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Iterative methods

(Sec. 6.3 of the book)

Solve the linear system Ax = b, A ∈ Rn×n, b ∈ Rn using an iterative method
consists in building a series of vectors x(k), k ≥ 0, in Rn that converge at the
exact solution x, i.e.:

lim
k→∞

x(k) = x

for any initial vector x(0) ∈ Rn.
We can consider the following recurrence relation:

x(k+1) = Bx(k) + g, k ≥ 0 (1)

where B ∈ Rn×n is a well chosen matrix (depending on A) and g is a vector
(that depends on A and b), satisfying the strong consistency condition:

x = Bx+ g. (2)
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The general scheme

Given x = A−1b, we get g = (I − B)A−1b; the iterative method is therefore
completely defined by the matrix B, known as iteration matrix.
By defining the error at step k as

e(k) := x− x(k), for k = 0, 1, . . .

we obtain the following recurrence relation:

e(k+1) = Be(k) and thus e(k+1) = Bk+1e(0), k = 0, 1, . . . .

because:

e(k+1) = x− x(k+1) = (Bx+ g)−
(
Bx(k) + g

)
= B

(
x− x(k)

)
= Be(k)
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Convergence

Proposition
If the iteration matrix B ∈ Rn×n of the iterative method (1) is symmetric
and positive definite (SPD), we have:

∥e(k)∥ ≤ (ρ(B))k∥e(0)∥,

for k = 0, 1, . . ., with ρ(B) being the spectral radius of B.
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Convergence (continued)

We can show that limk→∞ e(k) = 0 for all e(0) (and thus for all x(0)) if and
only if limk→∞ Bk = 0, which occurs for

ρ(B) < 1,

where ρ(B) is the spectral radius of the matrix B, defined by

ρ(B) = max |λi (B)|

and λi (B) are the eigenvalues of the matrix B.

The smaller the value of ρ(B), the less iterations are needed to reduce the
initial error of a given factor.
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Construction of an iterative method

Splitting methods
A general way of setting up an iterative method is based on the
decomposition of the matrix A:

A = P − (P − A)

where P is an invertible matrix called preconditioner of A.
Hence,

Ax = b ⇔ Px = (P − A)x+ b

which is of the form (2), obtaining

B = P−1(P − A) = I − P−1A and g = P−1b.
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Splitting methods (continued)

We can define the corresponding iterative method

P(x(k+1) − x(k)) = r(k) k ≥ 0

where r(k) represents the residual at the iteration k: r(k) = b− Ax(k)

We can generalize this method as follows:

P(x(k+1) − x(k)) = αkr
(k) k ≥ 0 (3)

where αk ̸= 0 is a parameter that improves the convergence of the series
x(k).
The method (3) is called Richardson’s method.
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Splitting methods (continued)

Consider

P(x(k+1) − x(k)) = Pz(k) = r(k) k ≥ 0, z(k) = x(k+1) − x(k)

The preconditioned residual z(k) ∈ Rn is the solution of the linear system:

Pz(k) = r(k) for k = 0, 1, . . . ,

with P ∈ Rn×n being the nonsingular preconditioning matrix.
We observe that:

r(k+1) = b− Ax(k+1) = b− Ax(k) − Az(k) = r(k) − Az(k).
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Preconditioned iterative method

Algorithm 6.3: Preconditioned Iterative Method
1: Given x(0) ∈ Rn, set r(0) = b− Ax(0);
2: for k = 0, 1, . . . , until a stopping criterion is satisfied do
3: Solve the linear system Pz(k) = r(k);
4: Set x(k+1) = x(k) + z(k);
5: Set r(k+1) = r(k) − Az(k);
6: end for

Stopping criterion

■ At the first k ≥ 0 for which

∥r(k)∥ < tol or
∥r(k)∥
∥r(0)∥

< tol,

for some tolerance tol

■ Also limit the maximum number of iterations by some kmax that is
”sufficiently large”
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Preconditioned iterative method: remarks

■ Each iteration requires solving the linear system Pz(k) = r(k)

■ P chosen such that the cost of solving Pz(k) = r(k) is small enough
For example a diagonal or triangular P matrix would comply with this
criterion.

