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Motivation

Goal: Approximate a set of data couples or a function f (x) by another
function f̃ (x) easier to handle.
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Examples

Example 1: The result of census of the population of Switzerland between
1900 and 2010 (in thousands):

■ Is it possible to estimate the number of inhabitants of Switzerland during
the year when there has not been census, for example in 1945 and 1975?

■ Is it possible to predict the number of inhabitants of Switzerland in 2020?
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Example 1

The polynomial of degree two (parabola) which approximates the data by
the method of least squares is:

p(x) = 0.15x2 − 549.9x + 501600
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Approximation of functions by Taylor’s polynomials

■ Function f ∈ C n(Ix0) can be approximated in a neighborhood Ix0 of a
point x0 ∈ R by the Taylor polynomial (expansion) of order n

■ The Taylor expansion of f (x) around x0 is given by:

f̃ (x) = f (x0) +
n∑

i=1

1

i !
f (i)(x0)(x − x0)

i .

Inconvenients:

■ the evaluation of n derivatives of f (x) is required

■ Taylor’s expansion is accurate only in a neighborhood of x0
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Approximation of functions by Taylor’s polynomials

■ Consider the Taylor expansion of f (x) = 1
x of order n, denoted as f̃n(x),

around x0 = 1. The expansion is given by:

f̃n(x) = f (1) +
n∑

i=1

1

i !
f (i)(1)(x − 1)i .

■ Since f (i)(x) = (−1)i i ! x−(i+1) for i = 0, 1, . . . , n, we have

f̃ (x) = f̃n(x) = 1 +
n∑

i=1

(−1)i (x − 1)i .

■ Approximation innacurate“far” from x0 = 1
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Interpolation

Definition
Consider n + 1 data pairs {(xi , yi )}ni=0 with {xi}ni=0 being n + 1 distinct
nodes, i.e., such that xi ̸= xj for all i ̸= j , where i , j = 0, . . . , n.

Interpolating data pairs {(xi , yi )}ni=0 means determining the approximate
function f̃ (x) such that f̃ (xi ) = yi for all i = 0, . . . , n

If f (x) is known, we set yi = f (xi ) for all i = 0, . . . , n, and f̃ (xi ) = f (xi ) for
all i = 0, . . . , n.

The function f̃ (x) is called the interpolant of the data at the nodes.
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Interpolation types

■ Polynomial interpolation, for which

f̃ (x) = a0 + a1x + · · ·+ anx
n

for some n + 1 coefficients a0, a1, . . . , an;
■ Rational interpolation, for which

f̃ (x) =
a0 + a1x + · · ·+ akx

k

ak+1 + ak+2x + · · ·+ ak+n+1xn

for some coefficients a0, a1, . . . , ak+n+1 with k, n ≥ 0;
■ Trigonometric interpolation, for which

f̃ (x) =
M∑

j=−M

aje
ijx , e ijx = cos(jx) + i sin(jx),

where i is the imaginary unit (i2 = −1), for some M and complex
coefficients aj ;

■ Piecewise polynomial interpolation;
■ Splines
■ . . .
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Polynomial interpolation

Proposition 3.1 Let n ≥ 0 be an integer. Given distinct n + 1 points
x0, x1, . . . , xn and associated n+ 1 values y0, y1, . . . , yn, there exists a unique
polynomial Πn(x) of degree less than or equal to n, such that

Πn(xj) = yj for 0 ≤ j ≤ n

■ We call it the interpolating polynomial of the values yj at nodes xj , for
j = 0, . . . , n.
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Interpolation of a function

Let f ∈ C 0(I ) and x0, . . . , xn ∈ I . Taking yj = f (xj) for 0 ≤ j ≤ n, the
interpolating polynomial Πn(x) is denoted by Πnf (x) and is called the
interpolating polynomial of f at the points x0, . . . , xn. We have

Πnf (xj) = yj for 0 ≤ j ≤ n.
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Lagrange interpolating polynomials

Definition 3.2 For a set of distinct nodes {xi}ni=0, the Lagrange
characteristic function associated to the node xk is a polynomial ϕk , for
k = 0, . . . , n, of degree n such that

ϕk(xi ) = δki , k, i = 0, . . . , n,

where δki = 1 if i = k and δki = 0 if i ̸= k. Explicitly, we have

ϕk(x) =
n∏

i=0
i ̸=k

x − xi
xk − xi

.

