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Representation of real numbers on computers

■ The computer only allows the representation of a finite set of real
numbers (R) and of numbers with a finite number of digits

e.g.
1

3
= 0.3̄ → 0.33333 (1)

■ A real number x ∈ R is truncated by the calculator and it is replaced by
the floating point number fl(x) ∈ F

Definition 1
The set of floating point numbers F is the subset of real numbers which can
be represented on a computer, i.e., F ⊂ R, with dim(F) < +∞. In general,
F = F0 ∪ {0}, with F0 being the floating point numbers excluding zero.

3 of 27



Floating point numbers

A floating point number x ∈ F0(β, t, L,U) is represented as

x = (−1)s ·m · βe−t = (−1)s · (a1a2 . . . at)β · βe−t ,

where

■ β is the base (the numerical system);

■ m = (a1a2 . . . at)β is the mantissa (0 < m < βt − 1) with t being the
number of significant digits (the digits ai are such that 0 ≤ ai ≤ β − 1
and a1 ̸= 0);

■ e ∈ Z is the exponent such that e ∈ [L,U], with L < 0 and U > 0;

■ s = 0, 1 is the sign.
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Machine representation of real numbers

For the set F0(β, t, L,U):

■ the smallest and largest positive numbers are xmin = βL−1 and
xmax = βU (1− β−t);

■ the machine epsilon is the minimum real number greater than zero such
that fl(1 + ϵM) > 1, is ϵM = β1−t ;

■ the relative roundoff error for x ∈ R when it is represented by fl(x) ∈ F0

is:
|x − fl(x)|

|x |
≤ 1

2
ϵM , x ̸= 0,

with 1
2ϵM being an upper bound.
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Example for F0(2, 2,−1, 2)

Consider β = 2 (numerical system in base 2), t = 2 (number of digits),
L = −1, and U = 2, then:

ϵM = β1−t =
1

2
, xmin = βL−1 =

1

4
, and xmax = βU

(
1− β−t

)
= 3.

■ ϵM is the smallest positive number such that:

fl(1 + ϵM) > 1

■ Values of the exponent e: −1, 0, 1, and 2

■ Mantissa m = (a1a2)2, hence a1 = 1, a2 is 0 or 1

■ For s = 0, the positive real numbers in F0 are x = mβe−t = m2e−2:

e −1 0 1 2
m = (10)2 = 2 1

4
1
2 1 2

m = (11)2 = 3 3
8

3
4

3
2 3

■ Larger |fl(x)|, lesser dense are the numbers in R
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Single/double precision

When the basis β = 2 is used, we reserve:

■ in single precision (N = 32 bits), 1 digit for s, 23 digits for m, and 8
digits for e;

■ in double precision (N = 64 bits), 1 digit for s, 52 digits for m, and 11
digits for e.

Sign Exponent (11 bits) Mantissa (52 bits)

1 bit 11 bits 52 bits

Matlab double precision: since first digit a1 is always equal to 1, number of
digits t used for the mantissa m is 52 + 1 = 53, and:

ϵM = 21−53 ≈ 2× 10−16

xmin ≈ 10−308, xmax ≈ 10308
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Round-off errors

■ Round-off errors accumulate during computations
■ Potentially can lead to numerically unstable algorithms
Example: For any x ∈ R \ {0}, we have:

(1 + x)− 1

x
≡ 1.

In floating point arithmetic:

fl(1 + fl(x))− 1

fl(x)
= y ,

where y is a real number generally different from 1.

x Relative Error (%)

10−10 8 · 10−6

10−14 8 · 10−2

10−15 11
10−16 100

Table: Relative error for different values of x
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The computational process

From the Physical Problem to the Mathematical Problem

■ Consider a physical problem (PP) with a physical solution xph, which
depends on some data d

■ The mathematical problem (MP) represents the mathematical
formulation of the PP with the mathematical solution x :

F (x , d) = 0, x ∈ X , d ∈ D, em := xph − x

Physical Problem
d ⇐⇒ xph

Mathematical Problem
F (x ; d) = 0 ⇐⇒ x

Numerical Problem
Fh(xh; dh) = 0 ⇐⇒ xh

x̂h

em

et
er

e

ec

■ d = data,

■ xph = solution of the
physical problem,

■ x = solution of the
mathematical problem,

■ em = modeling error.
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Example

■ Physical problem: a body falling under the action of external forces

■ Physical solution: xph the velocity of the body at time tf > 0

■ Consider the model:

Find V (t) :

{
mV̇ (t) = fext(t) for t > 0,

V (0) = 0,

where V (t) is body velocity, m its mass, fext(t) external forces.

Mathematical solution: x = V (tf )
Mathematical problem (MP):

F (x ; d) = x −
∫ tf

0

fext(t)

m
dt = 0,

where the data are d = (tf ,m, fext(t)).