■ For convergence of the iterative method, aim at obtaining ρ(B) < 1,
where B = I − P−1

13 of 61



Plan

The general scheme

Splitting methods

Jacobi and Gauss-Seidel methods

Preconditioned Richardson methods

14 of 61



Jacobi method

If the elements of the diagonal of A are non zero, we can write

PJ = D = diag(a11, a22, . . . , ann)

D with the diagonal part of A being:

Dij =

{
0 si i ̸= j

aij si i = j .

The Jacobi method corresponds to this choice with αk = 1 for all k.
We deduce:

Dx(k+1) = b− (A− D)x(k) k ≥ 0.

15 of 61



By components:

x
(k+1)
i =

1

aii

bi −
n∑

j=1,j ̸=i

aijx
(k)
j

 , i = 1, . . . , n. (4)

The Jacobi method can be written under the general form

x(k+1) = Bx(k) + g,

with

B = BJ = D−1(D − A) = I − D−1A, g = gJ = D−1b.
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Gauss-Seidel method

This method is defined as follows:

x
(k+1)
i =

1

aii

bi −
i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 , i = 1, . . . , n.

This method corresponds to (1) with PGS = D − E and αk = 1 (∀k ≥ 0)
where E is the lower triangular matrix{

Eij = −aij si i > j

Eij = 0 si i ≤ j

(lower triangular part of A without the diagonal and with it’s element’s sign
inverted).
That is we solve at each iteration:

(D − E )x(k+1) = b − (A− (D − E ))x(k)
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We can write this method under the form (3), with the iteration matrix
B = BGS given by

BGS = (D − E )−1(D − E − A)

and
gGS = (D − E )−1b.
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Example
Given the matrix

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 .

We have then

D =


1 0 0 0
0 6 0 0
0 0 11 0
0 0 0 16

 ;

Thus, the iteration matrix for the Jacobi method is

BJ = D−1(D−A) = I−D−1A =


0 −2 −3 −4

−5/6 0 −7/6 −4/3
−9/11 −10/11 0 −12/11
−13/16 −14/16 −15/16 0

 .
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Example
For defining the matrix A and extracting its diagonal D and its lower
triangular part E (without the diagonal and the sign inverted) with Matlab,
we use the commands

>> A = [1,2,3,4;5,6,7,8;9,10,11,12;13,14,15,16];

>> D = diag(diag(A));

>> E = - tril(A,-1);

These allow us, for exemple, to compute the iteration matrix BGS for the
Gauss-Seidel method in the following way:

>> B_GS = (D-E)\(D-E-A);

We find:

BGS =


0.0000 −2.0000 −3.0000 −4.000
0.0000 1.6667 1.3333 2.0000
0.0000 0.1212 1.2424 0.3636
0.0000 0.0530 0.1061 1.1591

 .
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Convergence

We have the following convergence results:

■ (Prop 6.9) If A is nonsingular and strictly diagonally dominant by row,
i.e.,

|aii | >
∑

j=1,...,n;j ̸=i

|aij |, i = 1, . . . , n,

then Jacobi and Gauss-Seidel methods converge.

■ (Prop 6.10) If A is symmetric positive definite (SPD), then Gauss-Seidel
method converges (Jacobi maybe not).

■ (Prop 6.11) Let A be a tridiagonal nonsingular matrix whose diagonal
elements are all non-zero. Then the Jacobi and the Gauss-Seidel methods
are either both divergent or both convergent. In the latter case,
ρ(BGS) = ρ(BJ)

2, Gauss-Seidel converges faster.
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Preconditioned Richardson methods

(Sec. 6.3.4)

Consider the following iterative mehod:

P(x(k+1) − x(k)) = αkr
(k), k ≥ 0. (5)

If αk = α (a constant) this method is called stationary preconditioned
Richardson method; otherwise dynamic preconditioned Richardson method
when αk varies during the iterations.

