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Motivation

Goal: Approximate a set of data couples or a function f(x) by another
function f(x) easier to handle.
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Examples

Example 1. The result of census of the population of Switzerland between
1900 and 2010 (in thousands):

year 1900 1910 1920 1930 1941 1950
population 3315 3753 3880 4066 4266 4715

zear 1960 1970 1980 1990 2000 2010
population 5429 6270 6366 6874 7288 7783

® Is it possible to estimate the number of inhabitants of Switzerland during
the year when there has not been census, for example in 1945 and 19757

® Is it possible to predict the number of inhabitants of Switzerland in 20207
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Example 1

The polynomial of degree two (parabola) which approximates the data by
the method of least squares is:

p(x) = 0.15x% — 549.9x + 501600
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Approximation of functions by Taylor's polynomials

m Function f € C"(ly,) can be approximated in a neighborhood I, of a
point xo € R by the Taylor polynomial (expansion) of order n

® The Taylor expansion of f(x) around xp is given by:

f(x) = f(xo) + Z %f(")(XO)(X ~ ).
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Approximation of functions by Taylor's polynomials

m Function f € C"(ly,) can be approximated in a neighborhood I, of a

point xo € R by the Taylor polynomial (expansion) of order n
® The Taylor expansion of f(x) around xp is given by:

f(x) = f(xo) + Z %f(")(XO)(X ~ ).

Inconvenients:
m the evaluation of n derivatives of f(x) is required

= Taylor's expansion is accurate only in a neighborhood of xg
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Approximation of functions by Taylor's polynomials

= Consider the Taylor expansion of f(x) = L of order n, denoted as f,(x),
around xp = 1. The expansion is given by:

) = F(1) + ) SO - 1.

= Since f()(x) = (=1)" it x=0*1) for f = 0,1,...,n, we have
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Interpolation

Definition
Consider n+ 1 data pairs {(x;, i) }7_, with {x;}"_, being n+ 1 distinct
nodes, i.e., such that x; # x; for all i # j, where i,j =0,...,n.

Interpolating data pairs {(x;, i)}/, means determining the approximate
function f(x) such that f(x;) = y; forall i =0,...,n
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Interpolation

Definition
Consider n+ 1 data pairs {(x;, i) }7_, with {x;}"_, being n+ 1 distinct
nodes, i.e., such that x; # x; for all i # j, where i,j =0,...,n.

Interpolating data pairs {(x;, i)}/, means determining the approximate
function f(x) such that f(x;) = y; forall i =0,...,n

If £(x) is known, we set y; = f(x;) for all i = 0,...,n, and f(x;) = f(x;) for
all i=0,...,n.
The function f(x) is called the interpolant of the data at the nodes.
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Interpolation types

= Polynomial interpolation, for which
?(x) =ag+aix+ -+ apx"
for some n + 1 coefficients ag, a1, ..., an;

= Rational interpolation, for which

a0 + arx + - - - + apxk

k1 + akgoX + o+ Akpnp1x”
for some coefficients ag, a1, . . . , ak1n+1 With k, n > 0;
= Trigonometric interpolation, for which

f(x) =

M
f(x) = Z aje’™  e¥ = cos(jx) + isin(jx),
j=—M
where i is the imaginary unit (i> = —1), for some M and complex
coefficients a;
= Piecewise polynomial interpolation;
= Splines
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Polynomial interpolation

Proposition 3.1 Let n > 0 be an integer. Given distinct n+ 1 points
X0, X1, - - -y Xp and associated n+ 1 values yp, y1, ..., yn, there exists a unique
polynomial I,(x) of degree less than or equal to n, such that

Ma(xj))=y; for 0<j<n

® We call it the interpolating polynomial of the values y; at nodes x;, for
j=0,...,n.

Yo 3 Yo
Yn
Yn

Zo In Zo In
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Interpolation of a function

Let £ € C(/) and xo,...,x, € I. Taking y; = f(x;) for 0 < j < n, the
interpolating polynomial I,(x) is denoted by M,f(x) and is called the
interpolating polynomial of f at the points xg, ..., x,. We have

Maf(xj))=y; for 0<j<n.