■ The set {ϕk(x)}nk=0 is the basis of Lagrange characteristic polynomials, a
basis of Pn.
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Lagrange basis: example

Example 2. For n = 2, x0 = −1, x1 = 0, x2 = 1, the polynomials of the
Lagrange basis are:

ϕ0(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
=

1

2
x(x − 1),

ϕ1(x) =
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
= −(x + 1)(x − 1),

ϕ2(x) =
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
=

1

2
x(x + 1).
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Lagrange basis: example

The following figure shows two polynomials of the Lagrange basis of degree
n = 6 with respect to the interpolation points x0 = −1,
x1 = − 2

3 , . . . , x5 =
2
3 , and x6 = 1.
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Lagrange interpolating polynomials

Definition 3.3 The interpolating polynomial Πn of values yi at nodes xi ,
i = 0, . . . , n, is written as

Πn(x) =
n∑

k=0

ykϕk(x), (1)

because it satisfies Πn(xj) =
∑n

k=0 ykϕk(xj) = yj .
If the function f (x) is given and is continuous, its Lagrange interpolating
polynomial at the nodes {xi}ni=0 is:

Πnf (x) =
n∑

k=0

f (xk)ϕk(x).
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Numerical interpolation using Matlab

■ In Matlab, we can compute the interpolation polynomials using the
command polyfit and polyval. See more how to use these commands.

■ p = polyfit(x,y,n) calculates the coefficients of the polynomial of
degree n that interpolates the values y in nodes x .
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Examples in Matlab

Example A. We want to interpolate the values
y = [3.38, 3.86, 3.85, 3.59, 3.49] at the nodes x = [0, 0.25, 0.5, 0.75, 1] by a
polynomial of degree 4. Use the following commands in MATLAB:

x = [0:0.25:1]; % vector of the interpolation points

y = [3.38 3.86 3.85 3.59 3.49]; % vector of the values

p1 = polyfit(x, y, 4)

The output will be:

p1 = [1.8133,−0.1600,−4.5933, 3.0500, 3.3800]

p1 is a vector of coefficients of the interpolating polynomial:

Π4(x) = 1.8133x4 − 0.16x3 − 4.5933x2 + 3.05x + 3.38.

To calculate the polynomial of degree n that interpolates a function f at
given n + 1 nodes, first construct the vector y of values f at the nodes x .
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Examples in Matlab

Example B. Consider the following case:
f = @(x) cos(x);

x = [0:0.25:1];

y = f(x);

p = polyfit(x, y, 4)

The output will be:

p = [0.0362, 0.0063,−0.5025, 0.0003, 1.0000]

Remark 1. If the dimensions of x and y are m + 1 > n + 1 (where n is the
degree of the interpolation polynomial), the command polyfit(x, y, n)

returns the interpolation polynomial of degree n using the least squares
method (see sec. 3.3 in the book). In the case when m + 1 = n + 1, we find
the standard interpolation polynomial.
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Examples in Matlab

The command y = polyval(p, x) calculates the values y of the polynomial of
degree n, where the n+ 1 coefficients are stored in the vector p, at the point
x :

y = p(1) · xn + p(2) · xn−1 + . . .+ p(n) · x + p(n + 1).

Example C. We want to evaluate the polynomial from Example A at the
point x = 0.4 and then draw a graph. You can use the following commands:
x = 0.4;

y = polyval(p1, x)

The output will be:
y = 3.9012

Now, to plot the graph of the polynomial, use:
x = linspace(0, 1, 100);

y = polyval(p1, x);

plot(x, y)
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Error

Definition 3.4 Given continuous f (x), I = [a, b], n + 1 nodes s.t.
a = x0 < x1 < · · · < xn = b, we define the error function

Enf (x) := f (x)− Πnf (x)

associated to the interpolating polynomial Πnf (x). The error is

en(f ) := max
x∈I

|Enf (x)|.