The matrix P is called preconditioner of A.
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Algorithm

Algorithm 6.4: Dynamic preconditioned Richardson method
1: Given x(0) ∈ Rn, set r(0) = b− Ax(0);
2: for k = 0, 1, . . . , until a stopping criterion is satisfied do
3: Solve the linear system Pz(k) = r(k);
4: Choose αk ;
5: Set x(k+1) = x(k) + αkz(k);
6: Set r(k+1) = r(k) − αkAz(k);
7: end for

Observe that:

r(k+1) = b− Ax(k+1) = b− Ax(k) − αkAz
(k) = r(k) − αkAz

(k).
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Dynamic iteration matrix

The dynamic preconditioned Richardson method is defined as:

x(k+1) = Bkx
(k) + gk ,

where k = 0, 1, 2, . . ..
The dynamic iteration matrix is given by:

Bk = I − αkP
−1A,

and the iteration vector is:

gk = αkP
−1b.

■ Since αk varies with k, convergence properties change with the iteration
number k

■ Spectral radius of ρ(Bk) changes, which must satisfy ρ(Bk) < 1 for the
method to converge

25 of 61



Convergence of stationary preconditioned Richardson

Proposition (6.12)
If A and P ∈ Rn×n are nonsingular, then stationary preconditioned
Richardson method converges to x ∈ Rn for all x(0) ∈ Rn if and only if

α
∣∣λi (P

−1A)
∣∣2 < 2Re

(
λi (P

−1A)
)
, for all i = 1, . . . , n,

with α ̸= 0, where {λi (P
−1A)}ni=1 are eigenvalues of P−1A.

Corollary ( 6.13)
If A and P ∈ Rn×n are nonsingular with all eigenvalues {λi (P

−1A)}ni=1 real,
then the stationary preconditioned Richardson method converges to x ∈ Rn

for all x(0) ∈ Rn if and only if

0 < αλi (P
−1A) < 2, for all i = 1, . . . , n.
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Choices of αk

If A and P are symmetric positive definite, then there are two optimal
criteria to choose αk :

1. Stationary case:

αk = αopt =
2

λmin + λmax
, k ≥ 0,

where λmin and λmax represent the larger and the smaller eigenvalue of
the matrix P−1A.

2. Dynamic case:

αk =
(z(k))T r(k)

(z(k))TAz(k)
, k ≥ 0,

where z(k) = P−1r(k) is the preconditioned residual.
This method is also called preconditioned gradient method.

27 of 61



Case P = I

If P = I and A is symmetric definite positive, we get the folowing methods:

■ Stationary Richardson if we choose:

αk = αopt =
2

λmin(A) + λmax(A)
. (6)

■ Gradient if :

αk =
(r(k))T r(k)

(r(k))TAr(k)
, k ≥ 0. (7)
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Convergence of Richardson for SPD matrices

When A and P are SPD and with the two optimal choices for α, we can
show that the preconditioned Richardson method converges to x when
k → ∞ for all the choices of x(0) ∈ Rn×n, and that

∥x(k) − x∥A ≤
(
K (P−1A)− 1

K (P−1A) + 1

)k

∥x(0) − x∥A, k ≥ 0, (8)

where ∥v∥A =
√
vTAv and K (P−1A) is the condition number of P−1A.