(n=4)

o
o Tn o Tn
. o
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Lagrange interpolating polynomials

Definition 3.2 For a set of distinct nodes {x;}7_,, the Lagrange
characteristic function associated to the node xi is a polynomial ¢, for
k=0,...,n, of degree n such that

ok(x;) = 0xiy, k,i=0,...,n,

where §,; = 1 if i = k and d,; = 0 if / # k. Explicitly, we have

n
X — Xj
gka = .
=11, =
i#k
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Lagrange interpolating polynomials

Definition 3.2 For a set of distinct nodes {x;}7_,, the Lagrange
characteristic function associated to the node xi is a polynomial ¢, for
k=0,...,n, of degree n such that

ok(x;) = 0xiy, k,i=0,...,n,

where §,; = 1 if i = k and d,; = 0 if / # k. Explicitly, we have

n
X — Xj
¢kX = .
=11, =
i#k

® The set {¢x(x)}}_, is the basis of Lagrange characteristic polynomials, a
basis of P,,.
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Lagrange basis: example

Example 2. For n =2, xp = —1, x; =0, x = 1, the polynomials of the
Lagrange basis are:

 (x=x1)(x — x2) 1 (x —

¢O(X) B (XO — Xl)(XQ - X2) - EX 1)7
_ ex)x=x) Ly
100 = (o gy = U D),
(= x)(x—x1) lx N
¢2(X) o (X2 — Xo)(X2 — Xl) - 2 ( + 1)

‘900

16 of 73



Lagrange basis: example

The following figure shows two polynomials of the Lagrange basis of degree
n = 6 with respect to the interpolation points xg = —1,

2 2
xX1=-%,...,% =35,and xg = 1.

1.5

wo(x) w3()

0.5 1
1 T4 T
Zo \/:Bz T3 \/ Ts5

L L L L L ' L L L L .
T -08 -06 -04 -02 0 02 04 06 08 1

)
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Lagrange interpolating polynomials

Definition 3.3 The interpolating polynomial N, of values y; at nodes x;,
i=0,...,n, is written as

Ma(x) = > yiou(x), (1)
k=0

because it satisfies M,(x;) = > p_o Ykdx(X;) = yj-
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Lagrange interpolating polynomials

Definition 3.3 The interpolating polynomial N, of values y; at nodes x;,
i=0,...,n, is written as

Ma(x) = > yiou(x), (1)
k=0

because it satisfies M,(x;) = > p_o Ykdx(X;) = yj-
If the function f(x) is given and is continuous, its Lagrange interpolating
polynomial at the nodes {x;}7_ is:

Maf(x) = > F(xi)dx(x).
k=0
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Numerical interpolation using Matlab

® In Matlab, we can compute the interpolation polynomials using the
command polyfit and polyval. See more how to use these commands.

® p = polyfit(x,y,n) calculates the coefficients of the polynomial of
degree n that interpolates the values y in nodes x.
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Examples in Matlab

Example A. We want to interpolate the values
y = [3.38,3.86,3.85,3.59, 3.49] at the nodes x = [0,0.25,0.5,0.75,1] by a
polynomial of degree 4. Use the following commands in MATLAB:

m x = [0:0.25:1]; % vector of the interpolation points
my = [3.38 3.86 3.85 3.59 3.49]; 7 vector of the values
m pl = polyfit(x, y, 4)

The output will be:
p1 = [1.8133,-0.1600, —4.5933, 3.0500, 3.3800]
p1 is a vector of coefficients of the interpolating polynomial:
M4(x) = 1.8133x* — 0.16x> — 4.5933x> + 3.05x + 3.38.

To calculate the polynomial of degree n that interpolates a function f at
given n+ 1 nodes, first construct the vector y of values f at the nodes x.
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Examples in Matlab

Example B. Consider the following case:
mf=0(x) cos(x);

mx = [0:0.25:1];
my = f(x);
Em p = polyfit(x, y, 4)

The output will be:
p = [0.0362,0.0063, —0.5025, 0.0003, 1.0000]

Remark 1. If the dimensions of x and y are m+1 > n+ 1 (where n is the
degree of the interpolation polynomial), the command polyfit(x, y, n)
returns the interpolation polynomial of degree n using the least squares
method (see sec. 3.3 in the book). In the case when m+1 = n+ 1, we find
the standard interpolation polynomial.
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Examples in Matlab

The command y = polyval(p, x) calculates the values y of the polynomial of
degree n, where the n+ 1 coefficients are stored in the vector p, at the point
X:

y=p(1) x"+p(2) x"" 4.+ p(n) - x+ p(n+1).
Example C. We want to evaluate the polynomial from Example A at the
point x = 0.4 and then draw a graph. You can use the following commands:
mx=0.4;
m y = polyval(pl, x)
The output will be:

y = 3.9012

Now, to plot the graph of the polynomial, use:
m x = linspace(0, 1, 100);

m y = polyval(pl, x);

m plot(x, y)
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Error

Definition 3.4 Given continuous f(x), / = [a, b], n+ 1 nodes s.t.
a=xg<x3<---<x,=>b, we define the error function

