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Examples and motivation

Find the currents j; for j = 1,..., n through the circuit, for n =7, given the
tension V and the resistances R; of the circuit.

The problem is defined by the following equations:

. m Kirchhoff's laws:
= Balance of the tensions:

=it is,
V=Vt Vst Vst Vs, ! ?+?
i = ig + is,
Vs = Vo + Vi, 2 .4_~_.5
g = i3 + iz,
Vs = Vi + V. eonT
I7 = Is + Ig.
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Obtained linear system

Considering the constitutive equations:
Vi=R;ji; forallj=1,...,n.

we obtain the linear system:

RR R, 0 0 Ry 0 R
0O RR -Rs R, 0O 0 0
0 0 0 R —Rs R& 0
1 -1 -1 0 0 0 0
0o 1 0 -1 -1 0 0
o 0 1 1 0 -1 0
o 0o 0o o0 1 1 -1
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Example[Economy/Logistic] We want to determine the situation of
equilibrium between demand and offer of certain goods. Let us consider that
m >= n factories produce n different products. They have to adapt their
productions to the internal demand (i.e. the goods needed as input by the
other factories) as well as to the external demand, from the consumers.

x;, 1 =1,...,nis the total number of goods made by the factory i,

b;, i=1,...,nis the corresponding demand from the market and

c;j the amount produced by the factory i needed for the factory j to make
one unit of product.
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Interaction scheme between 3 factories and the market
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Example If we suppose that the relation between the different products is
linear, the equlibrium is reached when the vector x = [x1,...,x,]” satisfies

x=Cx+b,

where C = (c;) and b = [by, ..., b,]T. Consequently, the total production x
is solution of the linear system :

Ax=b, where A=/-C.
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Formulation of the problem

We call linear system of order n (n positive integer), an expression of the
form
Ax = b,

where A = (aj;) is a given matrix of size n x n, b = (b;) is a given vector
and x = (x;) is the unknown vector of the system. The previous relation is
equivalent to the n equations

n
E a,-jxj:b,-, i:l,...,n.
j=1

The matrix A is called non-singular if det(A) # 0; the solution x will be
unique (for any given vector b) if and only if the matrix associated to the
linear system is non-singular.
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In theory, if A is non-singular, the solution is given by the Cramer’s rule:

X__det(B,-) i—
T der(a) T

where B; is the matrix obtained by substituting the i-th column of A by the
vector b:

ail .- b1 ... dinp

an1 ... b2 ... d2p
Bi = .

anl bn ann
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Unfortunately, the application of this rule is unacceptable for the practical
solution of systems because the computational cost is of the order of (n+ 1)!
floating point operations (flops). In fact, every determinant requires n! flops.
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For example, the following table gives the time required by different
computers to solve a linear system using the Cramer rule (o.r. stands for

“out of reach”):

Number of flops of the computer

n  10° (Giga) 10 10™ 10 (Tera) 10™ (Peta)
10 10 Tsec 107%2sec 10 3sec 10~ % sec negligible
15 17 hours 1.74 hours 10.46 min 1 min 6 1072 sec
20 4860 years 486 years  48.6 years 4.86 years 1.7 days
25 o.r. o.r. o.r. o.r. 38365 years

Alternative algorithms have to be developed. In the following sections,
several methods will be analysed.
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Triangular systems

A matrix U = (uj) is upper triangular if

uj=0 Vi,j :1<j<i<n
and a matrix L = (/) is lower triangular if

=0 Vij:1<i<j<n

Respectively, the system to be solved is called upper or lower triangular
system.
Remark: If a matrix A is non singular and triangular, knowing that

det(A) = H Ai(A) = H aii

(Ni(A) bemg the i-th eigenvalue of A), we can deduce that a; # 0, for all
i=1,...,n
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If L is lower triangular and non-singular, the linear system Ly = b
corresponds to

hiyt = b
biyr + hay» = b
/nlyl + /n2y2 +...+ lnnyn = bn

Thus:

yi=bi/h1} [ 1 operation]

and for i =2,3,...,n

1
b; — liyi |- [ 14 2(i — 1) operations]
1

1
yi=1

J

This algorithm is called forward substitutions algorithm.
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The forward substitutions algorithm requires n? operations, where n is the
size of the system:

1+Zn:(1+2(i—1)) = 1+(n—1)+2zn:(i—1)

i=2 i=2

= 1+(n—1)+2#

= I'I2.
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If U is upper triangular and non-singular, the system Ux =y is:

U1x1+ ...+ U p_1Xp—1+ UinXn = W1
Un—l,n—lxn—l + Up—1,nXn = Yn—-1
UppnXn =  Yn

Thus:

o= nf]

andfori=n—1,n—-2,...,2/1

n
1
Xi= |y E ujjX;
! j=i+1

This algorithm is called backward substitutions algorithm. The cost is, once
again, n® operations.
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The LU factorization method

(Sec. 6.2.2 of the book)

Let A= (a;j) be a non-singular n x n matrix. Assume that there exist a
matrix U = (ujj), upper triangular and a matrix L = (/;;), lower triangular
such that

A=LU. (1)

We call (1) an LU factorization of A.
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If we know the LU factorization of A, solving the system Ax =b is
equivalent to solving two systems defined by triangular matrices. Indeed,

Ly = b,

Ax=b & LUx=b <& {
Ux=y.

We can easily calculate the solutions of both systems:

= first, we use the forward substitutions algorithm to solve Ly = b
(order n? flops);

® then, we use the backward substitutions algorithm to solve Ux =y
(order n? flops).

It is required to find first (if possible) the matrices L and U (what requires a
number of operations of the order 2—%’3 flops).
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Example

Let's try to find an LU factorization in the case case where the size of the
matrix A is n = 2. We can write the equation (1) as

ain an | _|h O Uil U2
arx  ax b1 ho 0 wp |’
Or equivalently:

(a) hiuin =an, (b) hiue = ai,
(¢) hivi =ax, (d) hbiu+ boun = ax.

We have then a system (non-linear) with 4 equations and 6 unknowns; in
order to have the same number of equations and unknowns, we fix the
diagonal of L by taking h; = hy = 1. Consequently, from (a) and (b) we
have u1; = a11 and uip = aip; finally, if we assume a;; # 0, we obtain

b1 = 312/311 and upy = ax — bhiup = axn — 321312/811 using the equations
(¢) and (d).
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To determine an LU factorization of the matrix A of any size n, we apply
the following method.

1. The elements of L and U satisfy the non-linear system

min(i.J)

Z liuy = ajj, 1,j=1,. (2)

2. The system (2) has n? equations and n? + n unknowns. We can wipe out
n unknowns if we set the n diagonal elements of L equal to 1:

We will see that in this case there exist an algorithm (Gauss elimination),
allowing us to efficiently compute the factors L and U.
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The Gauss elimination method

The Gauss elimination method transforms the system
Ax=Db

in an equivalent system (i.e. with the same solution) of the form:
Ux = B,

where U is an upper triangular matrix and bisa properly modified second
member.

This system can be solved by a backward substitutions method.

In the transformation, we essentially use the proprierty that says that we
don't change the solution of the system if we add to a given equation a
linear combination of other equations.
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Let us consider an invertible matrix A € R"*" in which the diagonal element
a1 is assumed to be non-zero. we set A = A and b() = b. We introduce
the multiplier

1 1 1
A D

L i=23,...,n, AL = |0 0

ij in

)

where the a;" represent the elements of A Example:
2 4 6
4 7
A=14 8 10 — /2125,/3125.
7 8 9
The unknown x; can be removed from the rows i = 2,..., n by substracting

Ii1 times the first row and doing the same at the right-hand side.
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Let us define
(1)

a? =al) —ald, ij=2,...n,
b@ = pM — b =2, n,

where the bfl) are the components of b(!) and we get a new system of the
form

1 1 1 1
RGN )

0o a2 ... &Y || b

o 2 2] L b2

which will be written as A®@x = b(® and that is equivalent to the system we
had at the beginning.
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Once again we can transform this system by removing the unknown x, from
the rows 3, ..., n. By repeating this step we obtain a finite series of systems

ARlx =bk) 1< k<n, (3)

where, for k > 2, the matrix A) is of the form

e 1 1) 7
0 ap 92
Ak = k :k )
0 0 aik) a(kn)
. O 0 ag;) af,l,(,) ]
where we assume a,(-ii) #0fori=1,....k—1
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Gauss elimination method: diagram showing how the matrix A(*1) is
obtained from the matrix A().