Remark If A and P are SPD, we have that

K (P−1A) =
λmax

λmin
.
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Convergence of Richardson for SPD matrices

Proof for stationary Richardson The iteration matrix of the method is
given by Bα = I − αP−1A, where the eigenvalues of Bα are of the form
1− αλi . The method is convergent if and only if |1− αλi | < 1 for
i = 1, . . . , n, therefore −1 < 1− αλi < 1 for i = 1, . . . , n. As α > 0, this is
the equivalent to −1 < 1− αλmax , from where the necessary and sufficient
for convergence remains α < 2/λmax . Consequently, ρ(Bα) is minimal if
1− αλmax = αλmin − 1, i.e., for αopt = 2/(λmin + λmax). By substitution,
we obtain

ρopt = ρ(Bopt) = 1− αoptλmin = 1− 2λmin

λmin + λmax
=

λmax − λmin

λmin + λmax

what allows us to complete the proof. □
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Gradient methods

For A SPD, solve Ax = b by minimizing the quadratic function

ϕ(x) =
1

2
xTAx− bT x

▽ϕ(x) = Ax− b = 0

The new iterate is computed in the direction given by

rk = −▽ ϕ(x (k))

and αk chosen such that it minimizes the error in this direction.
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Gradient methods

Theorem (Gradient method)
If A and preconditioner P are SPD, the optimal choice for αk is given by

αk =
(r(k), z(k))

(Az(k), z(k))
, k ≥ 0 (9)

where
z(k) = P−1r(k). (10)
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Proof We have

r(k) = b− Ax(k) = A(x− x(k)) = −Ae(k), (11)

and thus, using (10),
P−1Ae(k) = −z(k), (12)

where e(k) = x− x(k) represents the error at step k. We also have:

e(k+1) = e(k+1)(α) = (I − αP−1A)︸ ︷︷ ︸
Bα

e(k).
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We notice that, in order to update the residual, we have the relation

r(k+1) = r(k) − αAz(k) = r(k) − αAP−1r(k).

Thus, expressing as ∥ · ∥A the vector norm associated to the scalar product
(x, y)A = (Ax, y), what means, ∥x∥A = (Ax, x)1/2 we can write

∥e(k+1)∥2A = (Ae(k+1), e(k+1)) = −(r(k+1), e(k+1))

= −(r(k) − αAP−1r(k), e(k) − αP−1Ae(k))

= −(r(k), e(k)) + α[(r(k),P−1Ae(k)) + (Az(k), e(k))]

−α2(Az(k),P−1Ae(k))
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Now we choose α as the αk that minimises ∥e(k+1)(α)∥A :

d

dα
∥e(k+1)(α)∥A

∣∣∣∣
α=αk

= 0

We then obtain

αk =
1

2

(r(k),P−1Ae(k)) + (Az(k), e(k))

(Az(k),P−1Ae(k))
=

1

2

−(r(k), z(k)) + (Az(k), e(k))

−(Az(k), z(k))

and using the equality (Az(k), e(k)) = (z(k),Ae(k)) knowing that A is
symmetric definite positive, and noting that Ae(k) = −r(k), we find

αk =
(r(k), z(k))

(Az(k), z(k))

□
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Preconditioned gradient method

The preconditioned gradient method can be written as:
Let x(0) be given, set r(0) = b− Ax(0), then for k ≥ 0,

Pz(k) = r(k)

αk =
(z(k))T r(k)

(z(k))TAz(k)

x(k+1) = x(k) + αkz
(k)

r(k+1) = r(k) − αkAz
(k).

We have to apply once A and inverse P at each iteration. P should then be
such that the resolution of the associated system results easy (i.e. it requires
a reasonable amount of cumputing cost). For example, we can choose a
diagonal P (like in the gradient or stationary Richardson cases) or triangular.
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For the stationary and the dynamic case, we can prove that, if A and P are
SPD, the series {x(k)} given by the Richardson method (stationary and
dynamic) converges towards x when k → ∞, and

∥e(k)∥A := ∥x(k) − x∥A ≤
(
K (P−1A)− 1

K (P−1A) + 1

)k

∥x(0) − x∥A, k ≥ 0, (13)

where ∥v∥A =
√
vTAv and K (P−1A) is the conditioning of the matrix P−1A.
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Remark. In the case of the gradient method or the Richardson stationary
method the error estimation becomes

