

Approximation of Functions and Data

Laura Grigori

EPFL and PSI

slides based on lecture notes/slides from L. Dede/S. Deparis

October 2nd, 2024

Plan

Examples and motivation

Interpolation

Polynomial interpolation

Lagrange interpolating polynomials

Examples in Matlab

Error and interpolation of a smooth function

Trigonometric interpolation

Piecewise polynomial interpolation

Interpolation by spline functions

Least squares

Plan

Examples and motivation

Interpolation

Polynomial interpolation

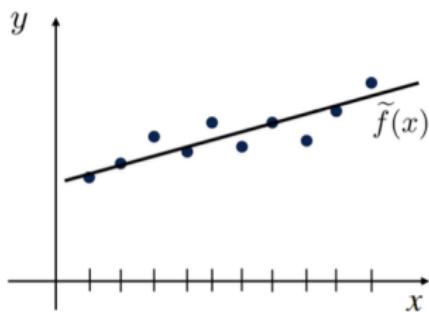
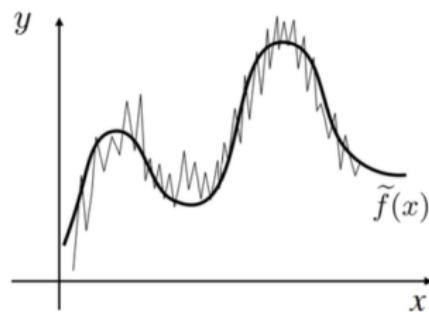
Trigonometric interpolation

Piecewise polynomial interpolation

Least squares

Motivation

Goal: Approximate a set of data couples or a function $f(x)$ by another function $\tilde{f}(x)$ easier to handle.



Examples

Example 1: The result of census of the population of Switzerland between 1900 and 2010 (in thousands):

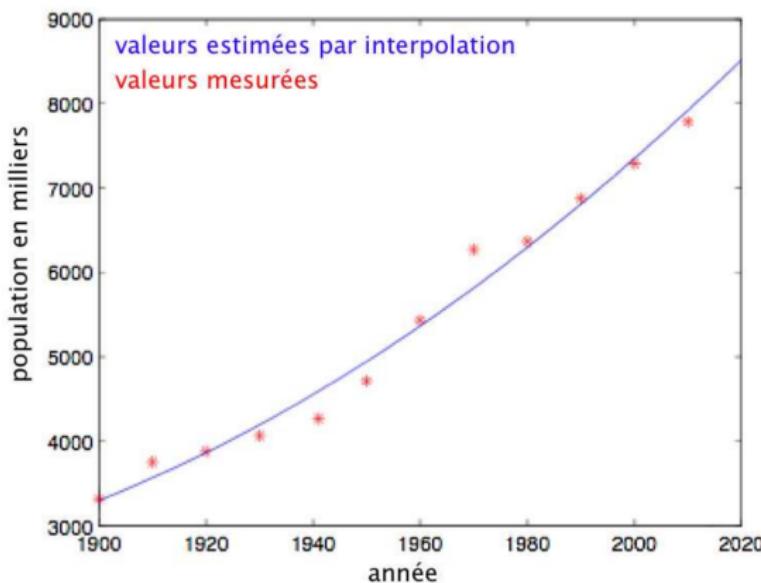
year	1900	1910	1920	1930	1941	1950
population	3315	3753	3880	4066	4266	4715
year	1960	1970	1980	1990	2000	2010
population	5429	6270	6366	6874	7288	7783

- Is it possible to estimate the number of inhabitants of Switzerland during the year when there has not been census, for example in 1945 and 1975?
- Is it possible to predict the number of inhabitants of Switzerland in 2020?

Example 1

The polynomial of degree two (parabola) which approximates the data by the method of least squares is:

$$p(x) = 0.15x^2 - 549.9x + 501600$$



Approximation of functions by Taylor's polynomials

- Function $f \in C^n(I_{x_0})$ can be approximated in a neighborhood I_{x_0} of a point $x_0 \in \mathbb{R}$ by the Taylor polynomial (expansion) of order n
- The Taylor expansion of $f(x)$ around x_0 is given by:

$$\tilde{f}(x) = f(x_0) + \sum_{i=1}^n \frac{1}{i!} f^{(i)}(x_0)(x - x_0)^i.$$

Inconvenients:

- the evaluation of n derivatives of $f(x)$ is required
- Taylor's expansion is accurate only in a neighborhood of x_0

Approximation of functions by Taylor's polynomials

- Function $f \in C^n(I_{x_0})$ can be approximated in a neighborhood I_{x_0} of a point $x_0 \in \mathbb{R}$ by the Taylor polynomial (expansion) of order n
- The Taylor expansion of $f(x)$ around x_0 is given by:

$$\tilde{f}(x) = f(x_0) + \sum_{i=1}^n \frac{1}{i!} f^{(i)}(x_0)(x - x_0)^i.$$

Inconvenients:

- the evaluation of n derivatives of $f(x)$ is required
- Taylor's expansion is accurate only in a neighborhood of x_0

Approximation of functions by Taylor's polynomials

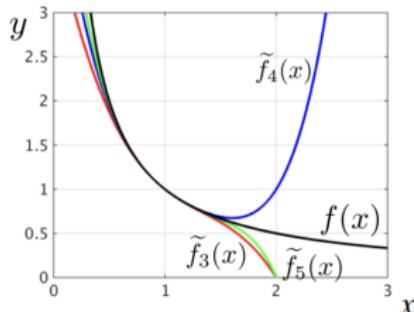
- Consider the Taylor expansion of $f(x) = \frac{1}{x}$ of order n , denoted as $\tilde{f}_n(x)$, around $x_0 = 1$. The expansion is given by:

$$\tilde{f}_n(x) = f(1) + \sum_{i=1}^n \frac{1}{i!} f^{(i)}(1)(x-1)^i.$$

- Since $f^{(i)}(x) = (-1)^i i! x^{-(i+1)}$ for $i = 0, 1, \dots, n$, we have

$$\tilde{f}(x) = \tilde{f}_n(x) = 1 + \sum_{i=1}^n (-1)^i (x-1)^i.$$

- Approximation inaccurate “far” from $x_0 = 1$



Plan

Examples and motivation

Interpolation

Polynomial interpolation

Trigonometric interpolation

Piecewise polynomial interpolation

Least squares

Interpolation

Definition

Consider $n + 1$ data pairs $\{(x_i, y_i)\}_{i=0}^n$ with $\{x_i\}_{i=0}^n$ being $n + 1$ distinct nodes, i.e., such that $x_i \neq x_j$ for all $i \neq j$, where $i, j = 0, \dots, n$.

Interpolating data pairs $\{(x_i, y_i)\}_{i=0}^n$ means determining the approximate function $\tilde{f}(x)$ such that $\tilde{f}(x_i) = y_i$ for all $i = 0, \dots, n$

If $f(x)$ is known, we set $y_i = f(x_i)$ for all $i = 0, \dots, n$, and $\tilde{f}(x_i) = f(x_i)$ for all $i = 0, \dots, n$.

The function $\tilde{f}(x)$ is called the interpolant of the data at the nodes.

Interpolation

Definition

Consider $n + 1$ data pairs $\{(x_i, y_i)\}_{i=0}^n$ with $\{x_i\}_{i=0}^n$ being $n + 1$ distinct nodes, i.e., such that $x_i \neq x_j$ for all $i \neq j$, where $i, j = 0, \dots, n$.

Interpolating data pairs $\{(x_i, y_i)\}_{i=0}^n$ means determining the approximate function $\tilde{f}(x)$ such that $\tilde{f}(x_i) = y_i$ for all $i = 0, \dots, n$

If $f(x)$ is known, we set $y_i = f(x_i)$ for all $i = 0, \dots, n$, and $\tilde{f}(x_i) = f(x_i)$ for all $i = 0, \dots, n$.

The function $\tilde{f}(x)$ is called the interpolant of the data at the nodes.

Interpolation types

- **Polynomial interpolation**, for which

$$\tilde{f}(x) = a_0 + a_1x + \cdots + a_nx^n$$

for some $n + 1$ coefficients a_0, a_1, \dots, a_n ;

- **Rational interpolation**, for which

$$\tilde{f}(x) = \frac{a_0 + a_1x + \cdots + a_kx^k}{a_{k+1} + a_{k+2}x + \cdots + a_{k+n+1}x^n}$$

for some coefficients $a_0, a_1, \dots, a_{k+n+1}$ with $k, n \geq 0$;

- **Trigonometric interpolation**, for which

$$\tilde{f}(x) = \sum_{j=-M}^M a_j e^{ijx}, \quad e^{ijx} = \cos(jx) + i \sin(jx),$$

where i is the imaginary unit ($i^2 = -1$), for some M and complex coefficients a_j ;

- **Piecewise polynomial interpolation**;
- **Splines**
- ...