Example: f (x) = sin(x) + 1
4 sin

(
2πx + π

3

)
+ 1

10 sin
(
4πx + 7π

10

)
Π6f (x) of f (x) at the nodes

x0 = 0, x1 =
1

3
, x2 =

2

3
, x3 = 1,

x4 =
4

3
, x5 =

5

3
, x6 = 2
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Interpolation of a smooth function

Proposition 3.2 Consider n + 1 distinct nodes in I = [a, b] s.t.
a = x0 < x1 < · · · < xn = b and the polynomial interpolant Πnf (x) of f (x)
in such nodes.
If f ∈ C n+1(I ), for all x ∈ I , there exists ξ = ξ(x) ∈ I s.t.:

Enf (x) =
1

(n + 1)!
f (n+1)(ξ(x))wn(x), where wn(x) :=

n∏
i=0

(x − xi ) (2)

The error en(f ) is bounded by the error estimator ẽn(f ) as:

en(f ) ≤ ẽn(f ) :=
1

(n + 1)!
max
x∈I

∣∣∣f (n+1)(x)
∣∣∣max

x∈I
|wn(x)|.
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Interpolation error of a smooth function

Proposition 3.3
Let x0, x1, . . . , xn be n + 1 uniformly distributed interpolation nodes in
I = [a, b]. Let f ∈ C n+1(I ). Then

en(f ) = max
x∈I

|f (x)− Πnf (x)| ≤
1

4(n + 1)

(
b − a

n

)n+1

max
x∈I

|f (n+1)(x)|. (4)

Note that the interpolation error depends on the n + 1-th derivative of f .

Result obtained since

max
x∈I

|wn(x)| ≤
n!

4

(
b − a

n

)n+1

.
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Example 3

Interpolation polynomials Πi f for i = 1, 2, 3, 6 and

f (x) =
x + 1

5
sin(x),

with uniformly distributed nodes on [0, 6].
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Examples in Matlab

Example 4. We want to interpolate the function sin(x) + x using
n = 2, 3, 4, 5, 6 nodes. In MATLAB, you can use the command polyfit to
calculate the coefficients of the interpolating polynomial and polyval to
evaluate a polynomial with known coefficients at the set of nodes. Here are
the commands in MATLAB:

f = @(x) sin(x) + x;

x_sample = [0:3*pi/100:3*pi];

plot(x_sample, f(x_sample), ’b’); hold on

for i = 2:6

x = linspace(0, 3*pi, i);

y = f(x);

c = polyfit(x, y, i - 1);

plot(x_sample, polyval(c, x_sample), ’b-’)

end
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Examples in Matlab

The following figure shows the 5 polynomials that we obtained.
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Error

From Proposition 3.3 we have:

en(f ) = max
x∈I

|f (x)− Πnf (x)| ≤
1

4(n + 1)

(
b − a

n

)n+1

max
x∈I

|f (n+1)(x)|. (4)

Remark The fact that

lim
n→∞

1

4(n + 1)

(
b − a

n

)n+1

= 0

does not imply that en(f ) goes to zero as n → ∞.
If the growth of maxx∈I |f (n+1)(x)| is not compensated by the decrease in

1
4(n+1)

(
b−a
n

)n+1
, the error en(f )“blows up”(e.g. Runge’s phenomenon)
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Runge’s phenomenon

Runge function Let

f (x) =
1

1 + x2
, x ∈ [−5, 5].

Problem: The interpolants with uniformly distributed nodes exhibit
increasing oscillations with increasing degree of interpolation.
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Stability of polynomial interpolation

Problem: Lack of stability for equally spaced nodes
Let f (x) and fϵ(x) = f (x) + ϵ(x) be a small perturbation.

max
x∈I

|Πnf (x)−Πnfϵ(x)| = max
x∈I

|
n∑

i=0

(f (xi )−fϵ(xi ))ϕi (x)| ≤ Λn(x0, . . . , xn) max
0≤i≤n

|f (xi )−fϵ(xi )|,

Λn(x0, . . . , xn) = max
x∈I

|
n∑

i=0

ϕi (x)| ≈
2n

nlog(n)

For large n, a small perturbation of data may lead to large changes in the
interpolating polynomial.

|ϵ(x)| < 10−3 for all x ∈ I
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Chebyshev–Gauss–Lobatto nodes

Definition 3.5
For a given n ≥ 1, the n + 1 Chebyshev–Gauss–Lobatto nodes in the
reference interval Î = [−1, 1] are:

x̂i = − cos

(
πi

n

)
, i = 0, . . . , n;

In general interval I = [a, b], n + 1 Chebyshev–Gauss–Lobatto nodes are:

xi =
a+ b

2
+

b − a

2
x̂i , i = 0, . . . , n.
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Chebyshev–Gauss–Lobatto nodes

Proposition 3.5
If f ∈ C 1(I ), with the interval I = [a, b] and the n + 1
Chebyshev-Gauss-Lobatto nodes are used in I , then

lim
n→+∞

Πnf (x) = f (x) for all x ∈ I .