E.f(x) :=f(x) — N,f(x)
associated to the interpolating polynomial I,f(x). The error is

en(f) := max |E,f(x)]|.
X€
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Error

Definition 3.4 Given continuous f(x), / = [a, b], n+ 1 nodes s.t.
a=xg<x3<---<x,=>b, we define the error function

E.f(x) :=f(x) — N,f(x)
associated to the interpolating polynomial I,f(x). The error is
en(f) := malx|Enf(X)|.
S

Example: f(x) =sin(x) + #sin (2nx + 3) + 5 sin (47x + 17

Mef(x) of f(x) at the nodes

1 2 !
=s, x=1

x =0, x=_,
3 3 05

, X6 =2

4 5
X4 ==, Xs=—
4 37 5 3
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Interpolation of a smooth function

Proposition 3.2 Consider n+ 1 distinct nodes in | = [a, b] s.t.

a=xp <x3 <---<Xx,=b and the polynomial interpolant I,f(x) of f(x)
in such nodes.

If £ € C™L(1), for all x € I, there exists £ = £(x) € [ s.t.:

L (1) (£(x))wp(x), where wy(x) :
€. where ) = ]|

i
=
x
I
x
S

E.f(x) =
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Interpolation of a smooth function

Proposition 3.2 Consider n+ 1 distinct nodes in | = [a, b] s.t.

a=xp <x3 <---<Xx,=b and the polynomial interpolant I,f(x) of f(x)
in such nodes.

If £ € C™L(1), for all x € I, there exists £ = £(x) € [ s.t.:

. (1) (£(x))wp(x), where wy(x) :
0D, where wi() = [ ]

i
=
x
I
x
S

E.f(x) =

The error e,(f) is bounded by the error estimator &,(f) as:

- 1 n
enl) < &(F) = (g mer | ()| max ()1
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Interpolation error of a smooth function

Proposition 3.3
Let xp, x1,...,X, be n+ 1 uniformly distributed interpolation nodes in
| =[a, b]. Let f € C"T1(I). Then

_ 3 n+1
en(r) = max () = af )] < s (P27) maxl ) @)

Note that the interpolation error depends on the n 4+ 1-th derivative of f.

Result obtained since

xel 4 n

I _ n+1
max|wn(x)|g"'<b a) .
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Example 3

Interpolation polynomials [1;f for i = 1,2,3,6 and

x+1

f(x) =

sin(x),

with uniformly distributed nodes on [0, 6].

1

26 of 73 1



Examples in Matlab

Example 4. We want to interpolate the function sin(x) 4 x using
n=2,3,4,5,6 nodes. In MATLAB, you can use the command polyfit to
calculate the coefficients of the interpolating polynomial and polyval to
evaluate a polynomial with known coefficients at the set of nodes. Here are
the commands in MATLAB:

c = polyfit(x, y, i - 1);
plot (x_sample, polyval(c, x_sample), ’b-’)
end

mf =0(x) sin(x) + x;

m x_sample = [0:3%pi/100:3%pi];

m plot(x_sample, f(x_sample), ’b’); hold on
m for i = 2:6

m x = linspace(0, 3*pi, i);

my = f(x);

]

|

|
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Examples in Matlab

The following figure shows the 5 polynomials that we obtained.
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Error

From Proposition 3.3 we have:

_ 2 n+1
en(r) = max () = Maf )] < s (P27) maxl ) 0

Remark The fact that

1 b— 23 n+1
lim —— =0
n—o00 4(n+ 1) n

does not imply that e,(f) goes to zero as n — oco.

If the growth of max,e; |f("*1)(x)| is not compensated by the decrease in

4(,;1) (%)"H, the error e,(f) “blows up” (e.g. Runge's phenomenon)
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Runge's phenomenon

Runge function Let
1

1tk
Problem: The interpolants with uniformly distributed nodes exhibit
increasing oscillations with increasing degree of interpolation.

f(x) x € [-5,5].

2

.,
. ~
1
\
d
’
-
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Stability of polynomial interpolation

Problem: Lack of stability for equally spaced nodes
Let f(x) and f.(x) = f(x )+ €(x) be a small perturbation.

max|ﬂ f(x)—Nafe(x)| = max|z (xi)—Tfe(xi))Pi(x)| < An(x0,---,Xn) 0'2/3<Xn [f(x;i)—fe(xi)],
i=0 - -

2”
A ... =
n(0, s x e | Z 9ilx nlog(n)

For large n, a small perturbation of data may lead to large changes in the
interpolating polynomial.

