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Examples and motivation

Find the currents ij for j = 1, . . . , n through the circuit, for n = 7, given the
tension V and the resistances Rj of the circuit.

The problem is defined by the following equations:

■ Balance of the tensions:

V = V1 + V2 + V5 + V7,

V3 = V2 + V4,

V5 = V4 + V6.

■ Kirchhoff’s laws:

i1 = i2 + i3,

i2 = i4 + i5,

i6 = i3 + i4,

i7 = i5 + i6.
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Obtained linear system

Considering the constitutive equations:

Vj = Rj ij for all j = 1, . . . , n.

we obtain the linear system:

R1 R2 0 0 R5 0 R7

0 R2 −R3 R4 0 0 0
0 0 0 R4 −R5 R6 0
1 −1 −1 0 0 0 0
0 1 0 −1 −1 0 0
0 0 1 1 0 −1 0
0 0 0 0 1 1 −1





i1
i2
i3
i4
i5
i6
i7


=



V
0
0
0
0
0
0


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Example[Economy/Logistic] We want to determine the situation of
equilibrium between demand and offer of certain goods. Let us consider that
m >= n factories produce n different products. They have to adapt their
productions to the internal demand (i.e. the goods needed as input by the
other factories) as well as to the external demand, from the consumers.
xi , i = 1, . . . , n is the total number of goods made by the factory i ,
bi , i = 1, . . . , n is the corresponding demand from the market and
cij the amount produced by the factory i needed for the factory j to make
one unit of product.
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Interaction scheme between 3 factories and the market
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Example If we suppose that the relation between the different products is
linear, the equlibrium is reached when the vector x = [x1, . . . , xn]

T satisfies

x = Cx+ b,

where C = (cij) and b = [b1, . . . , bn]
T . Consequently, the total production x

is solution of the linear system :

Ax = b, where A = I − C .
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Formulation of the problem

We call linear system of order n (n positive integer), an expression of the
form

Ax = b,

where A = (aij) is a given matrix of size n × n, b = (bj) is a given vector
and x = (xj) is the unknown vector of the system. The previous relation is
equivalent to the n equations

n∑
j=1

aijxj = bi , i = 1, . . . , n.

The matrix A is called non-singular if det(A) ̸= 0; the solution x will be
unique (for any given vector b) if and only if the matrix associated to the
linear system is non-singular.
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In theory, if A is non-singular, the solution is given by the Cramer’s rule:

xi =
det(Bi )

det(A)
, i = 1, . . . , n,

where Bi is the matrix obtained by substituting the i-th column of A by the
vector b:

Bi =


a11 . . . b1 . . . a1n
a21 . . . b2 . . . a2n
...

...
...

an1 . . . bn . . . ann


↑
i
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Unfortunately, the application of this rule is unacceptable for the practical
solution of systems because the computational cost is of the order of (n+1)!
floating point operations (flops). In fact, every determinant requires n! flops.
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For example, the following table gives the time required by different
computers to solve a linear system using the Cramer rule (o.r. stands for
“out of reach”):

Number of flops of the computer
n 109 (Giga) 1010 1011 1012 (Tera) 1015 (Peta)
10 10−1 sec 10−2 sec 10−3 sec 10−4 sec negligible
15 17 hours 1.74 hours 10.46 min 1 min 6 10−2 sec
20 4860 years 486 years 48.6 years 4.86 years 1.7 days
25 o.r. o.r. o.r. o.r. 38365 years

Alternative algorithms have to be developed. In the following sections,
several methods will be analysed.
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Triangular systems

A matrix U = (uij) is upper triangular if

uij = 0 ∀i , j : 1 ≤ j < i ≤ n

and a matrix L = (lij) is lower triangular if

lij = 0 ∀i , j : 1 ≤ i < j ≤ n.