Moreover, if f ∈ C∞(I ), then

lim
n→+∞

en(f ) = 0.

Furthermore, the stability issues are mitigated.
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Chebyshev–Gauss–Lobatto nodes: example

Consider again the Runge function f (x) = 1
1+x2 :
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Compute coefficients in polynomial interpolation

■ Alternatively to using Lagrange basis, the coefficients {ai}ni=0 of

Πn(x) =
n∑

k=0

ykφk(x) = a0 + a1x + · · ·+ anx
n.

can be computed directly as a = (a0, a1, . . . , an)
T ∈ Rn+1 and enforcing

the n + 1 interpolation constraints Pn(xi ) = yi for all i = 0, . . . , n; i.e.,
Pn(xi ) = a0 + a1xi + · · ·+ anx

n
i = yi for all i = 0, . . . , n.

■ This leads to solving the linear system:

Ba = y

where B ∈ R(n+1)×(n+1) is the Vandermonde matrix, with Bij = (xi−1)
j−1

for i , j = 1, . . . , n + 1, and y = (y0, y1, . . . , yn)
T ∈ Rn+1

■ Unique solution iff det(B) ̸= 0, i.e. iff the n+1 nodes {xi}ni=0 are distinct

■ Stability issues for relatively“small” values of n, due to large condition
number of B.
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Trigonometric interpolation

■ The trigonometric interpolant uses trigonometric basis functions (also
referred to as the discrete Fourier series)

■ Used for periodic signals and functions

■ We consider a periodic function f : [0, 2π] → C, i.e., s.t. f (0) = f (2π)

37 of 73



Trigonometric interpolation

Given n + 1 nodes {xj}nj=0 s.t. xj = jh for j = 0, . . . , n with h = 2π
n , suppose

n is even, n = 2M, i2 = −1.
The trigonometric interpolant It f (x) of the periodic function f : [0, 2π] → C
is

It f (x) =
a0
2

+
M∑
k=1

(akcos(kx) + bksin(kx))

Use Euler’s formula e ikx = cos(kx) + isin(kx) to write

It f (x) =
M∑

k=−M

cke
ikx , ak = ck + c−k , bk = i(ck − c−k)

By imposing interpolation conditions It f (xj) = f (xj) for all j = 0, . . . , n, we
find

ck =
1

n + 1

n∑
j=0

f (xj)e
−ikjh, h = 2π/n
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Trigonometric interpolation: remarks

■ The trigonometric interpolant It f (x) interpolates f (x) at nodes {xj}nj=0,

It f (xj) = f (xj) for all j = 0, . . . , n.

■ Similar construction if n is odd (see lecture notes)

■ Computation of coefficients {ck}nk=0 requires O(n2) flops

■ Using the Fast Fourier Transform (FFT) reduces the cost to O(n log n)
flops.
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Piecewise linear interpolation
(Sect. 3.2.3)

Let x0 = a < x1 < · · · < xN = b be a distribution of nodes that divide the
interval I = [a, b] into subintervals Ii = [xi , xi+1], i = 0, n. Let H be the
characteristic size of the intervals:

H = max
i=0,...,n

(xi+1 − xi ).

The piecewise linear interpolating polynomial ΠH
1 (x) is a piecewise

polynomial of degree 1 such that ΠH
1 (x)|Ii ∈ P1 for all i = 0, . . . , n−1), with:

ΠH
1 (x) = yi +

yi+1 − yi
xi+1 − xi

(x − xi ) for all i = 0, . . . , n − 1.
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Piecewise linear interpolation

Let x0 = a < x1 < · · · < xN = b be a distribution of nodes that divide the
interval I = [a, b] into subintervals Ii = [xi , xi+1], i = 0, n. Let f ∈ C 0(I ) be
known.
On each sub-interval Ii , we interpolate f|Ii by a polynomial of degree 1. The
obtained interpolating function is called piecewise linear interpolation
polynomial of f and is noted ΠH

1 f (x).