∥x(k) − x∥A ≤
(
K (A)− 1

K (A) + 1

)k

∥x(0) − x∥A, k ≥ 0. (14)

Remark. If A and P are symmetric definite positive, we have

K (P−1A) =
λmax(P

−1A)

λmin(P−1A)
.
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Conjugate gradient (Hestenes, Stieffel, 52)
(Sec. 6.3.6)

When A is SPD, there exists a very efficient and effective method to
iteratively solve the system: the conjugate gradient method

■ Solve Ax = b by minimizing the quadratic function

ϕ(x) =
1

2
xTAx− bTx

▽ϕ(x) = Ax− b = 0

Start from x(0), p(0) = r(0) and compute the new iterate as:

x(k+1) = x(k) + αkp
(k)

where pk is A-conjugate (A-orthogonal) to all previous search directions,

p(k)
T
Ap(i) = 0, for all i < k

and αk chosen to minimize ϕ(x(k+1)) = ϕ(x(k) + αkp(k)) with respect to αk .
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Conjugate gradient method

Compute the new search direction A-conjugate to previous ones by using
Gram-Schmidt:

p(k+1) = r(k+1) −
∑
i≤k

p(i)
T
Ar(k+1)

p(i)
T
Ap(i)

p(i)

It can be shown that p(k+1) is already A-conjugate to all previous search
directions, except last one. We obtain:

p(k+1) = r(k+1) − βkp
(k), βk =

p(k)
T
Ar(k+1)

p(k)
T
Ap(k)
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Conjugate gradient method

Let x(0) be given; we compute r(0) = b− Ax(0), p(0) = r(0),then for k ≥ 0,

αk =
p(k)

T
r(k)

p(k)
T
Ap(k)

x(k+1) = x(k) + αkp(k)

r(k+1) = r(k) − αkAp(k)

βk =
p(k)

T
Ar(k+1)

p(k)
T
Ap(k)

p(k+1) = r(k+1) − βkp(k) .
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Precondtioned Conjugate gradient method

(Sec. 6.3.6)

When A and P are SPD, we use the preconditioned conjugate gradient
method
Let x(0) be given; we compute r(0) = b− Ax(0), z(0) = P−1r(0),
p(0) = z(0),then for k ≥ 0,

αk =
p(k)

T
r(k)

p(k)
T
Ap(k)

x(k+1) = x(k) + αkp(k)

r(k+1) = r(k) − αkAp(k)

Pz(k+1) = r(k+1)

βk =
p(k)

T
Az(k+1)

p(k)
T
Ap(k)

p(k+1) = z(k+1) − βkp(k) .
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Convergence of conjugate gradient

Proposition (6.16)
If A and P ∈ Rn×n are SPD, the conjugate gradient converges to x ∈ Rn×n

for all x (0) ∈ Rn in at most n iterations (in exact arithmetic). The error
estimate is given by

∥x(k) − x∥A ≤ 2ck

1 + c2k
∥x(0) − x∥A , k ≥ 0 with c =

√
K2(P−1A)− 1√
K2(P−1A) + 1

.

(15)
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Convergence Criteria for iterative methods
(Sec. 6.3.7)

■ Stop the iterative method when error estimator ẽ(k) < tol .

■ Possible error estimators and associated stopping criteria:
□ The (absolute) residual, for which

ẽ(k) = ∥r(k)∥,

where r(k) denotes the residual at iteration k.
□ The relative residual, for which

ẽ
(k)
rel = r(k)rel :=

∥r(k)∥
∥b∥

is used to estimate the relative error

e
(k)
rel :=

∥x− x(k)∥
∥x∥ , for x ̸= 0.