Respectively, the system to be solved is called upper or lower triangular
system.
Remark: If a matrix A is non singular and triangular, knowing that

det(A) =
n∏

i=1

λi (A) =
n∏

i=1

aii

(λi (A) being the i-th eigenvalue of A), we can deduce that aii ̸= 0, for all
i = 1, . . . , n.
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If L is lower triangular and non-singular, the linear system Ly = b
corresponds to 

l11y1 = b1
l21y1 + l22y2 = b2
...
ln1y1 + ln2y2 + . . .+ lnnyn = bn

Thus:

y1 = b1/l11 , [ 1 operation]

and for i = 2, 3, . . . , n

yi =
1

lii

bi −
i−1∑
j=1

lijyj

. [ 1 + 2(i − 1) operations]

This algorithm is called forward substitutions algorithm.
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The forward substitutions algorithm requires n2 operations, where n is the
size of the system:

1 +
n∑

i=2

(1 + 2(i − 1)) = 1 + (n − 1) + 2
n∑

i=2

(i − 1)

= 1 + (n − 1) + 2
n(n − 1)

2

= n2.
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If U is upper triangular and non-singular, the system Ux = y is:
u11x1 + . . .+ u1,n−1xn−1 + u1nxn = y1

...
un−1,n−1xn−1 + un−1,nxn = yn−1

unnxn = yn

Thus:

xn = yn/unn ,

and for i = n − 1, n − 2, . . . , 2, 1

xi =
1

uii

yi −
n∑

j=i+1

uijxj

.

This algorithm is called backward substitutions algorithm. The cost is, once
again, n2 operations.
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The LU factorization method

(Sec. 6.2.2 of the book)

Let A = (aij) be a non-singular n × n matrix. Assume that there exist a
matrix U = (uij), upper triangular and a matrix L = (lij), lower triangular
such that

A = LU. (1)
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U

0

0

We call (1) an LU factorization of A.
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If we know the LU factorization of A, solving the system Ax = b is
equivalent to solving two systems defined by triangular matrices. Indeed,

Ax = b ⇔ LUx = b ⇔

{
Ly = b,

Ux = y.

We can easily calculate the solutions of both systems:

■ first, we use the forward substitutions algorithm to solve Ly = b
(order n2 flops);

■ then, we use the backward substitutions algorithm to solve Ux = y
(order n2 flops).

It is required to find first (if possible) the matrices L and U (what requires a

number of operations of the order 2n3

3 flops).
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Example
Let’s try to find an LU factorization in the case case where the size of the
matrix A is n = 2. We can write the equation (1) as[

a11 a12
a21 a22

]
=

[
l11 0
l21 l22

] [
u11 u12
0 u22

]
,

Or equivalently:

(a) l11u11 = a11, (b) l11u12 = a12,
(c) l21u11 = a21, (d) l21u12 + l22u22 = a22.

We have then a system (non-linear) with 4 equations and 6 unknowns; in
order to have the same number of equations and unknowns, we fix the
diagonal of L by taking l11 = l22 = 1. Consequently, from (a) and (b) we
have u11 = a11 and u12 = a12; finally, if we assume a11 ̸= 0, we obtain
l21 = a12/a11 and u22 = a22 − l21u12 = a22 − a21a12/a11 using the equations
(c) and (d).
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To determine an LU factorization of the matrix A of any size n, we apply
the following method.

1. The elements of L and U satisfy the non-linear system

min(i,j)∑
r=1

lirurj = aij , i , j = 1, . . . , n; (2)

2. The system (2) has n2 equations and n2 + n unknowns. We can wipe out
n unknowns if we set the n diagonal elements of L equal to 1:

lii = 1, i = 1, . . . , n.

We will see that in this case there exist an algorithm (Gauss elimination),
allowing us to efficiently compute the factors L and U.
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The Gauss elimination method

The Gauss elimination method transforms the system

Ax = b

in an equivalent system (i.e. with the same solution) of the form:

Ux = b̂,

where U is an upper triangular matrix and b̂ is a properly modified second
member.

This system can be solved by a backward substitutions method.

In the transformation, we essentially use the proprierty that says that we
don’t change the solution of the system if we add to a given equation a
linear combination of other equations.
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Let us consider an invertible matrix A ∈ Rn×n in which the diagonal element
a11 is assumed to be non-zero. we set A(1) = A and b(1) = b. We introduce
the multiplier

li1 =
a
(1)
i1

a
(1)
11

, i = 2, 3, . . . , n, A(1) =


a
(1)
11 ... a

(1)
1j ... a

(1)
1n

...
...

...
a
(1)
i1 ... a

(1)
ij ... a

(1)
in

...
...