10 of 27



The Mathematical Problem

Definition 2
Let us consider an admissible perturbation on the data δd (i.e. such that
d + δd ∈ D) inducing the perturbation δx on the solution x ∈ X (i.e. for
which F (x + δx ; d + δd) = 0). The solution x ∈ X is continuously
dependent on the data if:

∃η0(d) > 0,∃K0(d) > 0 : if ∥δd∥ ≤ η0(d) ⇒ ∥δx∥ ≤ K0(d)∥δd∥.

Definition 3
The mathematical problem F (x ; d) = 0 is well-posed (stable) if and only if
there exists a unique solution x ∈ X continuously dependent on the data
d ∈ D.
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The Mathematical Problem

Definition 4
The (relative) conditioning (number) of a problem F (x ; d) = 0 for the data
d ∈ D is:

K (d) := sup

(
∥δx∥/∥x∥
∥δd∥/∥d∥

, ∀δd : d + δd ∈ D, δd ̸= 0

)
.

■ K (d) measures the sensitivity of well-posed MP, i.e. even small changes
of d can lead to large variations of x

■ If K (d) is ”small,” the problem F (x ; d) = 0 is well-conditioned.
Conversely, if K (d) is ”large,” the problem is ill-conditioned
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Example of ill-conditioned problem

Consider the MP:

F (x ; d) = dx − α = 0, for some α ∈ R, x ∈ X ≡ R, d ∈ D ≡ R

The perturbed problem:

F (x + δx ; d + δd) = (d + δd)(x + δx)− α = 0

=⇒ δx

x
= − d

d + δd

δd

d
.

Conditioning:

K (d) ≃ sup
δd :(d+δd)∈D, ∥δd∦=0

∣∣∣∣ d

d + δd

∣∣∣∣
large if δd ≃ −d .
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The computational process

From the Mathematical Problem to the Numerical Problem

■ The numerical problem (NP) is an approximation of the MP

■ We refer to the NP as:

Fh(xh, dh) = 0, xh ∈ Xh, dh ∈ Dh,Xh,Dh suitable spaces

Physical Problem
d ⇐⇒ xph

Mathematical Problem
F (x ; d) = 0 ⇐⇒ x

Numerical Problem
Fh(xh; dh) = 0 ⇐⇒ xh

x̂h

em

et

■ d = data,

■ xph = solution of the physical
problem,

■ x = solution of mathematical
problem,

■ xh = solution of numerical
problem,

■ em = modeling error,

■ et = truncation error.
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The computational process

From the Mathematical Problem to the Numerical Problem

■ The final solution x̂h is affected by round-off error, er := xh − x̂h
■ The computational error ec := x − x̂h = et + er

Physical Problem
d ⇐⇒ xph

Mathematical Problem
F (x ; d) = 0 ⇐⇒ x

Numerical Problem
Fh(xh; dh) = 0 ⇐⇒ xh

x̂h

em

et
er

e

ec

■ d = data,

■ xph = solution of phys. pb.,

■ x = solution of the math. pb.,

■ xh = solution of numer. pb.,

■ x̂h = final solution,

■ em = modeling error,

■ et := x − xh truncation error,

■ er = roundoff error,

■ ec = computational error,

■ e = total error,

(often |er | ≪ |et | and so xh ≈ x̂h)
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Example

Given the MP:

F (x ; d) = x −
∫ tf

0

g(t) dt = 0 with the data d = {tf , g(t)},

we can have the NP:

Fh(xh; dh) = xh − h
n−1∑
i=0

g(ti ) = 0,

where ti = ih for i = 0, . . . , n, with h = tf
n .
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The numerical problem

h, n = discretization parameters (h → 0 and n → ∞).

Definition 5
The numerical problem Fh(xh; dh) = 0 is well-posed (stable) if and only if
there exists a unique solution xh ∈ Xh continuously dependent on the data
dh ∈ Dh.

Definition 6
Let us consider an admissible perturbation on the data δdh (i.e., such that
dh + δdh ∈ Dh) inducing the perturbation δxh on the solution xh ∈ Xh (i.e.,
for which Fh(xh + δxh; dh + δdh) = 0). The solution xh ∈ Xh is continuously
dependent on the data if:

∃δ0,h(dh) > 0,∃K0,h(dh) > 0 such that:

∥δdh∥ ≤ δ0,h(dh) =⇒ ∥δxh∥ ≤ K0,h(dh)∥δdh∥.
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The Numerical Problem (Method)

Definition 7
The (relative) conditioning (number) of the numerical problem
Fh(xh; dh) = 0 for the data dh ∈ Dh is:

Kh(dh) := sup

(
∥δxh∥/∥xh∥
∥δdh∥/∥dh∥

∀δdh : dh + δdh ∈ Dh, ∥δdh∥ ≠ 0

)
.

Remark: If Kh(dh) is ”small,” the numerical problem Fh(xh; dh) = 0 is
well-conditioned. Conversely, if Kh(dh) is ”large,” the problem is
ill-conditioned.
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The Numerical Problem: consistency

Definition 8
The numerical method (problem) Fh(xh; dh) = 0 is consistent iff:

Fh(x ; d)− F (x ; d) → 0 as h → 0,

when the data d ∈ D is admissible for Fh(·; ·) (i.e., d ∈ Dh).