ΠH
1 f (x) = f (xi ) +

f (xi+1)− f (xi )

xi+1 − xi
(x − xi ) for x ∈ Ii .
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Runge with piecewise linear interpolation

Piecewise linear interpolation for f (x) =
1

1 + x2
, x ∈ [−5, 5]

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The figure shows the polynomial ΠH1
1 f and ΠH2

1 f for H1 = 2.5 and H2 = 1.0.

43 of 73



Runge with piecewise linear interpolation

The commands in Matlab for this interpolation:

>> f = @(x) 1./(1+x.^2);

>> H1 = 2.5; H2=1.0;

>> x1 = [-5:H1:5]; x2 = [-5:H2:5];

>> y1 = f (x1); y2 = f(x2);

>> x_plot = [-5:.1:5];

>> y1_plot = interp1(x1,y1,x_plot);

>> y2_plot = interp1(x2,y2,x_plot);

>> plot(x_plot, f(x_plot)); hold on;

>> plot(x_plot, y1_plot,’r’); plot(x_plot, y2_plot,’g’);
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Error

Theorem (Prop. 3.6)
If f ∈ C 2(I ), (I = [x0, xN ]) then

eH1 (f ) := max
x∈I

| f (x)− ΠH
1 f (x) |≤

H2

8
max
x∈I

|f ′′(x)|,

for which the error converges to zero with order 2 in H (quadratically)
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Piecewise quadratic polynomials with higher degree

Define the piecewise quadratic polynomial ΠH
2 (x) as Π

H
2 (x)|Ii ∈ P2 for all the

subintervals Ii of I from i = 0, . . . , n − 1; it interpolates at the nodes and at
intermediate points (e.g. mid-points of the sub-interval).
If f ∈ C 0(I ) is known, then we use the notation ΠH

2 f (x).
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Piecewise interpolating polynomials

Define the piecewise interpolating polynomial of degree r ≥ 1, ΠH
r (x), as

ΠH
r (x)|Ii ∈ Pr for all i = 0, . . . , n − 1 (or ΠH

r f (x) if f ∈ C 0(I ) is known).

Theorem ((Prop. 3.7))
If f ∈ C r+1(I ), then the error eHr (f ) := maxx∈I

∣∣f (x)− ΠH
r f (x)

∣∣ associated
with the piecewise interpolating polynomial of degree r ≥ 1, ΠH

r f (x), can be
bounded by the error estimator ẽHr (f ) as:

eHr (f ) ≤ ẽHr (f ) := CrH
r+1 max

x∈I

∣∣∣f (r+1)(x)
∣∣∣ ,

with Cr a positive constant, for which the error converges to zero with order
r + 1 in H.

Remark 3.7 Piecewise interpolating polynomials ΠH
r f (x) of any degree

r ≥ 1 are only C 0–continuous across the subintervals (internal nodes).
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Runge with piecewise linear interpolation (contd)

We estimate the interpolation error when f is the Runge function

1

1 + x2

on the interval [−5, 5]. We take K sub-intervals with K = 20, 40, 80, 160
and we estimate the interpolation error |f (x)− ΠH

1 f (x)| on a fine grid

>> f=@(x) 1./(1+x.^2);

>> K=[20 40 80 160]; H=10./K;

>> x_fine = [-5:0.001:5];

>> f_fine = f(x_fine);

>> for i=1:4

x = [-5:H(i):5]; y = f(x);

y_fine = interp1(x,y,x_fine);

err1(i) = max(abs(f_fine - y_fine));

end

>> loglog(H,err1);
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Runge with piecewise linear interpolation (contd)

The following figure shows (in logarithmic scale) the error according to the
size H = 10/K of sub-intervalles. We see that the error maxx∈I | eH1 f (x) |
for piecewise linear interpolation behaves like CH2: the result is in
agreement with Prop. 3.6. In addition, if we calculate the relations
maxx∈I | eH1 f (x) | /H2, we can estimate the constant C :

>> err1./H.^2

ans =

0.16734 0.22465 0.24330 0.24829
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Runge with piecewise linear interpolation (contd)

The interpolation error is quadratic in H = 10/K (in the graph, EH
1 displays

the error eH1 from our formulas)
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Interpolation by spline functions

(Chapt. 3.2.4 of the book)

Let a = x0 < x1 < · · · < xn = b be the points that divide the interval
I = [a, b] into disjoint intervals Ii = [xi , xi+1].