...
a
(1)
n1 ... a

(1)
nj ... a(1)nn


where the a

(1)
ij represent the elements of A(1). Example:

A =

2 4 6
4 8 10
7 8 9

 =⇒ l21 =
4

2
, l31 =

7

2
.

The unknown x1 can be removed from the rows i = 2, . . . , n by substracting
li1 times the first row and doing the same at the right-hand side.
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Let us define

a
(2)
ij = a

(1)
ij − li1a

(1)
1j , i , j = 2, . . . , n,

b
(2)
i = b

(1)
i − li1b

(1)
1 , i = 2, . . . , n,

where the b
(1)
i are the components of b(1) and we get a new system of the

form 
a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

...
...

...

0 a
(2)
n2 . . . a

(2)
nn




x1
x2
...
xn

 =


b
(1)
1

b
(2)
2
...

b
(2)
n

 ,

which will be written as A(2)x = b(2) and that is equivalent to the system we
had at the beginning.
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Once again we can transform this system by removing the unknown x2 from
the rows 3, . . . , n. By repeating this step we obtain a finite series of systems

A(k)x = b(k), 1 ≤ k ≤ n, (3)

where, for k ≥ 2, the matrix A(k) is of the form

A(k) =



a
(1)
11 a

(1)
12 . . . . . . . . . a

(1)
1n

0 a
(2)
22 a

(2)
2n

...
. . .

...

0 . . . 0 a
(k)
kk . . . a

(k)
kn

...
...

...
...

0 . . . 0 a
(k)
nk . . . a

(k)
nn


,

where we assume a
(i)
ii ̸= 0 for i = 1, . . . , k − 1.
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Gauss elimination method: diagram showing how the matrix A(k+1) is
obtained from the matrix A(k).
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It is clear that for k = n we obtain the following upper triangular system
A(n)x = b(n) :

a
(1)
11 a

(1)
12 . . . . . . a

(1)
1n

0 a
(2)
22 a

(2)
2n

...
. . .

...

0
. . .

...

0 a
(n)
nn




x1
x2
...
...
xn

 =



b
(1)
1

b
(2)
2
...
...

b
(n)
n


.

To be consistent with the previous notation, we write as U upper triangular

matrix A(n). The elements a
(k)
kk are called pivots and have to be non-zero for

k = 1, . . . , n − 1.
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In order to make explicit the formulae to get from the k-th systm to the

k + 1-th, for k = 1, . . . , n − 1, we asssume that a
(k)
kk ̸= 0 and we define the

multiplier

lik =
a
(k)
ik

a
(k)
kk

, i = k + 1, . . . , n, [(n − k) operations] (4)

we set then

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj , i , j = k + 1, . . . , n, [2(n − k)2 operations]

b
(k+1)
i = b

(k)
i − likb

(k)
k , i = k + 1, . . . , n. [2(n − k) operations]

(5)
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Remark
To perform the Gauss elimination,

2
n−1∑
k=1

(n − k)2 + 3
n−1∑
k=1

(n − k) =

2
n−1∑
p=1

p2 + 3
n−1∑
p=1

p = 2
(n − 1)n(2n − 1)

6
+ 3

n(n − 1)

2

operations are required, plus n2 operations for the resolution with the
backward substitutions method of the triangular system U x = b(n). By
keeping only the dominant elements (of order n3), we can say that the Gauss
elimination method has a cost of around

2

3
n3 operations.
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The following table shows the estimated computation time to solve a system
using the LU factorization in different computers:

Number of flops of the computer
n 109 (Giga) 1012 (Tera) 1015 (Peta)
102 7 10−4 sec negligible negligible
104 11 min 0.7 sec 7 10−4 sec
106 21 years 7.7 months 11 min
108 o.r. o.r. 21 years
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Algebra of Gaussian elimination

Example
Given the matrix

A =

3 1 3
6 7 3
9 12 3


Let

M1 =

 1
−2 1
−3 1

 , M1A =

3 1 3
0 5 −3
0 9 −6


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Algebra of Gaussian elimination

■ In general, with Ik−1 ∈ R(k−1)×(k−1), I ∈ Rn×n being the identity
matrices,

A(k+1) = MkA
(k) :=


Ik−1

1
−lk+1,k 1

. . .
. . .