T, f(x) n2|fe(x)

Ve (@) = sinpiz)n =21 . £(2) = sin(2pix), perturbed;n ~21
- —IL/® O @ fe)—7Ga) -

Is 15

1 !

05 05

0 0
05 05

1 1

1 1

5 25

08 06 04 02 0 02 04 06 08 1 08 06 04 02 0 02 04 06 08 1

le(x)] < 1073 for all x € /
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Chebyshev—-Gauss—Lobatto nodes

Definition 3.5
For a given n > 1,Athe n + 1 Chebyshev—Gauss—Lobatto nodes in the
reference interval [ = [—1,1] are:
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Chebyshev—-Gauss—Lobatto nodes

Definition 3.5
For a given n > 1,Athe n + 1 Chebyshev—Gauss—Lobatto nodes in the
reference interval [ = [—1,1] are:
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Chebyshev—-Gauss—Lobatto nodes

Proposition 3.5
If f € C}(/), with the interval / = [a, b] and the n+1
Chebyshev-Gauss-Lobatto nodes are used in /, then

lim M,f(x)="f(x) forallxel.

n—+00

Moreover, if f € C>(/), then

lim e,(f) = 0.

n—-+o00

Furthermore, the stability issues are mitigated.
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Chebyshev—Gauss—Lobatto nodes: example

Consider again the Runge function f(x) =

n = 8 with CGL nodes

() =1/(1 +22), Chebishev-G-L nodes,n =8

1

T2

n = 10 with CGL nodes

() = 1/(1 + 2%), Chebishev-G-L nodes.n =10

54 3 2 a4 0 1 2 3 4 5 s o4 03 2 a4 0 2
x x

—TL/@ O (/@) — 1) —L/@ O @f@) —7@)

. 1(z) = sin(2pia), perturbed, Chebishev-G-Lyn =21
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Compute coefficients in polynomial interpolation
= Alternatively to using Lagrange basis, the coefficients {a;}7_, of
n
Ma(x) = Zykgok(x) =ap+aix+ -+ apx".
k=0

can be computed directly as a = (ag, a1,...,a,)’ € R™! and enforcing
the n+ 1 interpolation constraints P,(x;) = y; forall i =0,...,n; i.e.,
Po(xi) =ao+aixi+ -+ apx =y foralli=0,...,n.

= This leads to solving the linear system:
Ba=y
where B € R("MX(+1) js the Vandermonde matrix, with Bj = (x;_1)/ ™!
fori,j=1,....n+1,and y = (yo,y1,---,¥s)" € R™!
= Unique solution iff det(B) # 0, i.e. iff the n+ 1 nodes {x;}7_, are distinct

= Stability issues for relatively “small” values of n, due to large condition
number of B.
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Trigonometric interpolation
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Trigonometric interpolation

® The trigonometric interpolant uses trigonometric basis functions (also
referred to as the discrete Fourier series)

® Used for periodic signals and functions

u We consider a periodic function f : [0,27] — C, i.e., s.t. f(0) = f(27)
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Trigonometric interpolation

Given n+ 1 nodes {x;}]_g s.t. x; = jhfor j=0,...,n with h = 27” suppose
nis even, n=2M, i? = —1.

The trigonometric interpolant /;f(x) of the periodic function f : [0,27] — C
is

I.F(x) = ? + " (axcos(kx) + bysin(kx))

30f 73 1



Trigonometric interpolation

Given n+ 1 nodes {x;}]_g s.t. x; = jhfor j=0,...,n with h = 27” suppose
nis even, n=2M, i? = —1.

The trigonometric interpolant /;f(x) of the periodic function f : [0,27] — C
is

M

Lf(x) = 2 13 (akcos(kx) + bysin(kx))
2 k=1

ikx

Use Euler's formula €™ = cos(kx) + isin(kx) to write

M
/tf(X) = Z Ckeikx7 ak=ck+c_x, b= i(Ck — C_k)
k=—M

By imposing interpolation conditions /;f(x;) = f(x;) for all j =0,...,n, we
find
1 < i
Ck = n—|—1zgf(XJ)e kjhv h:2ﬂ-/n
j:
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Trigonometric interpolation: remarks

= The trigonometric interpolant /;f(x) interpolates f(x) at nodes {x;}7_g,
lif(x;) = f(x;) forall j=0,...,n.

m Similar construction if n is odd (see lecture notes)
= Computation of coefficients {cx}7_, requires O(n?) flops

m Using the Fast Fourier Transform (FFT) reduces the cost to O(nlog n)
flops.
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Piecewise linear interpolation
(Sect. 3.2.3)
Let xg = a < x; <--- < xy = b be a distribution of nodes that divide the

interval | = [a, b] into subintervals ; = [x;, x;+1], i = 0, n. Let H be the
characteristic size of the intervals:

H= max (xit+1 — ;).

i=0,...,n

| | | | |
I I I I |

a Ti—1 T Tit1 b

The piecewise linear interpolating polynomial M!(x) is a piecewise
polynomial of degree 1 such that M4(x)|, € P; forall i =0,...,n—1), with:

Yit1 — yi(
Xi+1 — Xi

N (x) =y, + x—x;) forall i=0,...,n—1.
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Piecewise linear interpolation

Let xg = a < x; < --+- < xy = b be a distribution of nodes that divide the
interval | = [a, b] into subintervals I; = [x;, x;11], i = 0, n. Let f € C°(/) be
known.

On each sub-interval /;, we interpolate f;, by a polynomial of degree 1. The
obtained interpolating function is called piecewise linear interpolation
polynomial of f and is noted N f(x).

f(xip1) — f(xi)

Xi+1 — Xi

NifF(x) = f(x) + (x —x;) forxe€l.
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Runge with piecewise linear interpolation

1
Piecewise linear interpolation for f(x) = T2 % € [-5,5]
x

0 L L L L L L L L
-5 -4 -3 -2 -1 0 2 3 4 5

The figure shows the polynomial I'I"l"lf and I'Ifbf for H = 2.5 and H, = 1.0.
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Runge with piecewise linear interpolation

The commands in Matlab for this interpolation:

>> f = 0(x) 1./(1+x.72);

>> H1 = 2.5; H2=1.0;

>> x1 [-5:H1:5]; x2 = [-5:H2:5];

>> y1 =f (x1); y2 = £(x2);

>> x_plot = [-5:.1:5];

>> yl_plot = interpl(xl,yl,x_plot);

>> y2_plot = interpl(x2,y2,x_plot);

>> plot(x_plot, f(x_plot)); hold on;

>> plot(x_plot, yl_plot,’r’); plot(x_plot, y2_plot,’g’);

daor73 1



Error

Theorem (Prop. 3.6)
If f € C3(I), (I = [x0,xn]) then

2

H
H — _nH < 1"
ey (f) 1= max | f(x) = Ny'f(x) [< —5- max|f(x)],

for which the error converges to zero with order 2 in H (quadratically)

w5073 1



Piecewise quadratic polynomials with higher degree

Define the piecewise quadratic polynomial M4 (x) as N4 (x)|;, € P, for all the
subintervals [; of | from i =0,...,n— 1; it interpolates at the nodes and at
intermediate points (e.g. mid-points of the sub-interval).
If £ € CO(/) is known, then we use the notation M4 f(x).

Y

n =4

460r73 1



Piecewise interpolating polynomials

Define the piecewise interpolating polynomial of degree r > 1, M¥(x), as
NH(x)|, € P, foralli=0,...,n—1 (or N¥f(x) if f € C°(I) is known).
Theorem ((Prop. 3.7))

If f € C™*Y(1), then the error ef!(f) := maxxe/ |f(x) — I'If’f(xu associated
with the piecewise interpolating polynomial of degree r > 1, M, f(x), can be
bounded by the error estimator &H(f) as:

ef!(F) < 8//(F) = CH™ max | FrD(x)|

r

with C, a positive constant, for which the error converges to zero with order
r+1inH.

w7073 1



Piecewise interpolating polynomials

Define the piecewise interpolating polynomial of degree r > 1, M¥(x), as
NH(x)|, € P, foralli=0,...,n—1 (or N¥f(x) if f € C°(I) is known).
Theorem ((Prop. 3.7))

If f € C™*Y(1), then the error ef!(f) := maxxe/ |f(x) — I'If’f(xu associated
with the piecewise interpolating polynomial of degree r > 1, M, f(x), can be
bounded by the error estimator &H(f) as:

ef(F) < &(F) i= CH™ max| A (x)|

r

with C, a positive constant, for which the error converges to zero with order
r+1inH.