Plan

Examples and motivation

Interpolation

Polynomial interpolation

Lagrange interpolating polynomials

Examples in Matlab

Error and interpolation of a smooth function

Trigonometric interpolation

Piecewise polynomial interpolation

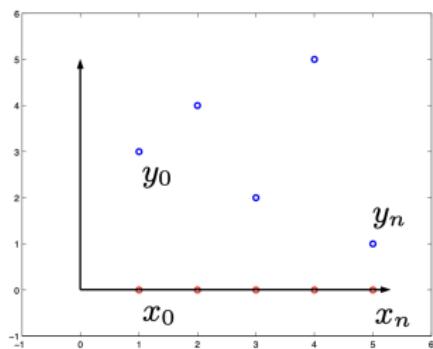
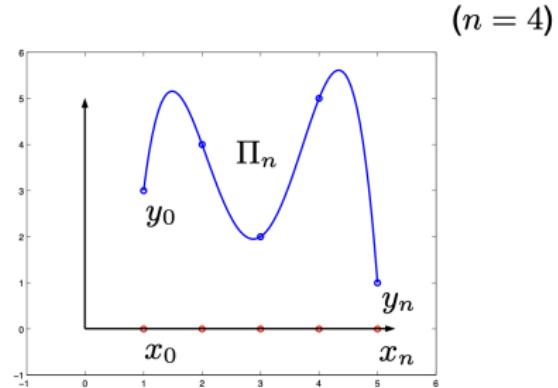
Least squares

Polynomial interpolation

Proposition 3.1 Let $n \geq 0$ be an integer. Given distinct $n + 1$ points x_0, x_1, \dots, x_n and associated $n + 1$ values y_0, y_1, \dots, y_n , there exists a unique polynomial $\Pi_n(x)$ of degree less than or equal to n , such that

$$\Pi_n(x_j) = y_j \quad \text{for } 0 \leq j \leq n$$

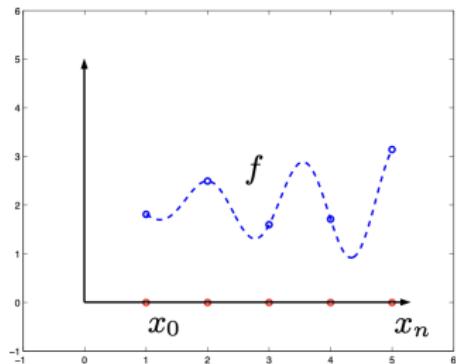
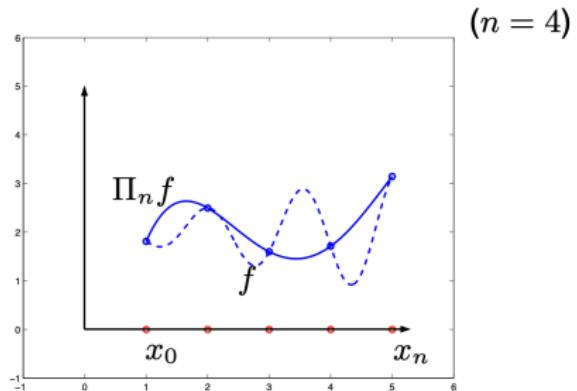
- We call it the **interpolating polynomial** of the values y_j at nodes x_j , for $j = 0, \dots, n$.



Interpolation of a function

Let $f \in C^0(I)$ and $x_0, \dots, x_n \in I$. Taking $y_j = f(x_j)$ for $0 \leq j \leq n$, the interpolating polynomial $\Pi_n(x)$ is denoted by $\Pi_n f(x)$ and is called **the interpolating polynomial of f at the points x_0, \dots, x_n** . We have

$$\Pi_n f(x_j) = y_j \quad \text{for } 0 \leq j \leq n.$$



Lagrange interpolating polynomials

Definition 3.2 For a set of distinct nodes $\{x_i\}_{i=0}^n$, the **Lagrange characteristic function** associated to the node x_k is a polynomial ϕ_k , for $k = 0, \dots, n$, of degree n such that

$$\phi_k(x_i) = \delta_{ki}, \quad k, i = 0, \dots, n,$$

where $\delta_{ki} = 1$ if $i = k$ and $\delta_{ki} = 0$ if $i \neq k$. Explicitly, we have

$$\phi_k(x) = \prod_{\substack{i=0 \\ i \neq k}}^n \frac{x - x_i}{x_k - x_i}.$$

- The set $\{\phi_k(x)\}_{k=0}^n$ is the basis of Lagrange characteristic polynomials, a basis of \mathbb{P}_n .

Lagrange interpolating polynomials

Definition 3.2 For a set of distinct nodes $\{x_i\}_{i=0}^n$, the **Lagrange characteristic function** associated to the node x_k is a polynomial ϕ_k , for $k = 0, \dots, n$, of degree n such that

$$\phi_k(x_i) = \delta_{ki}, \quad k, i = 0, \dots, n,$$

where $\delta_{ki} = 1$ if $i = k$ and $\delta_{ki} = 0$ if $i \neq k$. Explicitly, we have

$$\phi_k(x) = \prod_{\substack{i=0 \\ i \neq k}}^n \frac{x - x_i}{x_k - x_i}.$$

- The set $\{\phi_k(x)\}_{k=0}^n$ is the basis of Lagrange characteristic polynomials, a basis of \mathbb{P}_n .

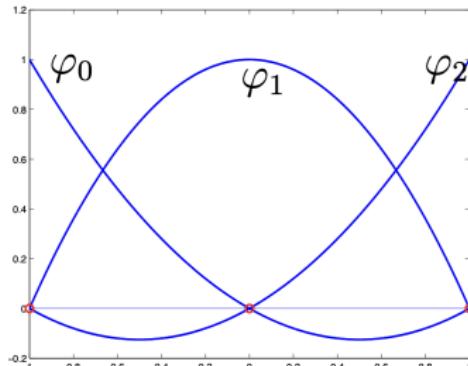
Lagrange basis: example

Example 2. For $n = 2$, $x_0 = -1$, $x_1 = 0$, $x_2 = 1$, the polynomials of the Lagrange basis are:

$$\phi_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{1}{2}x(x - 1),$$

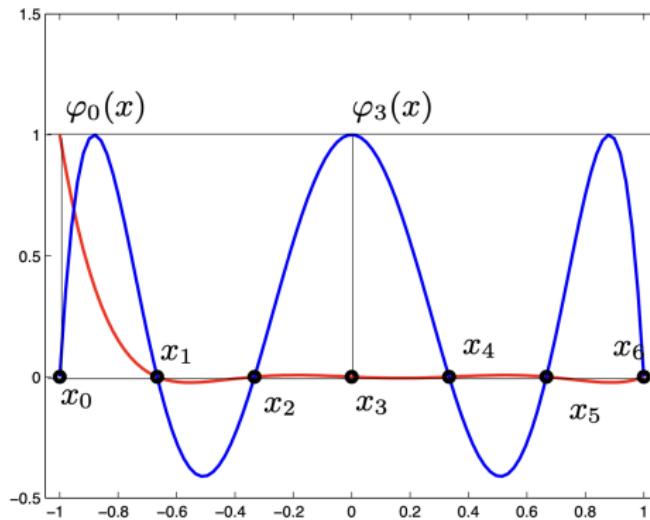
$$\phi_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = -(x + 1)(x - 1),$$

$$\phi_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{1}{2}x(x + 1).$$



Lagrange basis: example

The following figure shows two polynomials of the Lagrange basis of degree $n = 6$ with respect to the interpolation points $x_0 = -1$, $x_1 = -\frac{2}{3}, \dots, x_5 = \frac{2}{3}$, and $x_6 = 1$.



Lagrange interpolating polynomials

Definition 3.3 The interpolating polynomial Π_n of values y_i at nodes x_i , $i = 0, \dots, n$, is written as

$$\Pi_n(x) = \sum_{k=0}^n y_k \phi_k(x), \quad (1)$$

because it satisfies $\Pi_n(x_j) = \sum_{k=0}^n y_k \phi_k(x_j) = y_j$.

If the function $f(x)$ is given and is continuous, its Lagrange interpolating polynomial at the nodes $\{x_i\}_{i=0}^n$ is:

$$\Pi_n f(x) = \sum_{k=0}^n f(x_k) \phi_k(x).$$

Lagrange interpolating polynomials

Definition 3.3 The interpolating polynomial Π_n of values y_i at nodes x_i , $i = 0, \dots, n$, is written as

$$\Pi_n(x) = \sum_{k=0}^n y_k \phi_k(x), \quad (1)$$

because it satisfies $\Pi_n(x_j) = \sum_{k=0}^n y_k \phi_k(x_j) = y_j$.

If the function $f(x)$ is given and is continuous, its Lagrange interpolating polynomial at the nodes $\{x_i\}_{i=0}^n$ is:

$$\Pi_n f(x) = \sum_{k=0}^n f(x_k) \phi_k(x).$$

Numerical interpolation using Matlab

- In Matlab, we can compute the interpolation polynomials using the command `polyfit` and `polyval`. See more how to use these commands.
- $p = \text{polyfit}(x, y, n)$ calculates the coefficients of the polynomial of degree n that interpolates the values y in nodes x .

Examples in Matlab

Example A. We want to interpolate the values

$y = [3.38, 3.86, 3.85, 3.59, 3.49]$ at the nodes $x = [0, 0.25, 0.5, 0.75, 1]$ by a polynomial of degree 4. Use the following commands in MATLAB:

- $x = [0:0.25:1];$ % vector of the interpolation points
- $y = [3.38 3.86 3.85 3.59 3.49];$ % vector of the values
- $p1 = polyfit(x, y, 4)$

The output will be:

$$p1 = [1.8133, -0.1600, -4.5933, 3.0500, 3.3800]$$

$p1$ is a vector of coefficients of the interpolating polynomial:

$$\Pi_4(x) = 1.8133x^4 - 0.16x^3 - 4.5933x^2 + 3.05x + 3.38.$$

To calculate the polynomial of degree n that interpolates a function f at given $n + 1$ nodes, first construct the vector y of values f at the nodes x .

Examples in Matlab

Example B. Consider the following case:

- $f = @(x) \cos(x);$
- $x = [0:0.25:1];$
- $y = f(x);$
- $p = \text{polyfit}(x, y, 4)$

The output will be:

$$p = [0.0362, 0.0063, -0.5025, 0.0003, 1.0000]$$

Remark 1. If the dimensions of x and y are $m + 1 > n + 1$ (where n is the degree of the interpolation polynomial), the command $\text{polyfit}(x, y, n)$ returns the interpolation polynomial of degree n using the least squares method (see sec. 3.3 in the book). In the case when $m + 1 = n + 1$, we find the standard interpolation polynomial.