AR Ak+1)

B pivots [l é'éments non-nuls B éléments modifiés

O éléments nuls O éléments mis a zéro
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It is clear that for k = n we obtain the following upper triangular system
ANy = p(n) -

e 1 1) 7 1) 7
agl) 352) R agn) X1 bg )
0 af a5 X b5
0 " : : :
o0 S I B LN

To be consistent with the previous notation, we write as U upper triangular
matrix A(". The elements af(’,i) are called pivots and have to be non-zero for

k=1,...,n—1.
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In order to make explicit the formulae to get from the k-th systm to the
k + 1-th, for k=1,...,n— 1, we asssume that af(l;() # 0 and we define the
multiplier

*)
=3, i=k+1,...,n, [(n — k) operations] (4)

Ak

we set then

3,('jk+1) = a:('jk) — ,-kagf), ihj=k+1,...,n, [2(n — k)? operations]

(5)

bl(kH) = b,(k) — I,-kb,((k), i=k+1,...,n. [2(n — k) operations]
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Remark
To perform the Gauss elimination,

n—1 n—1
2% (n=kP+3> (n—k) =
k=1 k=1
n—1 n—1
—1)n(2n—1) n(n—1)
25 P +3 G +3
;p p;p 6 2

operations are required, plus n?> operations for the resolution with the
backward substitutions method of the triangular system U x = b(". By
keeping only the dominant elements (of order n®), we can say that the Gauss
elimination method has a cost of around

2 5 _
gn operations.
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The following table shows the estimated computation time to solve a system
using the LU factorization in different computers:

Number of flops of the computer
n  10° (Giga) 102 (Tera) 10™ (Peta)
102 7 10~%* sec negligible negligible

10* 11 min 0.7 sec 7 107 sec
106 21 years 7.7 months 11 min
108 our. o.r. 21 years
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Algebra of Gaussian elimination

Example
Given the matrix
3 1 3
A=16 7 3
9 12 3
Let
1
Mi=1|-21 ,  MA=
-3 1
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Algebra of Gaussian elimination

= In general, with I,_; € R=Dx(k=1) | ¢ R"™" being the identity
matrices,

b1
1
At = g AR = e 1 A®) \where
o 1
M, = IfmkekT, /\/Ik_I:IerkekT
where ey is the k-th unit vector, mg = (0,...,0, lks1.ky-- -, k)",

e'me=0,Yi< k

i

® The factorization can be written as

M,_1...MA=A" =y
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Algebra of Gaussian elimination

= We obtain

A = MtoooMLU
= (I+mel)...(1+m,_1e] U

Il
T -
+
gl
3
o
s'
S~
<

1
/21 1

= . ) U=1LU
/nl /n2 1
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Gauss ~ LU

We have shown that the Gauss method is equivalent to the factorization
A = LU of the matrix A, with L = multiplier matrix and U = Al

More exactly:

1 0 ... ... o7[aY D o T
bi 1 0 0 af aS)
A= o :
0 0 :
In1 In1 1 L0 alm
L U
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The Gauss method is only properly defined if the pivots as(’;) are non zero for
k=1,...,n— 1. Unfortunately, knowing that the diagonal elements of A
are not zero is not enough to avoid null pivots during the elimination phase.
For example, the matrix A in (6) is invertible and its diagonal elements are
non zero

123 1 2 3
A=|2 4 5| butwefind A® =10 [0] -1 |. (6)
789 0 —6 —12

Nevertheless, we have to stop the Gauss method at he second step, because
a22 =0.
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Let A; be the i-th main submatrix of A (i =1,...,n—1), i.e. the submatrix
made of the / first rows and columns of A:

and let d; be the principal minor of A defined as d; = det(A;). We have the
following result.
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Proposition
(Proposition 6.2 in the book) For a given matrix A € R"™", jts Gauss
factorization exists and is unique iff the principal submatrices A;

(i=1,...,n—1) are non singular (i.e. the principal minors d; are non zero:
d; #£0).
Remark: If d; #0 (i =1,...,n— 1), then the pivots a,(,i) are also non zero.

The matrix of the previous example doesn't satisfy this condition because
di =1 but dr =0.
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‘I'here are some categories of matrices for which the hypothesis of the
proposition (1) are fulfilled. In particular, we mention:

1. Strictly diagonal dominant by row matrices. A matrix A is said diagonal
dominant by row if

|aji| > Z lagl, i=1,...,n.
J=1,nij#i

2. Strictly diagonal dominant by column matrices. A matrix A is said
diagonal dominant by column if

|a| > Z lagl, j=1,...,n.

i=1,...,mi#j
-4 1 2
Examples: [ 2 5 0 | is diagonal dominant by row and by column,
-2 17
whereas
-3 1 2
2 5 0 [ isonly diagonal dominant by row.
-2 17
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3. Symmetric definite positive matrices. A matrix A is symmetric if A= AT;
it is definite positive if and only of zT Az > 0 for all z € R” with z # 0.
All its eigenvalues are positive:

)\,‘(A)>07 i=1...,n
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The matrices L and U only depend on A (and not on b), the same
factorization can be resused for solving several linear systems that share the
same matrix A but different vectors b.