□ The difference of successive iterates, for which

ẽ(k) = ∥δ(k)∥, where δ(k) := x(k+1) − x(k), for k ≥ 0.
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Convergence Criteria for iterative methods

We have the following error bound:
If A is SPD, then

e
(k)
rel :=

∥x(k) − x∥
∥x∥

≤ K2(A)
∥r(k)∥
∥b∥

. (16)

In case of a preconditioned system:

e
(k)
rel :=

∥x(k) − x∥
∥x∥

≤ K2(P
−1A)

∥P−1r(k)∥
∥P−1b∥

.
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Example
Let’s consider the following linear system:{

2x1 + x2 = 1
x1 + 3x2 = 0

(17)

whose matrix is A =

(
2 1
1 3

)
is SPD. The solution to this system is

x1 = 3/5 = 0.6 et x2 = −1/5 = −0.2.
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Example
Some convergence studies

■ A is strictly diagonal dominant by row. Hence Jacobi and Gauss-Seidel
methods converge.

■ A is nonsingular, tridiagonal with non-zero diagonal elements. Then
ρ(BGS) = ρ(BJ)

2. Therefore we expect a quicker convergence of
Gauss-Seidel w.r.t. Jacobi.

■ A is SPD, hence the gradient and the conjugate gradient methods
converge. Moreover (see error estimates), the CG shall converge faster.
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Example
We want to approximate the solution with an iterative methode starting with

x(0) =

(
x
(0)
1

x
(0)
2

)
=

(
1
1

2

)
.

We can see that

r(0) = b− Ax(0) =

(
− 3

2
− 5

2

)
and

∥r(0)∥2 =
√
(r(0))T r(0) =

√
34

2
≈ 2.9155.
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Example
Jacobi method

x(k+1) = BJx
(k) + gJ , k ≥ 0, where BJ = I − D−1A and gJ = D−1b.

We have

BJ =

(
1 0
0 1

)
−
(

1
2 0
0 1

3

)(
2 1
1 3

)
=

(
0 − 1

2
− 1

3 0

)
gJ =

(
1
2 0
0 1

3

)(
1
0

)
=

(
1
2
0

)
and ρ(BJ) = max |λi (BJ)| = max(abs(eig(BJ))) = 0.4082.
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Example
For k = 0 (first iteration) we find:

x(1) = BJx
(0) + gJ =

(
0 − 1

2
− 1

3 0

)(
1
1
2

)
+

(
1
2
0

)
=

(
1
4

− 1
3

)
≈
(

0.25
−0.3333

)
.

Notice that

r(1) = b− Ax(1) =

(
0.8333
0.75

)
and ∥r(1)∥2 = 1.1211.
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Example
Gauss-Seidel method

x(k+1) = BGSx
(k) + gGS , k ≥ 0, where BGS = (D − E )−1(D − E − A)

and gGS = (D − E )−1b.

We have

BGS =

(
2 0
1 3

)−1(
0 −1
0 0

)
=

(
1
2 0

− 1
6

1
3

)(
0 −1
0 0

)
=

(
0 − 1

2
0 1

6

)
gGS =

(
1
2 0

− 1
6

1
3

)(
1
0

)
=

(
1
2

− 1
6

)
In this case ρ(BGS) = max |λi (BGS)| = max(abs(eig(BGS))) = 0.1667.
We can verify that ρ(BGS) = ρ(BJ)

2.
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Example
For k = 0 (first iteration) we find:

x(1) = BGSx
(0) + gGS =

(
0 − 1

2
0 1

6

)(
1
1
2

)
+

(
1
2

− 1
6

)
=

(
1
4

− 1
12

)
≈
(

0.25
−0.0833

)
.

We have

r(1) = b− Ax(1) =

(
0.5833

0

)
and ∥r(1)∥2 = 0.5833.
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Example
Preconditioned gradient method with P = D

We set r(0) = b− Ax(0) =

(
1
0

)
−
(
2 1
1 3

)(
1
1
2

)
=

(
− 3

2
− 5

2

)
.