−ln,k 1

A(k),where

Mk = I−mke
T
k , M−1

k = I+mke
T
k

where ek is the k-th unit vector, mk = (0, . . . , 0, lk+1,k , . . . , ln,k)
T ,

eTi mk = 0,∀i ≤ k

■ The factorization can be written as

Mn−1 . . .M1A = A(n) = U
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Algebra of Gaussian elimination

■ We obtain

A = M−1
1 . . .M−1

n−1U

= (I+m1e
T
1 ) . . . (I+mn−1e

T
n−1)U

=

(
I+

n−1∑
i=1

mie
T
i

)
U

=


1
l21 1
...

...
. . .

ln1 ln2 . . . 1

U = LU
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Gauss ∼ LU

We have shown that the Gauss method is equivalent to the factorization
A = LU of the matrix A, with L = multiplier matrix and U = A(n).

More exactly:

A =


1 0 . . . . . . 0
l21 1 0
... l32

. . .
...

...
. . .

. . . 0
ln1 ln,n−1 1


︸ ︷︷ ︸

L



a
(1)
11 a

(1)
12 . . . . . . a

(1)
1n

0 a
(2)
22 a

(2)
2n

...
. . .

...

0
. . .

...

0 a
(n)
nn


︸ ︷︷ ︸

U

.
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The Gauss method is only properly defined if the pivots a
(k)
kk are non zero for

k = 1, . . . , n − 1. Unfortunately, knowing that the diagonal elements of A
are not zero is not enough to avoid null pivots during the elimination phase.
For example, the matrix A in (6) is invertible and its diagonal elements are
non zero

A =

 1 2 3
2 4 5
7 8 9

 , but we find A(2) =

 1 2 3

0 0 −1
0 −6 −12

 . (6)

Nevertheless, we have to stop the Gauss method at he second step, because

a
(2)
22 = 0.
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Let Ai be the i-th main submatrix of A (i = 1, . . . , n− 1), i.e. the submatrix
made of the i first rows and columns of A:

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

A

Ai

i

i

and let di be the principal minor of A defined as di = det(Ai ). We have the
following result.
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Proposition
(Proposition 6.2 in the book) For a given matrix A ∈ Rn×n, its Gauss
factorization exists and is unique iff the principal submatrices Ai

(i = 1, . . . , n − 1) are non singular (i.e. the principal minors di are non zero:
di ̸= 0).

Remark: If di ̸= 0 (i = 1, . . . , n − 1), then the pivots a
(i)
ii are also non zero.

The matrix of the previous example doesn’t satisfy this condition because
d1 = 1 but d2 = 0.
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There are some categories of matrices for which the hypothesis of the
proposition (1) are fulfilled. In particular, we mention:

1. Strictly diagonal dominant by row matrices. A matrix A is said diagonal
dominant by row if

|aii | ≥
∑

j=1,...,n;j ̸=i

|aij |, i = 1, . . . , n.

2. Strictly diagonal dominant by column matrices. A matrix A is said
diagonal dominant by column if

|ajj | ≥
∑

i=1,...,n;i ̸=j

|aij |, j = 1, . . . , n.

Examples:

 −4 1 2
2 5 0
−2 1 7

 is diagonal dominant by row and by column,

whereas −3 1 2
2 5 0
−2 1 7

 is only diagonal dominant by row.
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3. Symmetric definite positive matrices. A matrix A is symmetric if A = AT ;
it is definite positive if and only of zTAz > 0 for all z ∈ Rn with z ̸= 0.
All its eigenvalues are positive:

λi (A) > 0, i = 1, . . . , n.
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The matrices L and U only depend on A (and not on b), the same
factorization can be resused for solving several linear systems that share the
same matrix A but different vectors b.

The number of operations is then considerably reduced, since most of the
computational weight, around 2

3n
3flops, is due to the Gaussian elimination

process. Indeed, let us consider the M linear systems:

Axm = bm m = 1, . . . ,M

■ the cost of the factorization A = LU is 2
3n

3flops;

■ the cost of the resolution of both triangular systems, Lym = bm and
Uxm = ym (m = 1, . . . ,M) is 2Mn2flops,

for a total of 2
3n

3 + 2Mn2flops which is much smaller than 2
3Mn3flops

required to solve all the systems with Gaussian elimination.
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The pivoting technique

It has been already noted that the Gauss method fails if a pivot becomes
zero.