Definition
A function s3 is called a interpolating cubic spline of f if it satisfies:

1. s3(x)|Ii ∈ P3 for all i = 0, . . . n − 1, P3 is the set of polynomials of degree
3,

2. s3(xi ) = f (xi ) for all i = 0, . . . n,

3. s3 ∈ C 2([a, b]).
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Interpolation by spline functions

■ Let s3(x)|Ii = a0,i + a1,ix + a2,ix
2 + a3,ix

3 for i = 0 to n − 1

■ Determine 4n coefficients {aj,i}, j = 0, . . . 3, i = 0, . . . , n − 1

■ We have to verify the following conditions (s3(x
−
i ) means the one-sided

limit (from the right) of s3 in the point xi and s3(x
+
i ) means the

one-sided limit (from the left)) :

s3(x
−
i ) = f (xi ) for all 1 ≤ i ≤ n − 1,

s3(x
+
i ) = f (xi ) for all 1 ≤ i ≤ n − 1,

s3(x0) = f (x0),

s3(xn) = f (xn),

s ′3(x
−
i ) = s ′3(x

+
i ) for all 1 ≤ i ≤ n − 1,

s ′′3 (x
−
i ) = s ′′3 (x

+
i ) for all 1 ≤ i ≤ n − 1,

■ That means 2(n − 1) + 2 + 2(n − 1) = 4n − 2 conditions.
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Interpolation by spline functions

We need to find 4n unknowns (which are the 4 coefficients of each of the n
restrictions from s3|Ii , i = 0, . . . n − 1) which satisfy 4n − 2 relations.
We add 2 additional conditions to check:

■ If we assume
s ′′3 (x

+
0 ) = 0 and s ′′3 (x

−
n ) = 0, (3)

then the spline s3 is completely determined and called a natural
interpolating cubic spline.

■ Another possibility is to assume the continuity of the third derivative in
the nodes x2 and xn−1. That means:

s ′′′3 (x−2 ) = s ′′′3 (x+2 ) and s ′′′3 (x−n−1) = s ′′′3 (x+n−1). (4)

The conditions (4) are called not-a-knot.
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Example natural interpolating cubic spline

A natural interpolating cubic spline of a function

f (x) =
1

(x − 0.3)2 + 0.01
+

1

(x − 0.9)2 + 0.04
− 6, (nodes equidistributed

xj = −1 + j/4, j = 0, . . . , 16)
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Example not-a-knot interpolating cubic spline

■ MATLAB command spline considers not–a–knot interpolating cubic
splines

■ The cubic spline s3(x) interpolates the data at the n + 1 = 5 nodes
{xi}4i=0 and is C 2–continuous across each internal node {xi}3i=1.
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Error estimates

Theorem (Prop. 3.8)
Consider n + 1 distinct nodes {xi}ni=0 in the interval I = [x0, xn], n
subintervals Ii = [xi , xi+1], and H := maxi=0,...,n−1 |Ii |.

If f ∈ C 4(I ) and s3(x) is its natural interpolating cubic spline at the nodes,
then:

max
x∈I

∣∣∣f (k)(x)− s
(k)
3 (x)

∣∣∣ ≤ CkH
4−k max

x∈I

∣∣∣f (4)(x)∣∣∣ for k = 0, 1, 2,

and
max

x∈I\{x1,...,xn−1}

∣∣∣f (3)(x)− s
(3)
3 (x)

∣∣∣ ≤ C3H max
x∈I

∣∣∣f (4)(x)∣∣∣ ,
with Ck > 0 positive constants, for which the convergence order of the error
is 4− k in H, depending on the order of derivation k = 0, 1, 2, 3.
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Plan

Examples and motivation

Interpolation

Polynomial interpolation

Trigonometric interpolation

Piecewise polynomial interpolation

Least squares
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Approximation by the least squares method

(Chapt. 3.3 of the book)

Suppose we have n + 1 points x0, x1, . . . , xn and n + 1 values y0, y1, . . . , yn.
We have seen that if n is large, the interpolating polynomial may show large
oscillations

Instead of interpolating the values, it is possible to define a polynomial of
degree m < n that approximates the data“at best”
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Least squares method

Definition
We call least squares polynomial approximation of degree m ≥ 0 the
polynomial f̃m(x) of degree m such that

n∑
i=0

(yi − f̃m(xi ))
2 ≤

n∑
i=0

(yi − pm(xi ))
2 ∀pm(x) ∈ Pm

Remark
When yi = f (xi ) (f is a continuous function) then f̃m is called the
approximation of f in the least squares sense.
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Least squares method

Remark
If m = n and the nodes are distinct, then f̃m(x) = Πmf (x) is the
interpolating polynomial of degree m.

