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Representation of real numbers on computers

® The computer only allows the representation of a finite set of real
numbers (R) and of numbers with a finite number of digits

1.
eg 3=03-033333 (1)

® A real number x € R is truncated by the calculator and it is replaced by
the floating point number fl(x) € F

Definition 1
The set of floating point numbers F is the subset of real numbers which can

be represented on a computer, i.e., F C R, with dim(F) < +oo. In general,
F = Fo U {0}, with Fy being the floating point numbers excluding zero.
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Floating point numbers

A floating point number x € Fo(f, t, L, U) is represented as
x=(=1°-m-B = (-1 (a1a2...ar)5 - B,

where

m (3 is the base (the numerical system);

" m=(a1ay...a:)p is the mantissa (0 < m < ' — 1) with t being the
number of significant digits (the digits a; are such that 0 < a; < -1
and a; # 0);

B e € Z is the exponent such that e € [L, U], with L < 0 and U > 0;

® s=0,1is the sign.



Machine representation of real numbers

For the set Fo(5,t, L, U):
® the smallest and largest positive numbers are xpmin = Bt1 and

Xmax — 6U (1 - ﬂit);
® the machine epsilon is the minimum real number greater than zero such
that fl(1 +ey) > 1, is ey = B2°F;
®m the relative roundoff error for x € R when it is represented by fl(x) € F
is:
[x — fI(x)]

<
x|

€M, X#())

N =

with ey being an upper bound.
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Example for Fy(2,2, —1,2)

Consider 8 = 2 (numerical system in base 2), t = 2 (number of digits),
L=—-1, and U = 2, then:

9 Xmin:ﬂl__l:%7 and XmaX:ﬁU (l_ﬂ_t) :3

N~

em=p""=
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Example for Fy(2,2, —1,2)

Consider 8 = 2 (numerical system in base 2), t = 2 (number of digits),
L=—-1, and U = 2, then:

em=p""=

N~

9 Xmin:ﬁl__l:%7 and XmaX:ﬁU (l_ﬂ_t) :3

® ¢y is the smallest positive number such that:
fl(l+ey)>1

® Values of the exponent e: —1,0,1, and 2
® Mantissa m = (a1a2)2, hence a; =1, apisOor 1
® For s = 0, the positive real numbers in Fg are x = mB¢~t = m2¢~2:

6ot 27 1



Example for Fy(2,2, —1,2)

Consider 8 = 2 (numerical system in base 2), t = 2 (number of digits),
L=—-1, and U = 2, then:

1
em=p8""1=7, Xmin:ﬁL_1:Z7 and Xmax:ﬁu(l_ﬁ_t):&

N~

® ¢y is the smallest positive number such that:
fl(l+ey)>1

® Values of the exponent e: —1,0,1, and 2
® Mantissa m = (a1a2)2, hence a; =1, apisOor 1
® For s = 0, the positive real numbers in Fg are x = mB¢~t = m2¢~2:

e -1/0]|1]2
m=(10, =2 3 [3[1]2

m Larger |fl(x)|, lesser dense are the numbers in R
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Single/double precision

When the basis § = 2 is used, we reserve:

® in single precision (N = 32 bits), 1 digit for s, 23 digits for m, and 8
digits for e;

® in double precision (N = 64 bits), 1 digit for s, 52 digits for m, and 11
digits for e.

1 bit 11 bits 52 bits
T

Exponent (11 bits) | Mantissa (52 bits)

Sign

Matlab double precision: since first digit a; is always equal to 1, number of
digits t used for the mantissa m is 52 + 1 = 53, and:

ey =23 ~2x10716

~ —308 ~ 10308
Xmin ~ 10 ,  Xmax = 10



Round-off errors

= Round-off errors accumulate during computations
® Potentially can lead to numerically unstable algorithms
Example: For any x € R\ {0}, we have:
(1+x)—1
X

=1.

In floating point arithmetic:
fI(L+fl(x)) -1
i(x) -

where y is a real number generally different from 1.
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Round-off errors

= Round-off errors accumulate during computations
® Potentially can lead to numerically unstable algorithms
Example: For any x € R\ {0}, we have:
(1+x)—1
X

=1.

In floating point arithmetic:
fI(L+fl(x)) -1
i(x) -

where y is a real number generally different from 1.