In that case, we can use a technique called pivoting that consists in
exchanging the rows (or the columns) of the system in such a way that no
pivot is zero.
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Example
Let us go back to the matrix (6) for which the Gauss method gives a null
pivot at the second step. By just exchanging the second and the third rows,
we get a non zero pivot and can execute one step further. Indeed,

A(2) =

 1 2 3

0 0 −1
0 −6 −12

 =⇒ P2A
(2) =

 1 2 3

0 −6 −12

0 0 −1

 ,

where P2 =

 1 0 0
0 0 1
0 1 0

 is called permutation matrix.
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The pivoting strategy used for the example 2 can be generalized by finding,
at every step k of the elimination, a non zero pivot among the elements of
the subcolumn A(k)(k : n, k). This is called a partial pivot change (by row).
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From (4) we know that a big value of lik (coming for instance from a small

a
(k)
kk ) can amplify the rounding errors affecting the elements a

(k)
kj .

Consequently, in order to ensure a better stability, we choose as pivot the
biggest element in module of the column A(k)(k : n, k), and the partial
pivoting is performed at every step, even if it is not strictly necesary (i.e.
even if the pivot is non zero).
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In general, if at the step k we have to exchange the rows k and r , we will
have to multiply A(k) by the following permutation matrix Pk before
continuing:

k →

r →



1
. . .

0 . . . 1
...

1 . . . 0
. . .

1


= Pk

↑ ↑
r k

This means we will consider PkA
(k) insted of A(k).
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We can prove that the result obtained is of the form:

PA = LU, (7)

being P = Pn−1Pn−2 . . .P2P1 (global permutation matrix). L is the
multiplier matrix (the new ones!) and U = A(n).

Once the matrices L, U and P have been calculated, the resolution of the
initial system is transformed into the resolution of the triangular systems

Ax = b =⇒ PAx = Pb =⇒

{
Ly = Pb,

Ux = y.

Remark that the coefficients of the matrix L have the same values as the
multipliers calculated by an LU factorization of the matrix PA without
pivoting.
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Remark
In Matlab, we can get the factorization of a matrix A with the command

>> [L,U,P] = lu(A);

The matrix P is a permutation matrix. In the case where the matrix P is the
identity, the matrices L and U are the matrices we are looking for (such that
LU = A). Otherwise, we have LU = PA.
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Example In Matlab, we first need to define the matrix A and the vector b of
the linear system:

>> A = [-0.37, 0.05, 0.05, 0.07; 0.05, -0.116, 0, 0.05;...

0.05, 0, -0.116, 0.05; 0.07, 0.05, 0.05, -0.202];

>> b = [-2; 0; 0; 0];

Then, we can use the command \ as follows:

>> x = A\b

x =

8.1172

5.9893

5.9893

5.7779

This command computes the solution of the system with ad hoc algorithms
(it tests the matrix to choose an optimal algorithm).
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Example
If we wanted to use the LU factorization:

>> [L,U,P] = lu(A);

>> y = L\(P*b);

>> x = U\y

x =

8.1172

5.9893

5.9893

5.7779

The solution is the same. We can verify that, in this case, no permutation
takes place (P is the identity matrix):

>> P

P =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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Remark
Using the LU factorization, obtained by fixing the value 1 for the n diagonal
elements of L, we can calculate the determinant of a square matrix with
O(n3) operations, because

det(A) = det(L) det(U) = det(U) =
n∏

k=1

ukk ;

indeed, the determinant of a triangular matrix is the product of the diagonal
elements. The Matlab command det(A) makes use of this.
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The Cholesky factorization

In the case where the n × n matrix A is symmetric and positive definite,
there exists a unique upper triangular matrix R with positive diagonal
elements such that

A = RTR.