■ Remember we use the same command in Matlab polyfit as for Lagrange
interpolation.

■ In general m ≪ n and f̃m(x) does not interpolate the data.
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Least squares method

In other words, the least squares polynomial approximation is the polynomial
of degree m that minimizes the distance to the data.
Let note f̃m(x) = a0 + a1x + a2x

2 + . . .+ amx
m and define the function

Φ(b0, b1, . . . , bm) =
n∑

i=0

∣∣yi − (
b0 + b1xi + b2x

2
i + . . .+ bmx

m
i

)∣∣2
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Least squares method

The least-squares method consists in determining the coefficients vector
a = (a0, . . . , am)

T of the polynomial f̃m(x) of degree m such that:

ϕ(a) = min
b∈Rm+1

ϕ(b).

Since ϕ is differentiable, the previous minimization problem is equivalent to
solving the following differential problem:

find a ∈ Rm+1 such that

∂ϕ

∂bj
(a) = 0 for all j = 0, . . . ,m. (5)
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Finding the coefficients

We can write for each k = 0, . . . ,m,

∂Φ

∂ak
= −2

n∑
i=0

xk
i [yi − (a0 + . . .+ amx

m
i )]

= −2

[
n∑

i=0

xk
i yi −

(
a0

n∑
i=0

xk
i + a1

n∑
i=0

xk+1
i + . . .+ am

n∑
i=0

xk+m
i

)]

We obtain the linear system with the unknowns a0, . . . , am:

a0(n + 1) + a1

n∑
i=0

xi + . . . + am

n∑
i=0

xm
i =

n∑
i=0

yi

a0

n∑
i=0

xi + a1

n∑
i=0

x2
i + . . . + am

n∑
i=0

xm+1
i =

n∑
i=0

yixi

...
...

a0

n∑
i=0

xm
i + a1

n∑
i=0

xm+1
i + . . . + am

n∑
i=0

x2m
i =

n∑
i=0

yix
m
i
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Least squares method

We obtain the linear system Aa = q, where A ∈ R(m+1)×(m+1) and
a = (a0, . . . , am)

T ,

A =


n + 1 · · ·

n∑
i=0

xm
i

...
...

n∑
i=0

xm
i · · ·

n∑
i=0

x2m
i


et q =



n∑
i=0

yi

...
n∑

i=0

yix
m
i


(6)

For m = 1, we obtain the regression line f̃1(x) = a0 + a1x where {a0, a1} are
solutions of the linear system:

n + 1
n∑

i=0

xi

n∑
i=0

xi

n∑
i=0

x2
i


(

a0
a1

)
=


n∑

i=0

yi

n∑
i=0

yixi

 (7)
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Normal equations

Ideally, for f̃m(x) = a0 + a1x + a2x
2 + . . . we would like to impose f̃m(xi ) = yi for

i = 0, . . . , n.
This can be written as a system with unknowns ak , k = 0, ...,m: Ba = y, where B
is a matrix of dimension (n + 1)× (m + 1)

B =


1 x0 . . . xm

0

1 x1 . . . xm
1

...
...

1 xn . . . xm
n


Since m < n, the system is overdetermined. The solution to (5) is equivalent to
the square system (system of normal equations)

BTBa = BTy, A = BTB, q = BTy
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Example regression line

Example Let n = 2 and m = 1, nodes x0 = 1, x1 = 3, x2 = 4 with values y0 = 0,
y1 = 2, y2 = 7. We want to compute the (regression line), i.e., the the least
squares polynomial approximation of degree 1, f̃1(x) = a0 + a1x .