Examples in Matlab

The command $y = \text{polyval}(p, x)$ calculates the values y of the polynomial of degree n , where the $n + 1$ coefficients are stored in the vector p , at the point x :

$$y = p(1) \cdot x^n + p(2) \cdot x^{n-1} + \dots + p(n) \cdot x + p(n+1).$$

Example C. We want to evaluate the polynomial from Example A at the point $x = 0.4$ and then draw a graph. You can use the following commands:

- `x = 0.4;`
- `y = polyval(p1, x)`

The output will be:

$$y = 3.9012$$

Now, to plot the graph of the polynomial, use:

- `x = linspace(0, 1, 100);`
- `y = polyval(p1, x);`
- `plot(x, y)`

Error

Definition 3.4 Given continuous $f(x)$, $I = [a, b]$, $n + 1$ nodes s.t. $a = x_0 < x_1 < \dots < x_n = b$, we define the **error function**

$$E_n f(x) := f(x) - \Pi_n f(x)$$

associated to the interpolating polynomial $\Pi_n f(x)$. The **error** is

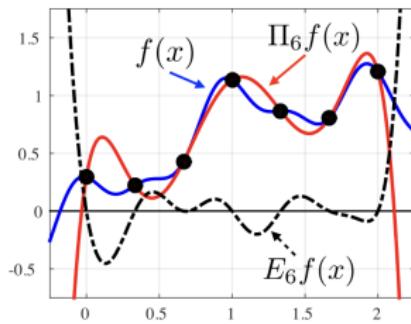
$$e_n(f) := \max_{x \in I} |E_n f(x)|.$$

Example: $f(x) = \sin(x) + \frac{1}{4} \sin\left(2\pi x + \frac{\pi}{3}\right) + \frac{1}{10} \sin\left(4\pi x + \frac{7\pi}{10}\right)$

$\Pi_6 f(x)$ of $f(x)$ at the nodes

$$x_0 = 0, \quad x_1 = \frac{1}{3}, \quad x_2 = \frac{2}{3}, \quad x_3 = 1,$$

$$x_4 = \frac{4}{3}, \quad x_5 = \frac{5}{3}, \quad x_6 = 2$$



Error

Definition 3.4 Given continuous $f(x)$, $I = [a, b]$, $n + 1$ nodes s.t. $a = x_0 < x_1 < \dots < x_n = b$, we define the **error function**

$$E_n f(x) := f(x) - \Pi_n f(x)$$

associated to the interpolating polynomial $\Pi_n f(x)$. The **error** is

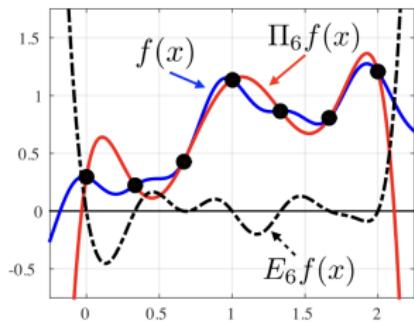
$$e_n(f) := \max_{x \in I} |E_n f(x)|.$$

Example: $f(x) = \sin(x) + \frac{1}{4} \sin\left(2\pi x + \frac{\pi}{3}\right) + \frac{1}{10} \sin\left(4\pi x + \frac{7\pi}{10}\right)$

$\Pi_6 f(x)$ of $f(x)$ at the nodes

$$x_0 = 0, \quad x_1 = \frac{1}{3}, \quad x_2 = \frac{2}{3}, \quad x_3 = 1,$$

$$x_4 = \frac{4}{3}, \quad x_5 = \frac{5}{3}, \quad x_6 = 2$$



Interpolation of a smooth function

Proposition 3.2 Consider $n + 1$ distinct nodes in $I = [a, b]$ s.t. $a = x_0 < x_1 < \dots < x_n = b$ and the polynomial interpolant $\Pi_n f(x)$ of $f(x)$ in such nodes.

If $f \in C^{n+1}(I)$, for all $x \in I$, there exists $\xi = \xi(x) \in I$ s.t.:

$$E_n f(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi(x)) w_n(x), \text{ where } w_n(x) := \prod_{i=0}^n (x - x_i) \quad (2)$$

The error $e_n(f)$ is bounded by the error estimator $\tilde{e}_n(f)$ as:

$$e_n(f) \leq \tilde{e}_n(f) := \frac{1}{(n+1)!} \max_{x \in I} |f^{(n+1)}(x)| \max_{x \in I} |w_n(x)|.$$

Interpolation of a smooth function

Proposition 3.2 Consider $n + 1$ distinct nodes in $I = [a, b]$ s.t.

$a = x_0 < x_1 < \dots < x_n = b$ and the polynomial interpolant $\Pi_n f(x)$ of $f(x)$ in such nodes.

If $f \in C^{n+1}(I)$, for all $x \in I$, there exists $\xi = \xi(x) \in I$ s.t.:

$$E_n f(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi(x)) w_n(x), \text{ where } w_n(x) := \prod_{i=0}^n (x - x_i) \quad (2)$$

The error $e_n(f)$ is bounded by the error estimator $\tilde{e}_n(f)$ as:

$$e_n(f) \leq \tilde{e}_n(f) := \frac{1}{(n+1)!} \max_{x \in I} |f^{(n+1)}(x)| \max_{x \in I} |w_n(x)|.$$

Interpolation error of a smooth function

Proposition 3.3

Let x_0, x_1, \dots, x_n be $n + 1$ uniformly distributed interpolation nodes in $I = [a, b]$. Let $f \in C^{n+1}(I)$. Then

$$e_n(f) = \max_{x \in I} |f(x) - \Pi_n f(x)| \leq \frac{1}{4(n+1)} \left(\frac{b-a}{n} \right)^{n+1} \max_{x \in I} |f^{(n+1)}(x)|. \quad (4)$$

Note that the interpolation error depends on the $n + 1$ -th derivative of f .

Result obtained since

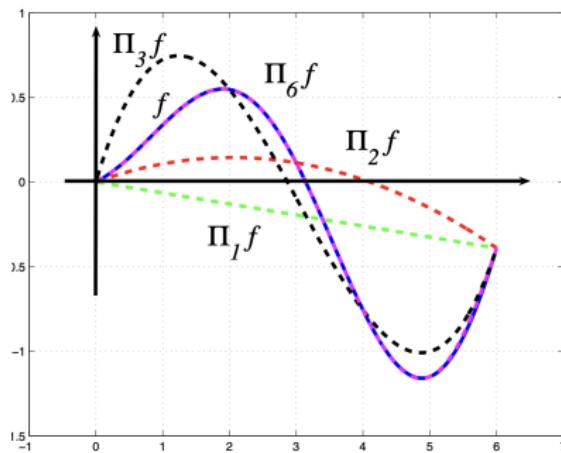
$$\max_{x \in I} |w_n(x)| \leq \frac{n!}{4} \left(\frac{b-a}{n} \right)^{n+1}.$$

Example 3

Interpolation polynomials $\Pi_i f$ for $i = 1, 2, 3, 6$ and

$$f(x) = \frac{x+1}{5} \sin(x),$$

with uniformly distributed nodes on $[0, 6]$.



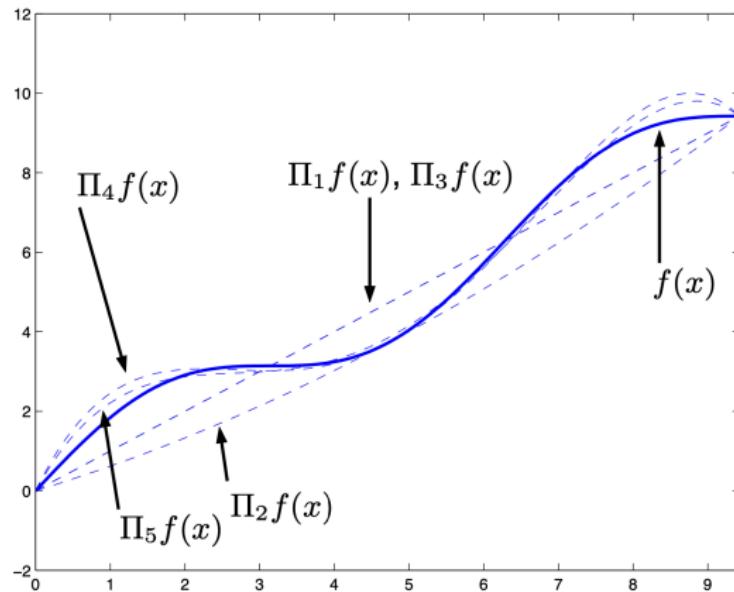
Examples in Matlab

Example 4. We want to interpolate the function $\sin(x) + x$ using $n = 2, 3, 4, 5, 6$ nodes. In MATLAB, you can use the command `polyfit` to calculate the coefficients of the interpolating polynomial and `polyval` to evaluate a polynomial with known coefficients at the set of nodes. Here are the commands in MATLAB:

```
■ f = @(x) sin(x) + x;
■ x_sample = [0:3*pi/100:3*pi];
■ plot(x_sample, f(x_sample), 'b'); hold on
■ for i = 2:6
■ x = linspace(0, 3*pi, i);
■ y = f(x);
■ c = polyfit(x, y, i - 1);
■ plot(x_sample, polyval(c, x_sample), 'b-')
■ end
```

Examples in Matlab

The following figure shows the 5 polynomials that we obtained.