The number of operations is then considerably reduced, since most of the
computational weight, around %n3f/ops, is due to the Gaussian elimination
process. Indeed, let us consider the M linear systems:

Ax, = b, m=1....M

® the cost of the factorization A= LU is %n3flops;

= the cost of the resolution of both triangular systems, Ly, = b,, and
Uxm=Ym (m=1,..., M) is 2Mn?flops,

for a total of §n3 + 2Mn?flops which is much smaller than %Mn3f/op5

required to solve all the systems with Gaussian elimination.
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Gaussian elimination with partial pivoting
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The pivoting technique

It has been already noted that the Gauss method fails if a pivot becomes
zero.

In that case, we can use a technique called pivoting that consists in
exchanging the rows (or the columns) of the system in such a way that no
pivot is zero.
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Example

Let us go back to the matrix (6) for which the Gauss method gives a null
pivot at the second step. By just exchanging the second and the third rows,
we get a non zero pivot and can execute one step further. Indeed,

1 2 3 1 2 3
AP =10 [0] -1 = PA@ =10 [-6] -12 |,
0 -6 -—12 0 0 -1
1 00
where P, =| 0 0 1 | is called permutation matrix.
010
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The pivoting strategy used for the example 2 can be generalized by finding,
at every step k of the elimination, a non zero pivot among the elements of
the subcolumn A (k : n, k). This is called a partial pivot change (by row).
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From (4) we know that a big value of /; (coming for instance from a small
aff,?) can amplify the rounding errors affecting the elements a%f).
Consequently, in order to ensure a better stability, we choose as pivot the
biggest element in module of the column AK)(k : n, k), and the partial
pivoting is performed at every step, even if it is not strictly necesary (i.e.

even if the pivot is non zero).
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In general, if at the step k we have to exchange the rows k and r, we will
have to multiply A() by the following permutation matrix Pj before
continuing:

1
0 1
k — — P,
r— 1 ... 0
1
T
r k

This means we will consider P, A% insted of AK).
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We can prove that the result obtained is of the form:

(7)

being P = P,_1P,_> ... P>,P; (global permutation matrix). L is the
multiplier matrix (the new ones!) and U = A(".

Once the matrices L, U and P have been calculated, the resolution of the
initial system is transformed into the resolution of the triangular systems
Ly = Pb,

Ax=b = PAx=Pb = {
Ux =y.

Remark that the coefficients of the matrix L have the same values as the
multipliers calculated by an LU factorization of the matrix PA without
pivoting.
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Remark
In Matlab, we can get the factorization of a matrix A with the command

>> [L,U,P] = 1u(h);

The matrix P is a permutation matrix. In the case where the matrix P is the
identity, the matrices L and U are the matrices we are looking for (such that
LU = A). Otherwise, we have LU = PA.
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Example In Matlab, we first need to define the matrix A and the vector b of
the linear system:

>> A = [-0.37, 0.05, 0.05, 0.07; 0.05, -0.116, O, 0.05;...
0.05, 0, -0.116, 0.05; 0.07, 0.05, 0.05, -0.202];

>> b [-2; 0; 0; 0];

Then, we can use the command \ as follows:

>> x = A\b

x =
8.1172
5.9893
5.9893
5.7779

This command computes the solution of the system with ad hoc algorithms
(it tests the matrix to choose an optimal algorithm).
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Example
If we wanted to use the LU factorization:

>> [L,U,P] = 1u(p);
>> y = L\(P*b);

>> x = U\y
x =
8.1172
5.9893
5.9893
5.7779

The solution is the same. We can verify that, in this case, no permutation
takes place (P is the identity matrix):

>> P

P =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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Remark

Using the LU factorization, obtained by fixing the value 1 for the n diagonal
elements of L, we can calculate the determinant of a square matrix with
O(n®) operations, because

det(A) = det(L) det(U) = det(U H Uk

indeed, the determinant of a triangular matrix is the product of the diagonal
elements. The Matlab command det(A) makes use of this.
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The Cholesky factorization

In the case where the n x n matrix A is symmetric and positive definite,
there exists a unique upper triangular matrix R with positive diagonal
elements such that

A=R'R.