This factorization is called Cholesky factorization. In Matlab, the command

>> R = chol(A)

can be used to compute R.
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The elements rij of R can be calculated using the expressions r11 =
√
a11

and for i = 2, . . . , n :

rji =
1

rjj

(
aij −

j−1∑
k=1

rki rkj

)
, j = 1, . . . , i − 1, (8)

rii =

√√√√aii −
i−1∑
k=1

r2ki (9)

The Cholesky factorization needs around n3

3 operations (half the operations
for a LU factorization).
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Memory space limitations

Example
Let us consider the problem of calculating the deformations in a structure
subject to a given set of forces. The discretization using the finite elements
method generates a matrix A of size 150× 150. (The same matrix would
have been produced by the approximation of an electric potential field.) This
matrix is symmetric definite positive. The number of non-null entries of A is
964, and thus much smaller than (150)2 = 22500. It is a sparse matrix.
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Example The figure on the left shows the disposition of the non-null entries
of A, whereas the one on the right shows the non-null entries of the matrix
R.
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Example We notice that the number of non-null entries of R is much bigger
than those of A ( fill-in phenomenon). This leads to a bigger memory usage.
To reduce the fill-in phenomenon, we can reorder rows and columns of A in
a particular fashion; this is called reordering of the matrix. There are several
algorithms that allow us to do this.
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Example For example, the following figure shows, on the left, one possiblility
of reordering A, while the one on the right shows the disposition of the
non-null entries of the Cholesky factorization of the reordered matrix A.
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Accuracy of the numerical solution for direct methods

(Sect. 6.2.5 of the book)

The methods we have seen until now allow us to find the solution of a linear
system in a finite number of operations. That is why they are called direct
methods. However, there are cases where these methods are not satisfactory.
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Accuracy of the numerical approximation

Due to round-off errors, solving numerically the linear system Ax = b is
equivalent to solving, in exact arithmetic, the following perturbed linear
system:

(A+ δA) x̂ = b + δb,

where x̂ ∈ Rn is the numerical solution, δA ∈ Rn×n the perturbation matrix
of A, and δb ∈ Rn the perturbation vector of b.

Question: Is x̂ close to x ?
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Precision limitations

Example: the Hilbert matrix of size n × n is a symmetric matrix defined by:

Aij =
1

i + j − 1
, i , j = 1, . . . , n

In Matlab, we can build a Hilbert matrix of any size n with the command A

= hilb(n). For example, for n = 4, we get:

A =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


We consider the linear systems Anxn = bn where An is the Hilbert matrix of
size n with n = 4, 6, 8, 10, 12, 14, . . ., whereas bn is chosen such that the
exact solution is xn = (1, 1, · · · , 1)T .
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Example
For every n, we calculate the conditioning of the matrix, we solve the linear
system by LU factorization and we get xLUn as the found solution. The
obtained conditioning as well as the error ∥xn − xLUn ∥/∥xn∥ (where ∥ · ∥ is the

euclidian norm of a vector, ∥x∥ =
√
xT · x) are shown in the figure below.
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Some definitions

The p-norm of a vector v ∈ Rn is defined as:

∥v∥p :=

(
n∑

i=1

|vi |p
)1/p

for 1 ≤ p ≤ +∞.

We obtain:

∥v∥2 =
√
v · v =

√√√√ n∑
i=1

|vi |2, ∥v∥1 =
n∑

i=1

|vi |, and ∥v∥∞ = max
i=1,...,n

|vi |.

Often, the norm 2 of the vector v indicated as ∥v∥ ≡ ∥v∥2.

65 of 73



Some definitions

The p-norm of a vector v ∈ Rn is defined as:

∥v∥p :=

(
n∑

i=1

|vi |p
)1/p

for 1 ≤ p ≤ +∞.

We obtain:

∥v∥2 =
√
v · v =

√√√√ n∑
i=1

|vi |2, ∥v∥1 =
n∑

i=1

|vi |, and ∥v∥∞ = max
i=1,...,n

|vi |.

Often, the norm 2 of the vector v indicated as ∥v∥ ≡ ∥v∥2.

65 of 73



Eigenvalues and spectral radius: definitions

Given A ∈ Cn×n, its eigenvalues {λi (A)}ni=1 ∈ C and the corresponding
eigenvectors {vi}ni=1 ∈ Cn are such that

Avi = λivi for all i = 1, . . . , n.

The eigenvalues {λi (A)}ni=1 correspond to the zeros of the characteristic
polynomial of the matrix A, say

pA(λ) := det(A− λI ).

The spectral radius of A ∈ Cn×n, with eigenvalues {λi (A)}ni=1 ⊂ C, is
defined as:

ρ(A) := max
i=1,...,n

|λi (A)|.