From Proposition 3.3 we have:

$$e_n(f) = \max_{x \in I} |f(x) - \Pi_n f(x)| \leq \frac{1}{4(n+1)} \left(\frac{b-a}{n} \right)^{n+1} \max_{x \in I} |f^{(n+1)}(x)|. \quad (4)$$

Remark The fact that

$$\lim_{n \rightarrow \infty} \frac{1}{4(n+1)} \left(\frac{b-a}{n} \right)^{n+1} = 0$$

does not imply that $e_n(f)$ goes to zero as $n \rightarrow \infty$.

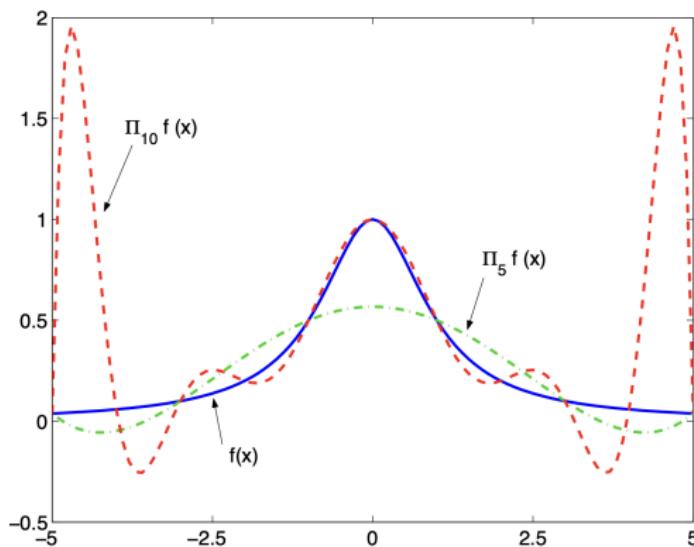
If the growth of $\max_{x \in I} |f^{(n+1)}(x)|$ is not compensated by the decrease in $\frac{1}{4(n+1)} \left(\frac{b-a}{n} \right)^{n+1}$, the error $e_n(f)$ “blows up” (e.g. Runge’s phenomenon)

Runge's phenomenon

Runge function Let

$$f(x) = \frac{1}{1+x^2}, \quad x \in [-5, 5].$$

Problem: The interpolants with **uniformly distributed nodes** exhibit increasing oscillations with increasing degree of interpolation.



Stability of polynomial interpolation

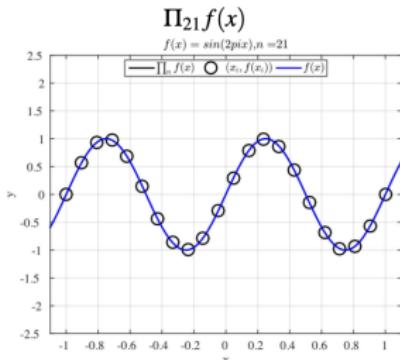
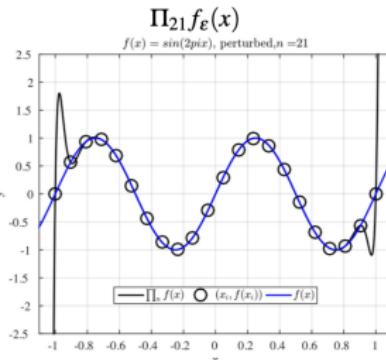
Problem: Lack of stability for equally spaced nodes

Let $f(x)$ and $f_\epsilon(x) = f(x) + \epsilon(x)$ be a small perturbation.

$$\max_{x \in I} |\Pi_n f(x) - \Pi_n f_\epsilon(x)| = \max_{x \in I} \left| \sum_{i=0}^n (f(x_i) - f_\epsilon(x_i)) \phi_i(x) \right| \leq \Lambda_n(x_0, \dots, x_n) \max_{0 \leq i \leq n} |f(x_i) - f_\epsilon(x_i)|,$$

$$\Lambda_n(x_0, \dots, x_n) = \max_{x \in I} \left| \sum_{i=0}^n \phi_i(x) \right| \approx \frac{2^n}{n \log(n)}$$

For large n , a small perturbation of data may lead to large changes in the interpolating polynomial.



$$|\epsilon(x)| < 10^{-3} \text{ for all } x \in I$$

Chebyshev–Gauss–Lobatto nodes

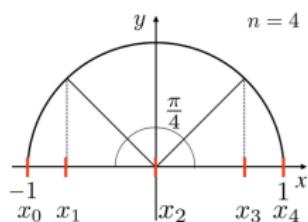
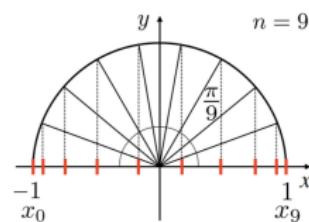
Definition 3.5

For a given $n \geq 1$, the $n + 1$ Chebyshev–Gauss–Lobatto nodes in the reference interval $\hat{I} = [-1, 1]$ are:

$$\hat{x}_i = -\cos\left(\frac{\pi i}{n}\right), \quad i = 0, \dots, n;$$

In general interval $I = [a, b]$, $n + 1$ Chebyshev–Gauss–Lobatto nodes are:

$$x_i = \frac{a+b}{2} + \frac{b-a}{2}\hat{x}_i, \quad i = 0, \dots, n.$$



Chebyshev–Gauss–Lobatto nodes

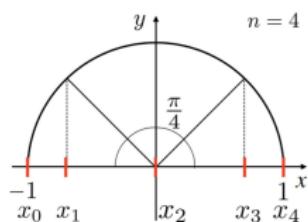
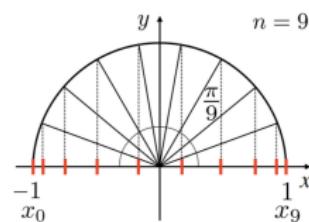
Definition 3.5

For a given $n \geq 1$, the $n + 1$ Chebyshev–Gauss–Lobatto nodes in the reference interval $\hat{I} = [-1, 1]$ are:

$$\hat{x}_i = -\cos\left(\frac{\pi i}{n}\right), \quad i = 0, \dots, n;$$

In general interval $I = [a, b]$, $n + 1$ Chebyshev–Gauss–Lobatto nodes are:

$$x_i = \frac{a+b}{2} + \frac{b-a}{2}\hat{x}_i, \quad i = 0, \dots, n.$$



Chebyshev–Gauss–Lobatto nodes

Proposition 3.5

If $f \in C^1(I)$, with the interval $I = [a, b]$ and the $n + 1$ Chebyshev–Gauss–Lobatto nodes are used in I , then

$$\lim_{n \rightarrow +\infty} \Pi_n f(x) = f(x) \quad \text{for all } x \in I.$$

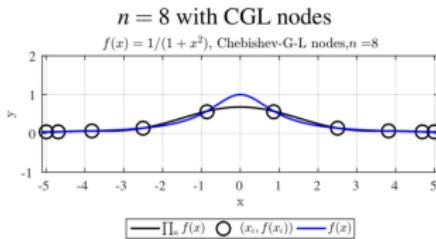
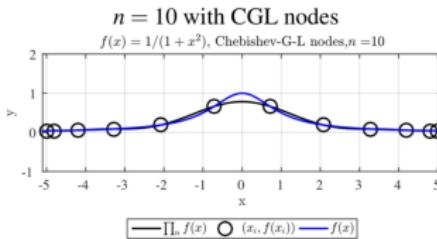
Moreover, if $f \in C^\infty(I)$, then

$$\lim_{n \rightarrow +\infty} e_n(f) = 0.$$

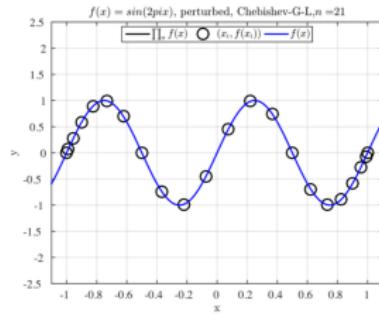
Furthermore, the stability issues are mitigated.

Chebyshev–Gauss–Lobatto nodes: example

Consider again the Runge function $f(x) = \frac{1}{1+x^2}$:



$\Pi_{21} f_\epsilon(x)$ with CGL nodes



Compute coefficients in polynomial interpolation

- Alternatively to using Lagrange basis, the coefficients $\{a_i\}_{i=0}^n$ of

$$\Pi_n(x) = \sum_{k=0}^n y_k \varphi_k(x) = a_0 + a_1 x + \cdots + a_n x^n.$$

can be computed directly as $a = (a_0, a_1, \dots, a_n)^T \in \mathbb{R}^{n+1}$ and enforcing the $n + 1$ interpolation constraints $P_n(x_i) = y_i$ for all $i = 0, \dots, n$; i.e., $P_n(x_i) = a_0 + a_1 x_i + \cdots + a_n x_i^n = y_i$ for all $i = 0, \dots, n$.

- This leads to solving the linear system:

$$B a = y$$

where $B \in \mathbb{R}^{(n+1) \times (n+1)}$ is the Vandermonde matrix, with $B_{ij} = (x_{i-1})^{j-1}$ for $i, j = 1, \dots, n + 1$, and $y = (y_0, y_1, \dots, y_n)^T \in \mathbb{R}^{n+1}$

- Unique solution iff $\det(B) \neq 0$, i.e. iff the $n + 1$ nodes $\{x_i\}_{i=0}^n$ are distinct
- Stability issues for relatively “small” values of n , due to large condition number of B .