This factorization is called Cholesky factorization. In Matlab, the command
>> R = chol(A)

can be used to compute R.
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The elements r;; of R can be calculated using the expressions ri; = /a1
andfori=2,...,n:

1 = . .
rj,-:“<a,-J-—Zrk,-rkj>, j=1,...,i—1, (8)

k=1

(9)

The Cholesky factorization needs around "; operations (half the operations

for a LU factorization).
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Memory space limitations

Example

Let us consider the problem of calculating the deformations in a structure
subject to a given set of forces. The discretization using the finite elements
method generates a matrix A of size 150 x 150. (The same matrix would
have been produced by the approximation of an electric potential field.) This
matrix is symmetric definite positive. The number of non-null entries of A is
964, and thus much smaller than (150)2 = 22500. It is a sparse matrix.
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Example The figure on the left shows the disposition of the non-null entries
of A, whereas the one on the right shows the non-null entries of the matrix
R.

Nombre d' éléments non nuls de la matrice A : 964 Nombre d' éléments non nuls de la matrice U : 4235
Vet " e O
N N o -t SN «
N ) 1l * 1. ]
1. H ll 1]
. ‘2’ l {
s L}
Ly
_ ot e gt
100
150 ,
o EJ 0 5
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Example We notice that the number of non-null entries of R is much bigger
than those of A ( fill-in phenomenon). This leads to a bigger memory usage.
To reduce the fill-in phenomenon, we can reorder rows and columns of A in
a particular fashion; this is called reordering of the matrix. There are several
algorithms that allow us to do this.

56 .0f 73 1



Example For example, the following figure shows, on the left, one possiblility
of reordering A, while the one on the right shows the disposition of the
non-null entries of the Cholesky factorization of the reordered matrix A.

Nombre d’ éléments non nuls : 964 Nombre d’ éléments non nuls : 1583
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Accuracy of the numerical solution for direct methods

(Sect. 6.2.5 of the book)

The methods we have seen until now allow us to find the solution of a linear
system in a finite number of operations. That is why they are called direct
methods. However, there are cases where these methods are not satisfactory.
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Accuracy of the numerical approximation

Due to round-off errors, solving numerically the linear system Ax = b is
equivalent to solving, in exact arithmetic, the following perturbed linear

system:
(A+5A) % = b+ 6b,

where X € R" is the numerical solution, 6A € R"*" the perturbation matrix

of A, and §b € R" the perturbation vector of b.

Question: Is X close to x ?
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Precision limitations

Example: the Hilbert matrix of size n X n is a symmetric matrix defined by:

1
A,":%, .,':1,...,
ij /—|—J—1 1, J n

In Matlab, we can build a Hilbert matrix of any size n with the command A
= hilb(n). For example, for n = 4, we get:

>

Il
FNTEPRYIE T
(SIS TIPS NI
O [ 1=
IO U1 s [

We consider the linear systems A,x, = b,, where A, is the Hilbert matrix of
size n with n =4,6,8,10,12,14, ..., whereas b, is chosen such that the

exact solution is x, = (1,1,---,1)7.
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Example

For every n, we calculate the conditioning of the matrix, we solve the linear
system by LU factorization and we get x:Y as the found solution. The
obtained conditioning as well as the error ||x, — xtY||/||x,|| (where || - || is the
euclidian norm of a vector, ||x|| = V'x7 - x) are shown in the figure below.

10 : !
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Some definitions

The p-norm of a vector v € R" is defined as:

n 1/p
vllp = (Z |V;|p> for 1 < p < +oo.
i=1
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Some definitions

The p-norm of a vector v € R" is defined as:

n 1/p
[v]lp = (Z |Vi|p> for 1 < p < +oo.

i=1

We obtain:

Ivllo = Vo v =

Often, the norm 2 of the vector v indicated as ||v|| = ||v]|2.
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Eigenvalues and spectral radius: definitions

Given A € C™", its eigenvalues {\;(A)}7_; € C and the corresponding
eigenvectors {v;}"_; € C" are such that

Av, = N\v; foralli=1,... n

The eigenvalues {\;(A)}"_; correspond to the zeros of the characteristic
polynomial of the matrix A, say

pa(A) :=det(A— ).
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Eigenvalues and spectral radius: definitions

Given A € C™", its eigenvalues {\;(A)}7_; € C and the corresponding
eigenvectors {v;}"_; € C" are such that

Av, = N\v; foralli=1,... n

The eigenvalues {\;(A)}"_; correspond to the zeros of the characteristic
polynomial of the matrix A, say

pa(A) :=det(A— ).