Remark 3.7 Piecewise interpolating polynomials M f(x) of any degree
r > 1 are only C%-continuous across the subintervals (internal nodes).
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Runge with piecewise linear interpolation (contd)

We estimate the interpolation error when f is the Runge function

1
14 x2

on the interval [—5,5]. We take K sub-intervals with K = 20, 40, 80, 160
and we estimate the interpolation error |f(x) — MY f(x)| on a fine grid

>> f=0(x) 1./(1+x.72);
>> K=[20 40 80 160]; H=10./K;
>> x_fine = [-5:0.001:5];
>> f_fine = f(x_fine);
>> for i=1:4
x = [-5:H(1):5]; y = £(x);
y_fine = interpl(x,y,x_fine);
err1(i) = max(abs(f_fine - y_fine));
end
>> loglog(H,errl);
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Runge with piecewise linear interpolation (contd)

The following figure shows (in logarithmic scale) the error according to the
size H = 10/K of sub-intervalles. We see that the error max,¢; | ef'f(x) |
for piecewise linear interpolation behaves like CH?: the result is in
agreement with Prop. 3.6. In addition, if we calculate the relations
maxye; | e f(x) | /H?, we can estimate the constant C:

>> errl./H."2
ans =
0.16734 0.22465 0.24330 0.24829
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Runge with piecewise linear interpolation (contd)

The interpolation error is quadratic in H = 10/K (in the graph, E{! displays
the error ef! from our formulas)

- F
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Interpolation by spline functions

(Chapt. 3.2.4 of the book)
Let a=xp < x1 < --+ < x, = b be the points that divide the interval
I = [a, b] into disjoint intervals ; = [x;, x;4+1].
Definition
A function s3 is called a interpolating cubic spline of f if it satisfies:
1. 53(X)M € Ps forall i =0,...n—1, P3 is the set of polynomials of degree
2. s3(x;) = f(x;) forall i=0,...n,
3. s3 € C%([a, b]).
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Interpolation by spline functions

u et S3(X)|/I. = ag,; + a1,ix + 327;X2 + 33’,'X3 fori=0ton—1
® Determine 4n coefficients {a;;}, j=0,...3,i=0,...,n—1
® We have to verify the following conditions (s3(x.”) means the one-sided

limit (from the right) of s3 in the point x; and s3(x;") means the
one-sided limit (from the left)) :

s3(x7) = f(x) forall 1<i<n-—1,
s3(x") = f(x) forall 1<i<n-—1,
s3(x0) = f(x0),
s3(xa) = f(xn),
si(x7) = si(x;") forall 1<i<n-—1,
sy (x7) = s (x) forall 1<i<n-—1,

= That means 2(n — 1) + 2+ 2(n — 1) = 4n — 2 conditions.
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Interpolation by spline functions

We need to find 4n unknowns (which are the 4 coefficients of each of the n
restrictions from 3, i=0,...n— 1) which satisfy 4n — 2 relations.
We add 2 additional condltlons to check:

= |f we assume
s{(x)=0 and sj(x;)=0, 3)

then the spline s3 is completely determined and called a natural
interpolating cubic spline.
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Interpolation by spline functions

We need to find 4n unknowns (which are the 4 coefficients of each of the n
restrictions from 3, i=0,...n— 1) which satisfy 4n — 2 relations.
We add 2 additional condltlons to check:

= |f we assume
s{(x)=0 and sj(x;)=0, 3)
then the spline s3 is completely determined and called a natural
interpolating cubic spline.

= Another possibility is to assume the continuity of the third derivative in
the nodes x, and x,_;. That means:

59’00 ) =s5'(¢") and  s"(x, 1) = 55" (x) 4)- (4)

The conditions (4) are called not-a-knot.
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Example natural interpolating cubic spline

A natural interpolating cubic spline of a function

f(x) = — 6, (nodes equidistributed
()= =037 1001 T (x—00)7r 004 O (nodes equidistribute

xj=—1+4j/4 j=0,...,16)
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Example not-a-knot interpolating cubic spline

= MATLAB command spline considers not—a—knot interpolating cubic
splines

® The cubic spline s3(x) interpolates the data at the n+ 1 = 5 nodes
{x;i}%_, and is C?>—continuous across each internal node {x;}3_;.
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Error estimates

Theorem (Prop. 3.8)

Consider n+ 1 distinct nodes {x;}!_, in the interval | = [xg,Xs], n
subintervals I; = [x;i, xi11], and H 1= maxi=o,... n—1|/i|.

If f € C*(1) and s3(x) is its natural interpolating cubic spline at the nodes,
then:

max F(x) —s k)(x) < CHYx max
X€

Mwﬂ for k=0,1,2,
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Error estimates

Theorem (Prop. 3.8)

Consider n+ 1 distinct nodes {x;}!_, in the interval | = [xg,Xs], n
subintervals I; = [x;i, xi11], and H 1= maxi=o,... n—1|/i|.