Plan

Examples and motivation

Interpolation

Polynomial interpolation

Trigonometric interpolation

Piecewise polynomial interpolation

Least squares

Trigonometric interpolation

- The trigonometric interpolant uses trigonometric basis functions (also referred to as the discrete Fourier series)
- Used for periodic signals and functions
- We consider a periodic function $f : [0, 2\pi] \rightarrow \mathbb{C}$, i.e., s.t. $f(0) = f(2\pi)$

Trigonometric interpolation

Given $n + 1$ nodes $\{x_j\}_{j=0}^n$ s.t. $x_j = jh$ for $j = 0, \dots, n$ with $h = \frac{2\pi}{n}$, suppose n is even, $n = 2M$, $i^2 = -1$.

The trigonometric interpolant $I_t f(x)$ of the periodic function $f : [0, 2\pi] \rightarrow \mathbb{C}$ is

$$I_t f(x) = \frac{a_0}{2} + \sum_{k=1}^M (a_k \cos(kx) + b_k \sin(kx))$$

Use Euler's formula $e^{ikx} = \cos(kx) + i\sin(kx)$ to write

$$I_t f(x) = \sum_{k=-M}^M c_k e^{ikx}, \quad a_k = c_k + c_{-k}, \quad b_k = i(c_k - c_{-k})$$

By imposing interpolation conditions $I_t f(x_j) = f(x_j)$ for all $j = 0, \dots, n$, we find

$$c_k = \frac{1}{n+1} \sum_{j=0}^n f(x_j) e^{-ikjh}, \quad h = 2\pi/n$$

Trigonometric interpolation

Given $n + 1$ nodes $\{x_j\}_{j=0}^n$ s.t. $x_j = jh$ for $j = 0, \dots, n$ with $h = \frac{2\pi}{n}$, suppose n is even, $n = 2M$, $i^2 = -1$.

The trigonometric interpolant $I_t f(x)$ of the periodic function $f : [0, 2\pi] \rightarrow \mathbb{C}$ is

$$I_t f(x) = \frac{a_0}{2} + \sum_{k=1}^M (a_k \cos(kx) + b_k \sin(kx))$$

Use Euler's formula $e^{ikx} = \cos(kx) + i\sin(kx)$ to write

$$I_t f(x) = \sum_{k=-M}^M c_k e^{ikx}, \quad a_k = c_k + c_{-k}, \quad b_k = i(c_k - c_{-k})$$

By imposing interpolation conditions $I_t f(x_j) = f(x_j)$ for all $j = 0, \dots, n$, we find

$$c_k = \frac{1}{n+1} \sum_{j=0}^n f(x_j) e^{-ikjh}, \quad h = 2\pi/n$$

Trigonometric interpolation: remarks

- The trigonometric interpolant $I_t f(x)$ interpolates $f(x)$ at nodes $\{x_j\}_{j=0}^n$,

$$I_t f(x_j) = f(x_j) \text{ for all } j = 0, \dots, n.$$

- Similar construction if n is odd (see lecture notes)
- Computation of coefficients $\{c_k\}_{k=0}^n$ requires $O(n^2)$ flops
- Using the Fast Fourier Transform (FFT) reduces the cost to $O(n \log n)$ flops.

Plan

Examples and motivation

Interpolation

Polynomial interpolation

Trigonometric interpolation

Piecewise polynomial interpolation

Interpolation by spline functions

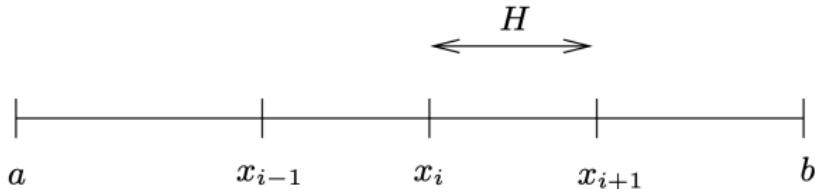
Least squares

Piecewise linear interpolation

(Sect. 3.2.3)

Let $x_0 = a < x_1 < \dots < x_N = b$ be a distribution of nodes that divide the interval $I = [a, b]$ into subintervals $I_i = [x_i, x_{i+1}]$, $i = 0, n$. Let H be the characteristic size of the intervals:

$$H = \max_{i=0, \dots, n} (x_{i+1} - x_i).$$



The piecewise linear interpolating polynomial $\Pi_1^H(x)$ is a piecewise polynomial of degree 1 such that $\Pi_1^H(x)|_{I_i} \in \mathbb{P}_1$ for all $i = 0, \dots, n - 1$, with:

$$\Pi_1^H(x) = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x - x_i) \quad \text{for all } i = 0, \dots, n - 1.$$

Piecewise linear interpolation

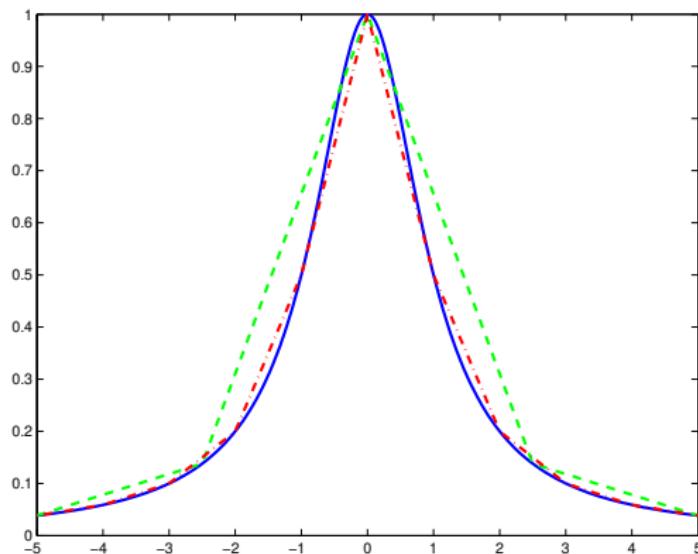
Let $x_0 = a < x_1 < \cdots < x_N = b$ be a distribution of nodes that divide the interval $I = [a, b]$ into subintervals $I_i = [x_i, x_{i+1}]$, $i = 0, n$. Let $f \in C^0(I)$ be known.

On each sub-interval I_i , we interpolate $f|_{I_i}$ by a polynomial of degree 1. The obtained interpolating function is called *piecewise linear interpolation polynomial* of f and is noted $\Pi_1^H f(x)$.

$$\Pi_1^H f(x) = f(x_i) + \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} (x - x_i) \quad \text{for } x \in I_i.$$

Runge with piecewise linear interpolation

Piecewise linear interpolation for $f(x) = \frac{1}{1+x^2}$, $x \in [-5, 5]$



The figure shows the polynomial $\Pi_1^{H_1} f$ and $\Pi_1^{H_2} f$ for $H_1 = 2.5$ and $H_2 = 1.0$.

Runge with piecewise linear interpolation

The commands in Matlab for this interpolation:

```
>> f = @(x) 1./(1+x.^2);
>> H1 = 2.5; H2=1.0;
>> x1 = [-5:H1:5]; x2 = [-5:H2:5];
>> y1 = f (x1); y2 = f(x2);
>> x_plot = [-5:.1:5];
>> y1_plot = interp1(x1,y1,x_plot);
>> y2_plot = interp1(x2,y2,x_plot);
>> plot(x_plot, f(x_plot)); hold on;
>> plot(x_plot, y1_plot,'r'); plot(x_plot, y2_plot,'g');
```

Theorem (Prop. 3.6)

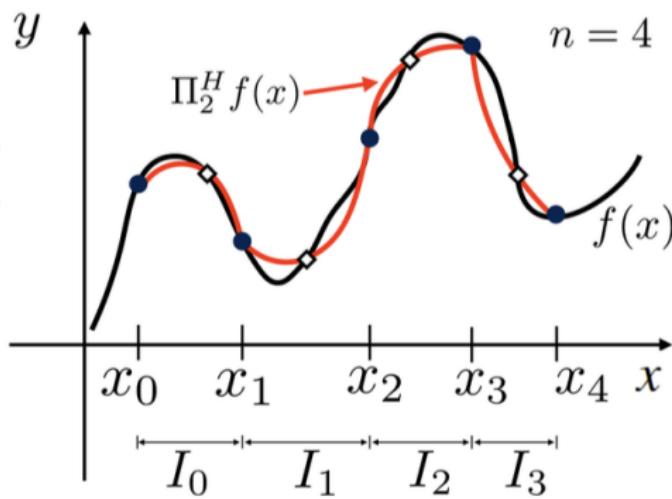
If $f \in C^2(I)$, ($I = [x_0, x_N]$) then

$$e_1^H(f) := \max_{x \in I} |f(x) - \Pi_1^H f(x)| \leq \frac{H^2}{8} \max_{x \in I} |f''(x)|,$$

for which the error converges to zero with order 2 in H (quadratically)

Piecewise quadratic polynomials with higher degree

Define the piecewise quadratic polynomial $\Pi_2^H(x)$ as $\Pi_2^H(x)|_{I_i} \in \mathbb{P}_2$ for all the subintervals I_i of I from $i = 0, \dots, n - 1$; it interpolates at the nodes and at intermediate points (e.g. mid-points of the sub-interval).
If $f \in C^0(I)$ is known, then we use the notation $\Pi_2^H f(x)$.



Piecewise interpolating polynomials

Define the piecewise interpolating polynomial of degree $r \geq 1$, $\Pi_r^H(x)$, as $\Pi_r^H(x)|_{I_i} \in \mathbb{P}_r$ for all $i = 0, \dots, n - 1$ (or $\Pi_r^H f(x)$ if $f \in C^0(I)$ is known).