X Relative Error (%)
10-10 8107
10— 8-1072
1071 11
10-1° 100

Table: Relative error for different values of x
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The computational process

From the Physical Problem to the Mathematical Problem

u Consider a physical problem (PP) with a physical solution x,s, which
depends on some data d

® The mathematical problem (MP) represents the mathematical
formulation of the PP with the mathematical solution x:

F(x,d)=0, xeX,deD, en:=xpn—xX

m d = data,

B xph = solution of the
physical problem,

Physical Problem
d <= Xpn

F(x;d)=0 .
bid)=0 = x ® x = solution of the
mathematical problem,

® e, = modeling error.
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Example

= Physical problem: a body falling under the action of external forces

® Physical solution: xp; the velocity of the body at time tr > 0
= Consider the model:

V(t) = fuu(t) fort >0,
Find V(t) : "V () = feul(t) fort>
V(0) =0,
where V/(t) is body velocity, m its mass, fo(t) external forces.

Mathematical solution: x = V/(tr)
Mathematical problem (MP):

where the data are d = (tr, m, fexe(t)).
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The Mathematical Problem

Definition 2

Let us consider an admissible perturbation on the data dd (i.e. such that
d + dd € D) inducing the perturbation dx on the solution x € X (i.e. for
which F(x + dx; d + dd) = 0). The solution x € X is continuously
dependent on the data if:

Ino(d) > 0,3Ko(d) > 0:if [|6d]| < mo(d) = [[6x]| < Ko(d)[[6d].

Definition 3

The mathematical problem F(x;d) = 0 is well-posed (stable) if and only if
there exists a unique solution x € X’ continuously dependent on the data
deD.



The Mathematical Problem

Definition 4
The (relative) conditioning (number) of a problem F(x; d) = 0 for the data
deDis:

o]/ lx]
K(d) := - dd :d+46d eD.od .
(@) S”p<|6d||/||d|’ vod:d+od € D,od 70



The Mathematical Problem

Definition 4
The (relative) conditioning (number) of a problem F(x; d) = 0 for the data
deDis:

o]/ lx]
K(d) := - dd :d+46d eD.od .
(@) S”p(|6d||/||d|’ vod:d+od €D,0d 70

® K(d) measures the sensitivity of well-posed MP, i.e. even small changes
of d can lead to large variations of x

m If K(d) is "small,” the problem F(x;d) = 0 is well-conditioned.
Conversely, if K(d) is "large,” the problem is ill-conditioned



Example of ill-conditioned problem

Consider the MP:
F(x;d)=dx—a=0, forsomea e Rxe X =R deD=R
The perturbed problem:

F(x+dx;d +dd) = (d+ dd)(x + x) —a =0
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Example of ill-conditioned problem

Consider the MP:
F(x;d)=dx—a=0, forsomea e Rxe X =R deD=R
The perturbed problem:

F(x+dx;d +dd) = (d+ dd)(x + x) —a =0

_,x__d 4
x  d+ddd’
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Example of ill-conditioned problem

Consider the MP:
F(x;d)=dx—a=0, forsomea e Rxe X =R deD=R
The perturbed problem:

F(x+dx;d +dd) = (d+ dd)(x + x) —a =0

_bx__ d
x d+ddd’
Conditioning;:
d
K(d) ~ sup ‘
(d) 5d:(d+35d)eD, ||5d||»0 | d + 0d
large if 6d ~ —d.
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The computational process

From the Mathematical Problem to the Numerical Problem
® The numerical problem (NP) is an approximation of the MP
u We refer to the NP as:

Frn(xn,dn) =0, xp € Xp, dn € Dp, X, Dy, suitable spaces



The computational process

From the Mathematical Problem to the Numerical Problem
® The numerical problem (NP) is an approximation of the MP
u We refer to the NP as:

Frn(xn,dn) =0, xp € Xp, dn € Dp, X, Dy, suitable spaces

Physical Problem
d = xp

B d = data,

B xpn = solution of the physical
problem,

B x = solution of mathematical
Mathematical Problem problem,
F(x;d)=0 < x
B x; = solution of numerical
problem,

Numerical Problem | | em = modeling error,
Fi(xn; dp) =0 <= xp

B e = truncation error.
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The computational process

From the Mathematical Problem to the Numerical Problem
= The final solution Xj, is affected by round-off error, e, := x — X

® The computational error e. :== x — X = e; + &,
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The computational process

From the Mathematical Problem to the Numerical Problem
= The final solution Xj, is affected by round-off error, e, := x — X

® The computational error e. :== x — X = e; + &,

et := X — xp truncation error,

[
¢ e, = roundoff error,

ec = computational error,

Numerical Problem
Fi(xn; dn) =0 <= x,

B d = data,
B xpnh = solution of phys. pb.,
Physical Problem B x = solution of the math. pb.,
B xp, = solution of numer. pb.,
S S B g, = final solution,
Mathematical Problem e % m e, = modeling error,
F(x;d) =0 <= x
[ ]
]
]
]

e = total error,

(often |er| < |et| and so xp & Rp)
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Example

Given the MP:
tr
F(x;d) =x— / g(t)dt =0 with the data d = {tr,g(t)},
0

we can have the NP:

n—1
Fi(xh; dp) = xn — th(t,') =0,
i=0
where t;=ih for i=0,...,n, with h=1%X
8(r) g(r)
/7<x/\ .
t ¢
0 iy 0 h i Iy
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The numerical problem

h, n = discretization parameters (h — 0 and n — o).