Definition 9
The numerical method (problem) Fh(xh; dh) = 0 is strongly consistent iff:

Fh(x ; d) ≡ F (x ; d) = 0 for all h > 0,

when the data d ∈ D is admissible for Fh(·; ·) (i.e., d ∈ Dh).
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Example of consistency

Given

MP: F (x ; d) = x − d = 0, with d =
√
2, for which x =

√
2

Consider two different NP associated with the MP:

1. NP: Fn(xn; d) = xn+1 − 3
4xn −

1
2xn

= 0 for n ≥ 0, with x0 = 1;

□ n is the discretization parameter/iteration number
□ strongly consistent: Fn(x ; d) =

√
2− 3

4

√
2− 1

2
√
2
= 0 for all n ≥ 0

2. NP: Fn(xn; d) = xn+1 − 3
4xn −

1
2xn

+ 1
(1+n)5 = 0 for n ≥ 0, with x0 = 1

NP not strongly consistent: Fn(x ; d) =
1

(1+n)5 ̸= 0 for n ≥ 0

NP consistent: limn→+∞ Fn(x ; d) = 0.
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The Numerical Problem: convergence

Definition 10
Let

■ x(d) ∈ X be the solution of the MP F (x ; d) = 0 for d ∈ D,

■ xh(d + δdh) ∈ Xh be the solution of the NP Fh(xh; d + δdh) = 0, with
d + δdh ∈ Dh.

The numerical method Fh(xh; d + δdh) = 0 is convergent if and only if:

∀ϵ > 0,∃h0 = h0(ϵ) > 0,∃∆ = ∆(h0, ϵ) : ∀h < h0(ϵ),∀δdh : ∥δdh∥ ≤ ∆

=⇒ ∥ x(d)− xh(d + δdh)∥ ≤ ϵ.

In practice, the numerical method is convergent if the error
ec = ec(xh) := |x − xh| tends to zero when improving the discretization, i.e.:

ec → 0 as h → 0, (or n → ∞).
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The Numerical Problem (Method)

Definition 11
If the error ec can be bounded as a function of h as:

ec = ec(xh) ≤ Chp,

for some p > 0 and C independent of h and p, the numerical method is
convergent of order p.
If there exists C̃ > 0 such that C̃hp ≤ ec ≤ Chp, then we can write:

ec ≈ Chp.
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Estimating the convergence order

Assuming ec ≈ Chp, convergence order p can be estimated as:
1. Algebraically: given the exact solution of the mathematical problem x and two

approximated solutions x1 and x2 corresponding to h1 and h2:

p =
log (ec(x1)/ec(x2))

log (h1/h2)

2. Graphically
□ Plot the errors ec computed for different values of h vs. h in log–log scales
□ Verify if the curves (h, ec) and (h, hp) are parallel in log-log scales

log ec = log(Chp) = logC+p log h =⇒ p = atan(θ), θ = slope of (h, ec) curve
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□ Verify if the curves (h, ec) and (h, hp) are parallel in log-log scales

log ec = log(Chp) = logC+p log h =⇒ p = atan(θ), θ = slope of (h, ec) curve

23 of 27



The Numerical Problem (Method)

The numerical method (problem) must be well-posed, consistent, and
convergent.
Theorem 1 (Lax–Richtmyer Equivalence Theorem). If the numerical
method (problem) Fh(x̂h; dh) = 0 is consistent, then it is convergent if and
only if it is well-posed (stable).
Implications:

■ If the numerical method (problem) is consistent and well-posed, then it is
also convergent;

■ If the numerical method (problem) is consistent and convergent, then it
is also well-posed.
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Choice of the Numerical Method

■ Properties of the mathematical problem.

■ Efficiency:
□ Accuracy. Convergence properties of the method, convergence order.
□ Computational costs: Number (order of magnitude) of floating point

operations required for the execution of the algorithm; the flops are the
number of these operations per second. The complexity of an algorithm
may depend on the dimension of the problem m as O(1), O(m), O(m2),
O(m3), or O(m!).

■ Computer memory: Time required to access the computer memory
(depending on the implementation) and storage capabilities.
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Computational costs

Complexity Flops
O(1) independent
O(m) linear
O(mγ) polynomial
O(γm) exponential
O(m!) factorial

Table: Complexity and Flop Comparison
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Example of a computation

■ Compute det(A), A ∈ Rm×m

■ Using Cramer’s rule requires O(m!) flops

■ Estimated times using a calculator with a 1GHz = 109 flops/s CPU:

m 5 10 15 20
m! 120 ∼ 106 ∼ 1012 ∼ 1018

CPU time ∼ 10−7 s ∼ 10−3 s ∼ 30min ∼ 77 years
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