For k = 0, we have:

Pz(0) = r(0) ⇔ z(0) = P−1r(0) =

(
− 3

4
− 5

6

)
α0 =

(z(0))T r(0)

(z(0))TAz(0)
=

77

107

x(1) = x(0) + α0z
(0) =

(
0.4603
−0.0997

)
r(1) = r(0) − α0Az

(0) =

(
0.1791
−0.1612

)
and ∥r(1)∥2 = 0.2410.
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Example
Conjugated preconditioned gradient method with P = D
We set r(0) = b− Ax(0), z(0) = P−1r(0) and p(0) = z(0). For k = 0, we have:

α0 =
(p(0))T r(0)

(p(0))TAp(0)
=

(z(0))T r(0)

(z(0))TAz(0)

x(1) = x(0) + α0p
(0) = x(0) + α0z

(0)

r(1) = r(0) − α0Ap
(0) = r(0) − α0Az

(0).

We see that the first iteration x(1) matches with the one obtained by the
preconditioned gradient method.
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Example
We then complete the first iteration of the preconditioned conjugate
gradient method:

Pz(1) = r(1) ⇔ z(1) = P−1r(1) =

(
0.0896
−0.0537

)
β0 =

(Ap(0))Tz(1)

(Ap(0))TAp(0)
=

(Az(0))Tz(1)

(Az(0))Tz(0)
= −0.0077

p(1) = z(1) − β0p
(0) = z(1) − β0z

(0) =

(
0.0838
−0.0602

)
.
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Example
At the second iteration, with the four different methods, we have:

Method x(2) r(2) ∥r(2)∥2
Jacobi

(
0.6667
−0.0833

) (
−0.2500
−0.4167

)
0.4859

Gauss-Seidel

(
0.5417
−0.1806

) (
0.0972

0

)
0.0972

PG

(
0.6070
−0.1877

) (
−0.0263
−0.0438

)
0.0511

PCG

(
0.60000
−0.2000

) (
−0.2220
−0.3886

)
· 10−15 4.4755 · 10−16
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Example
Behavior of the relative error applied to the system (17) :

0 5 10 15 20
10

−20

10
−15

10
−10

10
−5

10
0

k

||
x

(k
) −

x
||
/|
|x

(0
) −

x
||

Jacobi
Gauss−Seidel
Grad.
Grad. conj.

57 of 61



Example
Let’s now consider another example:{

2x1 + x2 = 1
−x1 + 3x2 = 0

(18)

whose solution is x1 = 3/7, x2 = 1/7.
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Example
Preliminary convergence studies

The associatd matrix is A =

(
2 1
−1 3

)
.

■ A is strictly diagonal dominant by row. Hence Jacobi and Gauss-Seidel
methods converge.

■ A is nonsingular, tridiagonal with non-zero diagonal elements. Then
ρ(BGS) = ρ(BJ)

2. Therefore we expect a quicker convergence of
Gauss-Seidel w.r.t. Jacobi.

■ A is not SPD, therefore we have no idea if the gradient or the conjugate
gradient converge.
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Example
We approximate the solution with an iterative method starting from

x(0) =

(
x
(0)
1

x
(0)
2

)
=

(
1
1

2

)
.

The following figure shows the value of
∥x(k) − x∥
∥x(0) − x∥

for the Jacobi,

Gauss-Seidel, Richardson stationary (preconditioned with α = 0.5 and

P = D =

(
2 0
0 3

)
), and the preconditioned (with P = D) conjugate

gradient methods.
Remark that this time the preconditioned conjugate gradient method doesn’t
converge.
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Example
Behavior of the relative error applied to the system (18) :

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

k

||
x

(k
) −

x
||
/|
|x

(0
) −

x
||

Jacobi
Gauss−Seidel
Richard. (stat.)
Grad. conj.
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