Definition 5

The numerical problem Fp(xp; dn) = 0 is well-posed (stable) if and only if
there exists a unique solution x, € X} continuously dependent on the data
dp € Dy,

Definition 6

Let us consider an admissible perturbation on the data ddj (i.e., such that
dp + ddp € Dy) inducing the perturbation dx, on the solution x, € X, (i.e.,
for which Fp(xn + dxp; dp + ddi) = 0). The solution x, € X} is continuously
dependent on the data if:

380,n(dn) > 0,3Ko n(ds) > 0 such that:

16| < do,n(dn) = [|0xn]l < Ko,n(dh)[|dd]-



The Numerical Problem (Method)

Definition 7
The (relative) conditioning (number) of the numerical problem
Fh(Xh; dh) = 0 for the data dj, € Dy, is:

[|9x][ /{1 xnl

Kn(dh) := sup (||6dh|/||dh||

Vddy : dp+ 6dy € Dp, ||5ds|| # 0) .

Remark: If K,(dp) is "small,” the numerical problem Fp(xy; dp) =0 is
well-conditioned. Conversely, if K,(dy) is "large,” the problem is
ill-conditioned.
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The Numerical Problem: consistency

Definition 8
The numerical method (problem) Fy(xs; dy) = 0 is consistent iff:

Fr(x;d) — F(x;d) = 0 as h — 0,
when the data d € D is admissible for Fy(-;-) (i.e., d € Dp).

Definition 9
The numerical method (problem) Fp(xp; di) = 0 is strongly consistent iff:

Fn(x;d) = F(x;d) =0 for all h >0,

when the data d € D is admissible for Fy(-;-) (i.e., d € Dp).
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Example of consistency

Given

MP: F(x;d) = x —d = 0, with d = v/2, for which x = v/2
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Example of consistency

Given
MP: F(x;d) = x —d =0, with d = v/2, for which x = /2
Consider two different NP associated with the MP:

1. NP: Fp(xn; d) = Xpp1 — %xn — L =0for n>0, with xo = 1;

2xp
U n is the discretization parameter/iteration number
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Example of consistency

Given
MP: F(x;d) = x —d = 0, with d = v/2, for which x = v/2

Consider two different NP associated with the MP:
1. NP: Fp(xn; d) = Xpp1 — %xn — L =0forn>0, with xg = 1;

2xp
U n is the discretization parameter/iteration number
0 strongly consistent: F,(x; d) = V2 — %\/5 — 2—\1/5 =0foralln>0
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Example of consistency

Given
MP: F(x;d) = x —d = 0, with d = v/2, for which x = v/2

Consider two different NP associated with the MP:
1 NP: Fp(%p; d) = Xp11 — 3%0 — 5= = 0 for n > 0, with xp = 1;

U n is the discretization parameter/iteration number
0 strongly consistent: F,(x; d) = V2 — 3\f 2\/ =0foralln>0

2. NP: F(x,,,d):x,,+1f%x,,72i+(1+n)5 =0forn>0, with xg =1
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Example of consistency

Given
MP: F(x;d) = x —d = 0, with d = v/2, for which x = v/2

Consider two different NP associated with the MP:
1 NP: Fp(%p; d) = Xpp1 — 3%0 — 5= = 0 for n > 0, with xo = 1;

U n is the discretization parameter/iteration number
0 strongly consistent: F,(x; d) = V2 — 3\f 2\/ =0foralln>0

2. NP: F(x,,,d):x,,+1f%x,,72—>1(n+(1+n)5 =0forn>0, with xg =1

NP not strongly consistent: F,(x;d) = (=g #0forn>0

- (1+n
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Example of consistency

Given
MP: F(x;d) = x —d = 0, with d = v/2, for which x = v/2

Consider two different NP associated with the MP:
1 NP: Fp(%p; d) = Xpp1 — 3%0 — 5= = 0 for n > 0, with xo = 1;

U n is the discretization parameter/iteration number
0 strongly consistent: F,(x; d) = V2 — 3\f 2\/ =0foralln>0

2. NP: F(x,,,d):x,,+1f%x,,72—>1(n+(1+n)5 =0forn>0, with xg =1

NP not strongly consistent: F,(x;d) = (=g #0forn>0

- (1+n
NP consistent: lim,_ 1o Fn(x;d) =0.
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The Numerical Problem: convergence