Theorem ((Prop. 3.7))

If $f \in C^{r+1}(I)$, then the error $e_r^H(f) := \max_{x \in I} |f(x) - \Pi_r^H f(x)|$ associated with the piecewise interpolating polynomial of degree $r \geq 1$, $\Pi_r^H f(x)$, can be bounded by the error estimator $\tilde{e}_r^H(f)$ as:

$$e_r^H(f) \leq \tilde{e}_r^H(f) := C_r H^{r+1} \max_{x \in I} |f^{(r+1)}(x)|,$$

with C_r a positive constant, for which the error converges to zero with order $r + 1$ in H .

Remark 3.7 Piecewise interpolating polynomials $\Pi_r^H f(x)$ of any degree $r \geq 1$ are only C^0 -continuous across the subintervals (internal nodes).

Piecewise interpolating polynomials

Define the piecewise interpolating polynomial of degree $r \geq 1$, $\Pi_r^H(x)$, as $\Pi_r^H(x)|_{I_i} \in \mathbb{P}_r$ for all $i = 0, \dots, n - 1$ (or $\Pi_r^H f(x)$ if $f \in C^0(I)$ is known).

Theorem ((Prop. 3.7))

If $f \in C^{r+1}(I)$, then the error $e_r^H(f) := \max_{x \in I} |f(x) - \Pi_r^H f(x)|$ associated with the piecewise interpolating polynomial of degree $r \geq 1$, $\Pi_r^H f(x)$, can be bounded by the error estimator $\tilde{e}_r^H(f)$ as:

$$e_r^H(f) \leq \tilde{e}_r^H(f) := C_r H^{r+1} \max_{x \in I} |f^{(r+1)}(x)|,$$

with C_r a positive constant, for which the error converges to zero with order $r + 1$ in H .

Remark 3.7 Piecewise interpolating polynomials $\Pi_r^H f(x)$ of any degree $r \geq 1$ are only C^0 -continuous across the subintervals (internal nodes).

Runge with piecewise linear interpolation (contd)

We estimate the interpolation error when f is the Runge function

$$\frac{1}{1+x^2}$$

on the interval $[-5, 5]$. We take K sub-intervals with $K = 20, 40, 80, 160$ and we estimate the interpolation error $|f(x) - \Pi_1^H f(x)|$ on a fine grid

```
>> f=@(x) 1./(1+x.^2);
>> K=[20 40 80 160]; H=10./K;
>> x_fine = [-5:0.001:5];
>> f_fine = f(x_fine);
>> for i=1:4
    x = [-5:H(i):5]; y = f(x);
    y_fine = interp1(x,y,x_fine);
    err1(i) = max(abs(f_fine - y_fine));
end
>> loglog(H,err1);
```

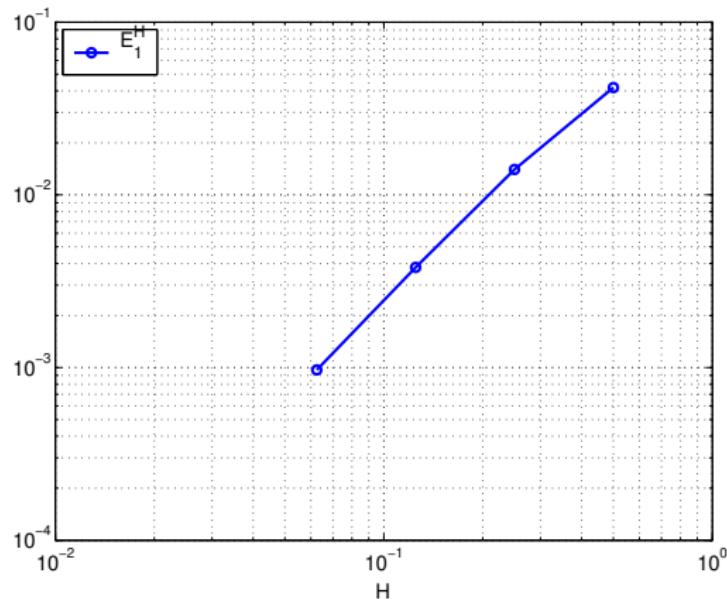
Runge with piecewise linear interpolation (contd)

The following figure shows (in logarithmic scale) the error according to the size $H = 10/K$ of sub-intervalles. We see that the error $\max_{x \in I} |e_1^H f(x)|$ for piecewise linear interpolation behaves like CH^2 : the result is in agreement with Prop. 3.6. In addition, if we calculate the relations $\max_{x \in I} |e_1^H f(x)| / H^2$, we can estimate the constant C :

```
>> err1./H.^2
ans =
0.16734 0.22465 0.24330 0.24829
```

Runge with piecewise linear interpolation (contd)

The interpolation error is quadratic in $H = 10/K$ (in the graph, E_1^H displays the error e_1^H from our formulas)



Interpolation by spline functions

(Chapt. 3.2.4 of the book)

Let $a = x_0 < x_1 < \dots < x_n = b$ be the points that divide the interval $I = [a, b]$ into disjoint intervals $I_i = [x_i, x_{i+1}]$.

Definition

A function s_3 is called a interpolating cubic spline of f if it satisfies:

1. $s_3(x)|_{I_i} \in \mathbb{P}_3$ for all $i = 0, \dots, n-1$, \mathbb{P}_3 is the set of polynomials of degree 3,
2. $s_3(x_i) = f(x_i)$ for all $i = 0, \dots, n$,
3. $s_3 \in C^2([a, b])$.

Interpolation by spline functions

- Let $s_3(x)|_{I_i} = a_{0,i} + a_{1,i}x + a_{2,i}x^2 + a_{3,i}x^3$ for $i = 0$ to $n - 1$
- Determine $4n$ coefficients $\{a_{j,i}\}$, $j = 0, \dots, 3$, $i = 0, \dots, n - 1$
- We have to verify the following conditions ($s_3(x_i^-)$ means the one-sided limit (from the right) of s_3 in the point x_i and $s_3(x_i^+)$ means the one-sided limit (from the left)) :

$$s_3(x_i^-) = f(x_i) \quad \text{for all } 1 \leq i \leq n - 1,$$

$$s_3(x_i^+) = f(x_i) \quad \text{for all } 1 \leq i \leq n - 1,$$

$$s_3(x_0) = f(x_0),$$

$$s_3(x_n) = f(x_n),$$

$$s_3'(x_i^-) = s_3'(x_i^+) \quad \text{for all } 1 \leq i \leq n - 1,$$

$$s_3''(x_i^-) = s_3''(x_i^+) \quad \text{for all } 1 \leq i \leq n - 1,$$

- That means $2(n - 1) + 2 + 2(n - 1) = 4n - 2$ conditions.

Interpolation by spline functions

We need to find $4n$ unknowns (which are the 4 coefficients of each of the n restrictions from $s_3|_{I_i}$, $i = 0, \dots, n-1$) which satisfy $4n - 2$ relations.

We add 2 additional conditions to check:

- If we assume

$$s_3''(x_0^+) = 0 \quad \text{and} \quad s_3''(x_n^-) = 0, \quad (3)$$

then the spline s_3 is completely determined and called a *natural interpolating cubic spline*.

- Another possibility is to assume the continuity of the third derivative in the nodes x_2 and x_{n-1} . That means:

$$s_3'''(x_2^-) = s_3'''(x_2^+) \quad \text{and} \quad s_3'''(x_{n-1}^-) = s_3'''(x_{n-1}^+). \quad (4)$$

The conditions (4) are called *not-a-knot*.

Interpolation by spline functions

We need to find $4n$ unknowns (which are the 4 coefficients of each of the n restrictions from $s_3|_{I_i}$, $i = 0, \dots, n-1$) which satisfy $4n - 2$ relations.

We add 2 additional conditions to check:

- If we assume

$$s_3''(x_0^+) = 0 \quad \text{and} \quad s_3''(x_n^-) = 0, \quad (3)$$

then the spline s_3 is completely determined and called a *natural interpolating cubic spline*.

- Another possibility is to assume the continuity of the third derivative in the nodes x_2 and x_{n-1} . That means:

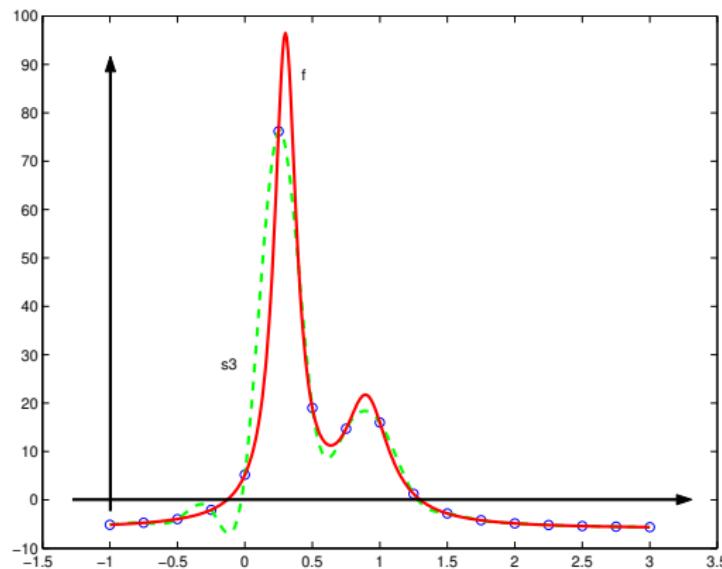
$$s_3'''(x_2^-) = s_3'''(x_2^+) \quad \text{and} \quad s_3'''(x_{n-1}^-) = s_3'''(x_{n-1}^+). \quad (4)$$

The conditions (4) are called *not-a-knot*.