If f € C*(1) and s3(x) is its natural interpolating cubic spline at the nodes,
then:

max F(x) —s k)(x)‘ < CkH* kmax
X€

4)(x)‘ for k=0,1,2,

and
max f®(x)
XEN{X1,5. s Xn—1}

)

FO)(x) - séa)(x)‘ < GyH max

xel

with Cyx > 0 positive constants, for which the convergence order of the error
is 4 — k in H, depending on the order of derivation k =0,1,2,3.
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Plan

Least squares
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Approximation by the least squares method

(Chapt. 3.3 of the book)

Suppose we have n+ 1 points xp, x, - .., X, and n+ 1 values yo, y1,.- -, ¥n-
We have seen that if n is large, the interpolating polynomial may show large
oscillations

Instead of interpolating the values, it is possible to define a polynomial of
degree m < n that approximates the data “at best”
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Least squares method

Definition
We call least squares polynomial approximation of degree m > 0 the
polynomial f,(x) of degree m such that

n

> bi- <Z — Pm(x))>  VPm(x) € Py

i=0
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Least squares method

Definition
We call least squares polynomial approximation of degree m > 0 the
polynomial f,(x) of degree m such that

n

> bi- <Z — Pm(x))>  VPm(x) € Py

i=0

Remark )
When y; = f(x;) (f is a continuous function) then fy, is called the
approximation of f in the least squares sense.

59.0f 73 1



Least squares method

Remark }
If m = n and the nodes are distinct, then fn(x) = Nnf(x) is the
interpolating polynomial of degree m.

= Remember we use the same command in Matlab polyfit as for Lagrange
interpolation.

= In general m < n and 7,(x) does not interpolate the data.
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Least squares method

In other words, the least squares polynomial approximation is the polynomial
of degree m that minimizes the distance to the data.
Let note fr,(x) = ag + a1x + axx® + ... + apx™ and define the function

®(bo, b, ..., bw) = > |yi = (bo + bxi + box? + ...+ bux™) |’
i=0
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Least squares method

The least-squares method consists in determining the coefficients vector

a=(ap,...,am)" of the polynomial f,,(x) of degree m such that:
= mi b).
4(@) = min_o(b)

Since ¢ is differentiable, the previous minimization problem is equivalent to
solving the following differential problem:

find a € R™1 such that

96, . a
%(a)—O forall j=0,...,m. (5)
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Finding the coefficients

We can write for each k =0,..., m,

oo - m
— = 2> xi—(a0+ ...+ anx")]
i=0

aak
n n n n
= =2 |:Zx,-ky,- — (aon,-k + alz:x,-kJr1 + ...+ amink+m>:|
i=0 i=0 i=0 i=0
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Finding the coefficients

We can write for each k =0,..., m,
29 —2Zn:x-k[ i — (a0 + ...+ amx")]
aak ar i LYi 0 v mA;
n n n n
= =2 |:Zx,-ky,- — (aon,-k + alz:x,-kJrl +...+ amink+m>:|
i=0 i=0 i=0 i=0
We obtain the linear system with the unknowns ag, ..., am:
a(n+1) + aYy xi o+ .. o+ amy x" = >y
i=0 i=0

i=0
n

n n n
2 m+1
ao E Xi + E E xXi + ... + am E X = E YiXi
i=0 i=0 i=0 i=0

n n n n

m m+1 2m m

ao E X; + a E X; + ... + am E Xi = E YiX;
i=0 i=0 i=0 i=0

63073 1



Least squares method

We obtain the linear system Aa = q, where A € R(™DX(m+1) 54
a= (ao,. . .,am)T,

n+1 --- ix,-m iy,-
i=0 i=0
A= : et q= :

n n
m 2m m
Xi T Xi YiXi
i=0 i=0

i=0

For m = 1, we obtain the regression line f(x) = ap 4+ ai1x where {ap, a1} are
solutions of the linear system:

n+1 2’1: X; EH: Vi

i=0 ( o ) _ i=0
Z Xi Z Xi2 a Z YiXi
i=0 i=0 i=0
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Normal equations

Ideally, for fn(x) = ao + a1x + a2x* + ... we would like to impose f,(x;) = y; for
i=0,...,n.