Definition 10
Let

m x(d) € X be the solution of the MP F(x;d) =0 for d € D,

m xu(d + 0dp) € X be the solution of the NP Fp(xp; d + ddp) = 0, with
d + édy € Dy,



The Numerical Problem: convergence

Definition 10
Let

m x(d) € X be the solution of the MP F(x;d) =0 for d € D,

m xu(d + 0dp) € X be the solution of the NP Fp(xp; d + ddp) = 0, with
d + édy € Dy,

The numerical method Fy(xp; d + ddy) = 0 is convergent if and only if:
Ve > 0,3hg = ho(€) > 0,3A = A(hg,€) : Vh < hg(€),¥ody : ||ddp|| < A

= || x(d) — xp(d + ddp)|| < e.



The Numerical Problem: convergence

Definition 10
Let

m x(d) € X be the solution of the MP F(x;d) =0 for d € D,

m xu(d + 0dp) € X be the solution of the NP Fp(xp; d + ddp) = 0, with
d + édy € Dy,

The numerical method Fy(xp; d + ddy) = 0 is convergent if and only if:
Ve > 0,3hg = ho(€) > 0,3A = A(hg,€) : Vh < hg(€),¥ody : ||ddp|| < A
= || x(d) — xp(d + ddp)|| < e.

In practice, the numerical method is convergent if the error
ec = ec(xp) := |x — xp| tends to zero when improving the discretization, i.e.:

ec = 0as h—0,(or n — c0).



The Numerical Problem (Method)

Definition 11

If the error e. can be bounded as a function of h as:
ec = ec(xp) < ChP,

for some p > 0 and C independent of h and p, the numerical method is
convergent of order p. _
If there exists C > 0 such that Ch? < e. < ChP, then we can write:

e. ~ ChP.



Estimating the convergence order

Assuming e. =~ ChP, convergence order p can be estimated as:
1. Algebraically: given the exact solution of the mathematical problem x and two
approximated solutions x; and x> corresponding to h; and hy:

_ log(ec(x)/ec(2))

log (h1/h2)

=) B )
S - 2
5104 V = = :
s --(he)
- - (hh)
== (h,h?) ==(h,h?)
108 .- ==t 16 ’ -~ (h,h®
1072 107! 1072 107!
h [log] h [log]
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Estimating the convergence order

Assuming e. =~ ChP, convergence order p can be estimated as:
1. Algebraically: given the exact solution of the mathematical problem x and two
approximated solutions x; and x> corresponding to h; and hy:

_ log(ec(x1)/ec(x2))
- |og (hl/hz)
2. Graphically
0 Plot the errors e. computed for different values of h vs. h in log—log scales
U Verify if the curves (h, ec) and (h, hP) are parallel in log-log scales

log e = log(Ch?) = log C+plogh = p = atan(0),0 = slope of (h, ec) curve

=) B )
S - 2
= 1074} 7 =
--(he)
- - (h,h) .
P ===(h,h?) o’ ===(h,h?)
108 .- .0 T S )
1072 107! 1072 107!

h [log] h [log]
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The Numerical Problem (Method)

The numerical method (problem) must be well-posed, consistent, and
convergent.

Theorem 1 (Lax—Richtmyer Equivalence Theorem). If the numerical
method (problem) Fp,(Xy; dn) = 0 is consistent, then it is convergent if and
only if it is well-posed (stable).

Implications:

® If the numerical method (problem) is consistent and well-posed, then it is
also convergent;

u If the numerical method (problem) is consistent and convergent, then it
is also well-posed.



Choice of the Numerical Method

= Properties of the mathematical problem.
= Efficiency:

o1 Accuracy. Convergence properties of the method, convergence order.

0 Computational costs: Number (order of magnitude) of floating point
operations required for the execution of the algorithm; the flops are the
number of these operations per second. The complexity of an algorithm
may depend on the dimension of the problem m as O(1), O(m), O(m?),
O(m?), or O(m!).

= Computer memory: Time required to access the computer memory
(depending on the implementation) and storage capabilities.
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Computational costs

Complexity Flops
0(1) independent
O(m) linear

o(m™) polynomial
o(~™) exponential
O(m!) factorial

Table: Complexity and Flop Comparison
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Example of a computation

m Compute det(A), A e R™*™
u Using Cramer's rule requires O(m!) flops
= Estimated times using a calculator with a 1GHz = 10° flops/s CPU:

m 5 10 15 20
m! 120 ~106  ~102  ~10™
CPU time [ ~10~"s ~1073s ~30min ~ 77years
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