Remark: If A is nonsingular, λi (A
−1) = 1/λn+1−i (A) for i = 1, . . . , n
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Eigenvalues of a symmetric matrix

Proposition
If the matrix A ∈ Rn×n is symmetric, then its eigenvalues are real, i.e.,
λi (A) ∈ R for all i = 1, . . . , n.

If A ∈ Rn×n is symmetric, then it is also positive definite (SPD) if and only
if all its eigenvalues are strictly positive, i.e., λi (A) > 0 for all i = 1, . . . , n.
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Norm of a matrix: definitions

For the matrix A ∈ Rn×n, its p-norm is defined as:

∥A∥p := sup
v∈Rn, v ̸=0

∥Av∥p
∥v∥p

.

For A ∈ Rn×n, we have:

■ ∥A∥1 = maxj=1,...,n

∑n
i=1 |aij |;

■ ∥A∥∞ = maxi=1,...,n

∑n
j=1 |aij |;

■ ∥A∥2 = supv∈Rn, v ̸=0
∥Av∥2

∥v∥2
=
√
λmax(ATA), with λmax(A

TA) the

maximum eigenvalue of ATA;
→ ∥Av∥2 ≤ ∥A∥2∥v∥2

■ if A is symmetric and positive definite, then ∥A∥2 = λmax(A) since
λmax(A

TA) = (λmax(A))
2.
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Conditioning number: definitions

The condition number in the p-norm of a nonsingular matrix A ∈ Rn×n is:

Kp(A) := ∥A∥p ∥A−1∥p for some 1 ≤ p ≤ +∞.

The spectral condition number of a nonsingular matrix A ∈ Rn×n is:

K (A) :=
ρ(A)

ρ(A−1)
=

maxi=1,...,n |λi (A)|
mini=1,...,n |λi (A)|

,

where ρ(A) and ρ(A−1) are the spectral radii of the matrices A and A−1,
respectively.

69 of 73



Conditioning number

For the nonsingular matrix A ∈ Rn×n, we have:

Kp(A) ≥ 1 for all 1 ≤ p ≤ +∞;

K2(A) = ∥A∥2 ∥A−1∥2 =
√
λmax(ATA)√
λmin(ATA)

;

If the eigenvalues of A are real and strictly positive, then K (A) =
λmax(A)

λmin(A)
,

where λmax(A) and λmin(A) are the maximum and minimum eigenvalues of
A, respectively.

Definition
We call conditioning of a matrix A, symmetric definite positive, the ratio
between the maximum and minimum of its eigenvalues, i.e.

K2(A) ≡ K (A) =
λmax(A)

λmin(A)
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Error and residual for linear systems

Definition:
For the linear system Ax = b, we define:

■ the (absolute) error e := x− x̂, with e ∈ Rn;

■ the relative error erel :=
∥x−x̂∥2

∥x∥2
, for x ̸= 0, with erel ∈ R;

■ the residual r := b− Ax̂, with r ∈ Rn;

■ the relative residual rrel :=
∥r∥2

∥b∥2
, for b ̸= 0, with rrel ∈ R.
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Accuracy of the numerical approximation

It can be shown that, the bigger the conditioning of a matrix, the worse the
solution obtained by a direct method.
Solve:

Ax = b

Assume A is symmetric positive definite, δA = 0 and consider the perturbed
system Ax̂ = b+ δb
The following relation can be shown :

erel =
∥x− x̂∥2
∥x∥2

≤ K (A)
∥r∥2
∥b∥2

(10)

where r is the residual r = b− Ax̂.
Remark that, if the conditioning of A is big, the distance ∥x− x̂∥ between
the exact solution and the numerically found solution can be very big even if
the residual is very small.
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Proof for (10) : We have:

x− x̂ = A−1b− A−1b− A−1δb = −A−1δb

We obtain:

∥x− x̂∥2 ≤ ∥A−1∥2∥δb∥2 =
1

λmin(A)
∥δb∥2

We also have:

Ax = b =⇒ ∥b∥2 ≤ ∥A∥2∥x∥2 = λmax(A)∥x∥2

We obtain:

erel =
∥x− x̂∥2
∥x∥2

≤ K (A)
∥r∥2
∥b∥2

because r = b− Ax̂

73 of 73


	Examples and motivation
	Linear Systems
	Gaussian elimination
	Gaussian elimination with partial pivoting
	Cholesky factorization
	Accuracy of direct methods