This can be written as a system with unknowns ax, k =0, ..., m: Ba =y, where B
is a matrix of dimension (n+ 1) x (m+1)

1 X0 X(;n

1 x ... x"
B =

1 x, ... x7

Since m < n, the system is overdetermined. The solution to (5) is equivalent to
the square system (system of normal equations)

B'™Ba=B"y, A=B'B, q=B"y
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Example regression line

Example Let n =2 and m =1, nodes xp = 1, x1 = 3, x2 = 4 with values y, =0,
y1 =2, y» = 7. We want to compute the (regression line), i.e., the the least

squares polynomial approximation of degree 1, )N‘l(x) = ap + aix.

oo oo

— =0and —— =0:
o

We set ®(ao, a1) = .7 o[yi — (a0 + a1x)]* and impose 9a ooy

2 2 2

oP

90 -2 Z[y,‘ — (a0 + a1xi)] = -2 (Z yi—3a0 — a1 ZX:)
i=0 i=0 i=0

—2(9 — 330 — 821)

2 2 2 2

o0

Do _2ZXi[}/i — (a0 + a1xi)] = =2 <Z Xiyi — ao ZXf —a ZX?)
i—0 i—0 =0 i=0

= —2(34 —8ap — 26a1)

Hence the coefficients ag and a; are the solution of the system

3a0 + 8a1 = 9
8ay + 206a; = 34
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Examples

Example 6 We have 8 measures (o-¢):

0 0.06 0.14 0.25 0.31 0.47 0.50 0.70];

>> sigma = [O.
= .00 0.08 0.14 0.20 0.22 0.26 0.27 0.29];

0
>> epsilon [0
We want to extrapolate the value of € for o = 0.4. We consider two ways:
= compute the interpolating polynomial 7 of degree 7

= compute the least squares polynomial approximation of degree 1

On peut utiliser les commandes suivantes:

>> plot(sigma, epsilon, ’*’); hold on; 7% plotting the known values
>> sigma_sample = linspace(0,1.0,100);

>> p7 = polyfit(sigma, epsilon, 7);

>> pol = polyval(p7, sigma_sample); % interpolating polynomial
>> plot(sigma_sample,pol, ’r’);

>> pl = polyfit(sigma,epsilon,1);

>> pol_mc = polyval(pl, sigma_sample); % least square

>> plot(sigma_sample, pol_mc, ’g’); hold off;
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Examples

Example 6 (contd)
® the interpolating polynomial 17 of degree 7 is in red

® the least squares polynomial approximation of degree 1 is in blue
8

7k

-1

0 0.2 0.4 0.6 0.8 1
c

For o > 0.7,the behavior of the two polynomials are very different.
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Examples

Example 6 (contd): In particular, for o = 0.9 the values of €(o)
extrapolated with the two methods are

>> polyval(p7, 0.9)
ans =
1.7221

>> polyval(pl, 0.9)
ans =
0.4173

m The value obtained by M7 (172.21%) is unrealistic

® On the contrary, the value obtained with the regression line is more
appropriate to compute the value at 0 = 0.9.
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Examples: swiss population

Example 1 (from last lecture): Starting from the population at the 20th
century decades, we extrapolate the Swiss popululation this year. We use a
least square polynomial approximation of degree 2

>> year = [1900, 1910, 1920, 1930, 1941, 1950,...
1960, 1970, 1980, 1990, 2000];

>> population = [3315, 3753, 3880, 4066, 4266, 4715,...
5429, 6270, 6366, 6874, 7288];

>> p2 = polyfit(year, population, 2);

>> year_sample = [1900:2:2010];

>> vp2 = polyval(p2, year_sample);

>> plot(year, population, ’*r’,

year_sample, vp2, ’b’);

year 1900 1910 1920 1930 1941 1950
population 3315 3753 3880 4066 4266 4715

zear 1960 1970 1980 1990 2000 2010
opulation 5429 6270 6366 6874 7288 7783
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Examples: swiss population

The polynomial of degree two (parabola) which approximates the data by
the method of least squares is:

p(x) = 0.15x% — 549.9x + 501600

9000

valeurs estimées par interpolation
valeurs mesurées

7000

6000

population en milliers

5000

4000

3000
1900 1820 1840 1960 1880 2000 2020

année
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Processing of polynomials

In Matlab, there are specific commands for doing calculations with
polynomials. Let x be a vector of abscissas, y be a vector of ordinates and p
(respectively p;) be the vector of coefficients of a polynomial P(x)
(respectively P;); then, we have following commands:

command action

y=polyval(p,x) y = values of P(x)

p=polyfit(x,y,n) p = coefficients of the interpolating polynomial 1,
z=roots(p) z = zeros of P such that P(z) =0
p=conv(pi,p2) p = coefficients of the polynomial PP,

[q,r]=deconv(p1,p2) || q = coefficients of Q, r = coefficients of R
such that P = QP> + R

y=polyderiv(p) y = coefficients of P’(x)

y=polyinteg(p) y = coefficients of [ P(x) dx
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Remarks

® |east squares approximation is not limited to polynomials
B They can be done with trigonometric, exponentials, logarithmic

® [nterpolation and least squares approximation can be generalized to 2D,
3D, higher dimensions.
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