The spectral radius of A € C™", with eigenvalues {\;(A)}_, CC, is

defined as:
p(A) = max |Xi(A)|

i=1,...,n
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Eigenvalues and spectral radius: definitions

Given A € C™", its eigenvalues {\;(A)}7_; € C and the corresponding
eigenvectors {v;}"_; € C" are such that

Av, = N\v; foralli=1,... n

The eigenvalues {\;(A)}"_; correspond to the zeros of the characteristic
polynomial of the matrix A, say

pa(A) :=det(A— ).

The spectral radius of A € C™", with eigenvalues {\;(A)}_, CC, is
defined as:
p(A) = max |Xi(A)|

i=1,...,n

Remark: If A is nonsingular, \;(A™Y) =1/X\,;1_i(A) fori=1,...,n
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Eigenvalues of a symmetric matrix

Proposition
If the matrix A € R"™" js symmetric, then its eigenvalues are real, i.e.,
M(A)eR foralli=1,...,n.

If A € R™" s symmetric, then it is also positive definite (SPD) if and only
if all its eigenvalues are strictly positive, i.e., \j(A) >0 foralli=1,...,n.
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Norm of a matrix: definitions

For the matrix A € R"™ " its p-norm is defined as:

[|Av]]
[Allp == sup £
vER", v#£0 HVHP

For A € R™" we have:
" [|Allr = maxj1,..n 200y |al;
" (Al = maxi=1,...n 257 |ajl;

= [[All2 = supyegn vo Il2 = \/Aax(AT A), with Amau(AT A) the

maximum eigenvalue of AT A:
= [[Av]2 < [[All2][v]l2

m if Ais symmetric and positive definite, then [|A||2 = Amax(A) since
Amax(ATA) = (Amax(A))?.
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Conditioning number: definitions

The condition number in the p-norm of a nonsingular matrix A € R"*" is:
Ky(A) == ||All, |A7Y, for some 1 < p < +oc.

The spectral condition number of a nonsingular matrix A € R"" is:

where p(A) and p(A~1) are the spectral radii of the matrices A and A~1,
respectively.
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Conditioning number

For the nonsingular matrix A € R"*", we have:

Ky(A) >1 forall1<p< +oo;

Ka(A) = [[All2 [ A2 = m

Amax(A
If the eigenvalues of A are real and strictly positive, then K(A) = —™= (4)

)\min(A) ,
where Apax(A) and Apin(A) are the maximum and minimum eigenvalues of
A, respectively.
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Conditioning number

For the nonsingular matrix A € R"*", we have:

Ky(A) >1 forall1<p< +oo;

_ vV Amax(ATA)
Ka(A) = Ao [|AH o = Y m2oe_—
vV Amin(ATA)
_ . . Amax(A)
If the eigenvalues of A are real and strictly positive, then K(A) = Nin(A)”
where Apax(A) and Apin(A) are the maximum and minimum eigenvalues of
A, respectively.

Definition
We call conditioning of a matrix A, symmetric definite positive, the ratio
between the maximum and minimum of its eigenvalues, i.e.
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Error and residual for linear systems

Definition:
For the linear system Ax = b, we define:

u the (absolute) error e := x — X, with e € R";

B the relative error g, 1= ”’l“;ﬂh, for x # 0, with e € R;
® the residual r := b — AX, with r ¢ R";
= the relative residual re = fii, for b # 0, with re € R,
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Accuracy of the numerical approximation

It can be shown that, the bigger the conditioning of a matrix, the worse the
solution obtained by a direct method.

Solve:
Ax=Db

Assume A is symmetric positive definite, JA = 0 and consider the perturbed
system Ax = b + b
The following relation can be shown :

< K(A)”|:;|”22 (10)

[Ix = %]l2

= X

where r is the residual r = b — AX.

Remark that, if the conditioning of A is big, the distance ||x — X|| between
the exact solution and the numerically found solution can be very big even if
the residual is very small.
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Proof for (10) : We have:
x—%=A"Tb—ATb—A6b=—-A""6b

We obtain: 1
—%ll, < |A7L - -
= 2l < A7 bl = 5 s b

We also have:
Ax =b = |[bll2 < [|A[l2[[x[[2 = Amax(A)]|x]]2

We obtain:

Irl2

Ix~ %I
— < K(A
Yol

[1x[|2

Erel =

because r = b — AX
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