We set Φ(a0, a1) =
∑2

i=0[yi − (a0 + a1xi )]
2 and impose

∂Φ

∂a0
= 0 and

∂Φ

∂a1
= 0:

∂Φ

∂a0
= −2

2∑
i=0

[yi − (a0 + a1xi )] = −2

(
2∑

i=0

yi − 3a0 − a1

2∑
i=0

xi

)
= −2(9− 3a0 − 8a1)

∂Φ

∂a1
= −2

2∑
i=0

xi [yi − (a0 + a1xi )] = −2

(
2∑

i=0

xiyi − a0

2∑
i=0

xi − a1

2∑
i=0

x2
i

)
= −2(34− 8a0 − 26a1)

Hence the coefficients a0 and a1 are the solution of the system{
3a0 + 8a1 = 9
8a0 + 26a1 = 34
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Examples

Example 6 We have 8 measures (σ-ϵ):

>> sigma = [0.00 0.06 0.14 0.25 0.31 0.47 0.50 0.70];

>> epsilon = [0.00 0.08 0.14 0.20 0.22 0.26 0.27 0.29];

We want to extrapolate the value of ϵ for σ = 0.4. We consider two ways:

■ compute the interpolating polynomial Π7 of degree 7

■ compute the least squares polynomial approximation of degree 1

On peut utiliser les commandes suivantes:

>> plot(sigma, epsilon, ’*’); hold on; % plotting the known values

>> sigma_sample = linspace(0,1.0,100);

>> p7 = polyfit(sigma, epsilon, 7);

>> pol = polyval(p7, sigma_sample); % interpolating polynomial

>> plot(sigma_sample,pol, ’r’);

>> p1 = polyfit(sigma,epsilon,1);

>> pol_mc = polyval(p1, sigma_sample); % least square

>> plot(sigma_sample, pol_mc, ’g’); hold off;
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Examples

Example 6 (contd)

■ the interpolating polynomial Π7 of degree 7 is in red

■ the least squares polynomial approximation of degree 1 is in blue
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For σ > 0.7,the behavior of the two polynomials are very different.

68 of 73



Examples

Example 6 (contd): In particular, for σ = 0.9 the values of ϵ(σ)
extrapolated with the two methods are

>> polyval(p7, 0.9)

ans =

1.7221

>> polyval(p1, 0.9)

ans =

0.4173

■ The value obtained by Π7 (172.21%) is unrealistic

■ On the contrary, the value obtained with the regression line is more
appropriate to compute the value at σ = 0.9.
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Examples: swiss population

Example 1 (from last lecture): Starting from the population at the 20th
century decades, we extrapolate the Swiss popululation this year. We use a
least square polynomial approximation of degree 2

>> year = [1900, 1910, 1920, 1930, 1941, 1950,...

1960, 1970, 1980, 1990, 2000];

>> population = [3315, 3753, 3880, 4066, 4266, 4715,...

5429, 6270, 6366, 6874, 7288];

>> p2 = polyfit(year, population, 2);

>> year_sample = [1900:2:2010];

>> vp2 = polyval(p2, year_sample);

>> plot(year, population, ’*r’, ...

year_sample, vp2, ’b’);
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Examples: swiss population

The polynomial of degree two (parabola) which approximates the data by
the method of least squares is:

p(x) = 0.15x2 − 549.9x + 501600
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Processing of polynomials

In Matlab, there are specific commands for doing calculations with
polynomials. Let x be a vector of abscissas, y be a vector of ordinates and p

(respectively pi ) be the vector of coefficients of a polynomial P(x)
(respectively Pi ); then, we have following commands:

command action
y=polyval(p,x) y = values of P(x)
p=polyfit(x,y,n) p = coefficients of the interpolating polynomial Πn

z=roots(p) z = zeros of P such that P(z) = 0
p=conv(p1,p2) p = coefficients of the polynomial P1P2

[q,r]=deconv(p1,p2) q = coefficients of Q, r = coefficients of R
such that P1 = QP2 + R

y=polyderiv(p) y = coefficients of P ′(x)
y=polyinteg(p) y = coefficients of

∫
P(x) dx
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Remarks

■ Least squares approximation is not limited to polynomials

■ They can be done with trigonometric, exponentials, logarithmic

■ Interpolation and least squares approximation can be generalized to 2D,
3D, higher dimensions.

73 of 73


	Examples and motivation
	Interpolation
	Polynomial interpolation
	Lagrange interpolating polynomials
	Examples in Matlab
	Error and interpolation of a smooth function

	Trigonometric interpolation
	Piecewise polynomial interpolation
	Interpolation by spline functions

	Least squares