Example natural interpolating cubic spline

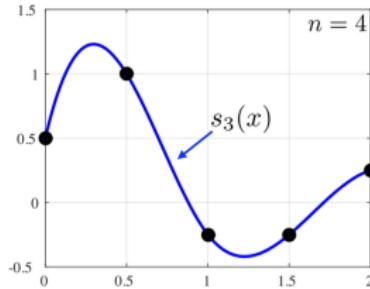
A natural interpolating cubic spline of a function

$$f(x) = \frac{1}{(x - 0.3)^2 + 0.01} + \frac{1}{(x - 0.9)^2 + 0.04} - 6, \text{ (nodes equidistributed)}$$
$$x_j = -1 + j/4, j = 0, \dots, 16$$



Example not-a-knot interpolating cubic spline

- MATLAB command `spline` considers not-a-knot interpolating cubic splines
- The cubic spline $s_3(x)$ interpolates the data at the $n + 1 = 5$ nodes $\{x_i\}_{i=0}^4$ and is C^2 -continuous across each internal node $\{x_i\}_{i=1}^3$.



Error estimates

Theorem (Prop. 3.8)

Consider $n + 1$ distinct nodes $\{x_i\}_{i=0}^n$ in the interval $I = [x_0, x_n]$, n subintervals $I_i = [x_i, x_{i+1}]$, and $H := \max_{i=0, \dots, n-1} |I_i|$.

If $f \in C^4(I)$ and $s_3(x)$ is its natural interpolating cubic spline at the nodes, then:

$$\max_{x \in I} \left| f^{(k)}(x) - s_3^{(k)}(x) \right| \leq C_k H^{4-k} \max_{x \in I} \left| f^{(4)}(x) \right| \quad \text{for } k = 0, 1, 2,$$

and

$$\max_{x \in I \setminus \{x_1, \dots, x_{n-1}\}} \left| f^{(3)}(x) - s_3^{(3)}(x) \right| \leq C_3 H \max_{x \in I} \left| f^{(4)}(x) \right|,$$

with $C_k > 0$ positive constants, for which the convergence order of the error is $4 - k$ in H , depending on the order of derivation $k = 0, 1, 2, 3$.

Error estimates

Theorem (Prop. 3.8)

Consider $n + 1$ distinct nodes $\{x_i\}_{i=0}^n$ in the interval $I = [x_0, x_n]$, n subintervals $I_i = [x_i, x_{i+1}]$, and $H := \max_{i=0, \dots, n-1} |I_i|$.

If $f \in C^4(I)$ and $s_3(x)$ is its natural interpolating cubic spline at the nodes, then:

$$\max_{x \in I} \left| f^{(k)}(x) - s_3^{(k)}(x) \right| \leq C_k H^{4-k} \max_{x \in I} \left| f^{(4)}(x) \right| \quad \text{for } k = 0, 1, 2,$$

and

$$\max_{x \in I \setminus \{x_1, \dots, x_{n-1}\}} \left| f^{(3)}(x) - s_3^{(3)}(x) \right| \leq C_3 H \max_{x \in I} \left| f^{(4)}(x) \right|,$$

with $C_k > 0$ positive constants, for which the convergence order of the error is $4 - k$ in H , depending on the order of derivation $k = 0, 1, 2, 3$.

Plan

Examples and motivation

Interpolation

Polynomial interpolation

Trigonometric interpolation

Piecewise polynomial interpolation

Least squares

Approximation by the least squares method

(Chapt. 3.3 of the book)

Suppose we have $n + 1$ points x_0, x_1, \dots, x_n and $n + 1$ values y_0, y_1, \dots, y_n . We have seen that if n is large, the interpolating polynomial may show large oscillations

Instead of interpolating the values, it is possible to define a polynomial of degree $m < n$ that approximates the data “at best”

Least squares method

Definition

We call *least squares polynomial approximation of degree $m \geq 0$* the polynomial $\tilde{f}_m(x)$ of degree m such that

$$\sum_{i=0}^n (y_i - \tilde{f}_m(x_i))^2 \leq \sum_{i=0}^n (y_i - p_m(x_i))^2 \quad \forall p_m(x) \in \mathbb{P}_m$$

Remark

When $y_i = f(x_i)$ (f is a continuous function) then \tilde{f}_m is called *the approximation of f in the least squares sense*.

Least squares method

Definition

We call *least squares polynomial approximation of degree $m \geq 0$* the polynomial $\tilde{f}_m(x)$ of degree m such that

$$\sum_{i=0}^n (y_i - \tilde{f}_m(x_i))^2 \leq \sum_{i=0}^n (y_i - p_m(x_i))^2 \quad \forall p_m(x) \in \mathbb{P}_m$$

Remark

When $y_i = f(x_i)$ (f is a continuous function) then \tilde{f}_m is called *the approximation of f in the least squares sense*.

Remark

If $m = n$ and the nodes are distinct, then $\tilde{f}_m(x) = \Pi_m f(x)$ is the interpolating polynomial of degree m .

- Remember we use the same command in Matlab polyfit as for Lagrange interpolation.
- In general $m \ll n$ and $\tilde{f}_m(x)$ does not interpolate the data.

Least squares method

In other words, the least squares polynomial approximation is the polynomial of degree m that minimizes the distance to the data.

Let note $\tilde{f}_m(x) = a_0 + a_1x + a_2x^2 + \dots + a_mx^m$ and define the function

$$\Phi(b_0, b_1, \dots, b_m) = \sum_{i=0}^n |y_i - (b_0 + b_1x_i + b_2x_i^2 + \dots + b_mx_i^m)|^2$$

Least squares method

The least-squares method consists in determining the coefficients vector $\mathbf{a} = (a_0, \dots, a_m)^T$ of the polynomial $\tilde{f}_m(x)$ of degree m such that:

$$\phi(\mathbf{a}) = \min_{\mathbf{b} \in \mathbb{R}^{m+1}} \phi(\mathbf{b}).$$

Since ϕ is differentiable, the previous minimization problem is equivalent to solving the following differential problem:

find $\mathbf{a} \in \mathbb{R}^{m+1}$ such that

$$\frac{\partial \phi}{\partial b_j}(\mathbf{a}) = 0 \quad \text{for all } j = 0, \dots, m. \quad (5)$$

Finding the coefficients

We can write for each $k = 0, \dots, m$,

$$\begin{aligned}\frac{\partial \Phi}{\partial a_k} &= -2 \sum_{i=0}^n x_i^k [y_i - (a_0 + \dots + a_m x_i^m)] \\ &= -2 \left[\sum_{i=0}^n x_i^k y_i - \left(a_0 \sum_{i=0}^n x_i^k + a_1 \sum_{i=0}^n x_i^{k+1} + \dots + a_m \sum_{i=0}^n x_i^{k+m} \right) \right]\end{aligned}$$

We obtain the linear system with the unknowns a_0, \dots, a_m :

$$\left\{ \begin{array}{lclclcl} a_0(n+1) & + & a_1 \sum_{i=0}^n x_i & + & \dots & + & a_m \sum_{i=0}^n x_i^m = \sum_{i=0}^n y_i \\ a_0 \sum_{i=0}^n x_i & + & a_1 \sum_{i=0}^n x_i^2 & + & \dots & + & a_m \sum_{i=0}^n x_i^{m+1} = \sum_{i=0}^n y_i x_i \\ \vdots & & & & & & \vdots \\ a_0 \sum_{i=0}^n x_i^m & + & a_1 \sum_{i=0}^n x_i^{m+1} & + & \dots & + & a_m \sum_{i=0}^n x_i^{2m} = \sum_{i=0}^n y_i x_i^m \end{array} \right.$$

Finding the coefficients

We can write for each $k = 0, \dots, m$,

$$\begin{aligned}\frac{\partial \Phi}{\partial a_k} &= -2 \sum_{i=0}^n x_i^k [y_i - (a_0 + \dots + a_m x_i^m)] \\ &= -2 \left[\sum_{i=0}^n x_i^k y_i - \left(a_0 \sum_{i=0}^n x_i^k + a_1 \sum_{i=0}^n x_i^{k+1} + \dots + a_m \sum_{i=0}^n x_i^{k+m} \right) \right]\end{aligned}$$

We obtain the linear system with the unknowns a_0, \dots, a_m :

$$\left\{ \begin{array}{lclclcl} a_0(n+1) & + & a_1 \sum_{i=0}^n x_i & + & \dots & + & a_m \sum_{i=0}^n x_i^m = \sum_{i=0}^n y_i \\ a_0 \sum_{i=0}^n x_i & + & a_1 \sum_{i=0}^n x_i^2 & + & \dots & + & a_m \sum_{i=0}^n x_i^{m+1} = \sum_{i=0}^n y_i x_i \\ \vdots & & & & & & \vdots \\ a_0 \sum_{i=0}^n x_i^m & + & a_1 \sum_{i=0}^n x_i^{m+1} & + & \dots & + & a_m \sum_{i=0}^n x_i^{2m} = \sum_{i=0}^n y_i x_i^m \end{array} \right.$$

Least squares method

We obtain the linear system $A\mathbf{a} = \mathbf{q}$, where $A \in \mathbb{R}^{(m+1) \times (m+1)}$ and $\mathbf{a} = (a_0, \dots, a_m)^T$,

$$A = \begin{pmatrix} n+1 & \dots & \sum_{i=0}^n x_i^m \\ \vdots & & \vdots \\ \sum_{i=0}^n x_i^m & \dots & \sum_{i=0}^n x_i^{2m} \end{pmatrix} \quad \text{et} \quad \mathbf{q} = \begin{pmatrix} \sum_{i=0}^n y_i \\ \vdots \\ \sum_{i=0}^n y_i x_i^m \end{pmatrix} \quad (6)$$

For $m = 1$, we obtain the *regression line* $\tilde{f}_1(x) = a_0 + a_1 x$ where $\{a_0, a_1\}$ are solutions of the linear system:

$$\begin{pmatrix} n+1 & \sum_{i=0}^n x_i \\ \sum_{i=0}^n x_i & \sum_{i=0}^n x_i^2 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} \sum_{i=0}^n y_i \\ \sum_{i=0}^n y_i x_i \end{pmatrix} \quad (7)$$

Normal equations

Ideally, for $\tilde{f}_m(x) = a_0 + a_1x + a_2x^2 + \dots$ we would like to impose $\tilde{f}_m(x_i) = y_i$ for $i = 0, \dots, n$.

