'0972> 0.0972

0

PCG
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Example
Behavior of the relative error applied to the system (17) :

10 T
— Jacobi
““““ Gauss-Seidel
-~ Grad.
== Grad. conj.
107°
3
,_J
g
x
= 10
x
_
<
10—157
-20 L L L
10 0 5 10 15 20
k
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Example
Let's now consider another example:

{ 2x1 + xo =1 (18)

—x1+3x% =0

whose solution is x; = 3/7, xo = 1/7.
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Example
Preliminary convergence studies

The associatd matrix is A = (_21 ;)

® A is strictly diagonal dominant by row. Hence Jacobi and Gauss-Seidel
methods converge.

= A is nonsingular, tridiagonal with non-zero diagonal elements. Then
p(Bgs) = p(By)?. Therefore we expect a quicker convergence of
Gauss-Seidel w.r.t. Jacobi.

= Ais not SPD, therefore we have no idea if the gradient or the conjugate
gradient converge.
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Example
We approximate the solution with an iterative method starting from

%) — x|
[[x©) — x|
Gauss-Seidel, Richardson stationary (preconditioned with & = 0.5 and
P=D= (2) g ), and the preconditioned (with P = D) conjugate
gradient methods.

Remark that this time the preconditioned conjugate gradient method doesn't

converge.

The following figure shows the value of for the Jacobi,
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Example
Behavior of the relative error applied to the system (18) :

10°
_ 100
53
_
s
=
3
_
S
107"
— Jacobi
““““ Gauss-Seidel
- - Richard. (stat.)
10 == Grad. conj.
5 5 10 15
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