This can be written as a system with unknowns a_k , $k = 0, \dots, m$: $B\mathbf{a} = \mathbf{y}$, where B is a matrix of dimension $(n + 1) \times (m + 1)$

$$B = \begin{pmatrix} 1 & x_0 & \dots & x_0^m \\ 1 & x_1 & \dots & x_1^m \\ \vdots & & & \vdots \\ 1 & x_n & \dots & x_n^m \end{pmatrix}$$

Since $m < n$, the system is overdetermined. The solution to (5) is equivalent to the square system (*system of normal equations*)

$$B^T B \mathbf{a} = B^T \mathbf{y}, \quad A = B^T B, \quad \mathbf{q} = B^T \mathbf{y}$$

Example regression line

Example Let $n = 2$ and $m = 1$, nodes $x_0 = 1, x_1 = 3, x_2 = 4$ with values $y_0 = 0, y_1 = 2, y_2 = 7$. We want to compute the (regression line), i.e., the the least squares polynomial approximation of degree 1, $\tilde{f}_1(x) = a_0 + a_1x$.

We set $\Phi(a_0, a_1) = \sum_{i=0}^2 [y_i - (a_0 + a_1 x_i)]^2$ and impose $\frac{\partial \Phi}{\partial a_0} = 0$ and $\frac{\partial \Phi}{\partial a_1} = 0$:

$$\begin{aligned}\frac{\partial \Phi}{\partial a_0} &= -2 \sum_{i=0}^2 [y_i - (a_0 + a_1 x_i)] = -2 \left(\sum_{i=0}^2 y_i - 3a_0 - a_1 \sum_{i=0}^2 x_i \right) \\ &= -2(9 - 3a_0 - 8a_1) \\ \frac{\partial \Phi}{\partial a_1} &= -2 \sum_{i=0}^2 x_i [y_i - (a_0 + a_1 x_i)] = -2 \left(\sum_{i=0}^2 x_i y_i - a_0 \sum_{i=0}^2 x_i - a_1 \sum_{i=0}^2 x_i^2 \right) \\ &= -2(34 - 8a_0 - 26a_1)\end{aligned}$$

Hence the coefficients a_0 and a_1 are the solution of the system

$$\begin{cases} 3a_0 + 8a_1 = 9 \\ 8a_0 + 26a_1 = 34 \end{cases}$$

Examples

Example 6 We have 8 measures (σ - ϵ):

```
>> sigma = [0.00 0.06 0.14 0.25 0.31 0.47 0.50 0.70];  
>> epsilon = [0.00 0.08 0.14 0.20 0.22 0.26 0.27 0.29];
```

We want to extrapolate the value of ϵ for $\sigma = 0.4$. We consider two ways:

- compute the interpolating polynomial Π_7 of degree 7
- compute the least squares polynomial approximation of degree 1

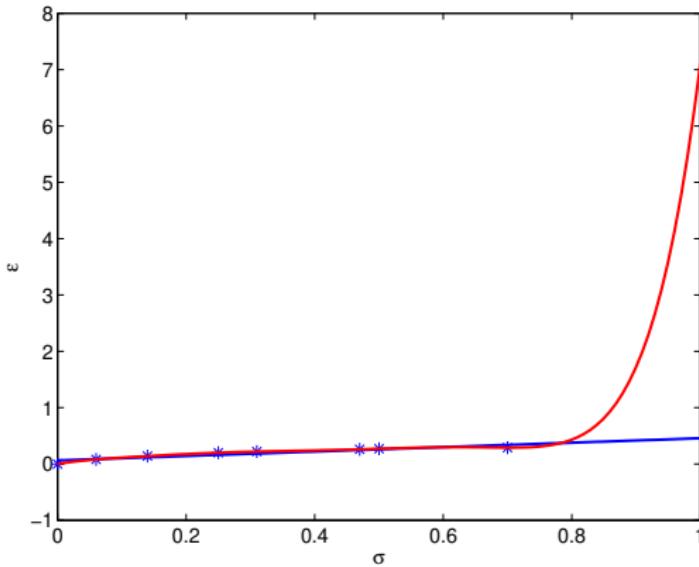
On peut utiliser les commandes suivantes:

```
>> plot(sigma, epsilon, '*'); hold on; % plotting the known values  
>> sigma_sample = linspace(0,1.0,100);  
>> p7 = polyfit(sigma, epsilon, 7);  
>> pol = polyval(p7, sigma_sample); % interpolating polynomial  
>> plot(sigma_sample, pol, 'r');  
>> p1 = polyfit(sigma, epsilon, 1);  
>> pol_mc = polyval(p1, sigma_sample); % least square  
>> plot(sigma_sample, pol_mc, 'g'); hold off;
```

Examples

Example 6 (contd)

- the interpolating polynomial Π_7 of degree 7 is in red
- the least squares polynomial approximation of degree 1 is in blue



For $\sigma > 0.7$, the behavior of the two polynomials are very different.

Examples

Example 6 (contd): In particular, for $\sigma = 0.9$ the values of $\epsilon(\sigma)$ extrapolated with the two methods are

```
>> polyval(p7, 0.9)  
ans =  
1.7221
```

```
>> polyval(p1, 0.9)  
ans =  
0.4173
```

- The value obtained by Π_7 (172.21%) is unrealistic
- On the contrary, the value obtained with the regression line is more appropriate to compute the value at $\sigma = 0.9$.

Examples: swiss population

Example 1 (from last lecture): Starting from the population at the 20th century decades, we extrapolate the Swiss population this year. We use a least square polynomial approximation of degree 2

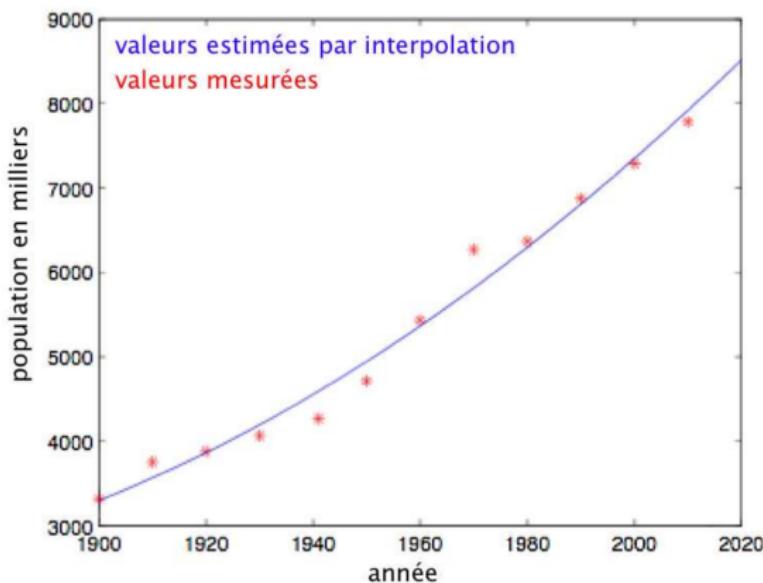
```
>> year = [1900, 1910, 1920, 1930, 1941, 1950, ...
           1960, 1970, 1980, 1990, 2000];
>> population = [3315, 3753, 3880, 4066, 4266, 4715, ...
                  5429, 6270, 6366, 6874, 7288];
>> p2 = polyfit(year, population, 2);
>> year_sample = [1900:2:2010];
>> vp2 = polyval(p2, year_sample);
>> plot(year, population, '*r', ...
        year_sample, vp2, 'b');
```


year	1900	1910	1920	1930	1941	1950
population	3315	3753	3880	4066	4266	4715
year	1960	1970	1980	1990	2000	2010
population	5429	6270	6366	6874	7288	7783

Examples: swiss population

The polynomial of degree two (parabola) which approximates the data by the method of least squares is:

$$p(x) = 0.15x^2 - 549.9x + 501600$$



Processing of polynomials

In Matlab, there are specific commands for doing calculations with polynomials. Let x be a vector of abscissas, y be a vector of ordinates and p (respectively p_i) be the vector of coefficients of a polynomial $P(x)$ (respectively P_i); then, we have following commands:

command	action
<code>y=polyval(p,x)</code>	$y = \text{values of } P(x)$
<code>p=polyfit(x,y,n)</code>	$p = \text{coefficients of the interpolating polynomial } \Pi_n$
<code>z=roots(p)</code>	$z = \text{zeros of } P \text{ such that } P(z) = 0$
<code>p=conv(p₁,p₂)</code>	$p = \text{coefficients of the polynomial } P_1 P_2$
<code>[q,r]=deconv(p₁,p₂)</code>	$q = \text{coefficients of } Q, r = \text{coefficients of } R$ such that $P_1 = QP_2 + R$
<code>y=polyderiv(p)</code>	$y = \text{coefficients of } P'(x)$
<code>y=polyinteg(p)</code>	$y = \text{coefficients of } \int P(x) \, dx$

Remarks

- Least squares approximation is not limited to polynomials
- They can be done with trigonometric, exponentials, logarithmic
- Interpolation and least squares approximation can be generalized to 2D, 3D, higher dimensions.