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Solutions — Approximation of functions and data
Solution II (MATLAB)

a) We execute the following commands:

f = @(x) sin( x ); a = 0; b =3 x pi;
n.vect =1 : 7; % vector containing all the degrees of desired polynomials
x_values = linspace( a, b, 1001 );
f_values = f( x_values );
for n = n_vect % for all the degrees in n_vect

x_nodes = linspace( a, b, n + 1 );

y-nodes = f( x_nodes );

P = polyfit( x_-nodes, y-nodes, n );

P_values = polyval( P, x_values );

figure( n );

plot ( x-values, P_values, '-k',

x_values, f_values, '--k', x_nodes, y_nodes, 'xk' )

legend( '\Pi_n £(x)', '£(x)', '(x.i,y.i)");

end

We obtain the results reported in Figure 1 n = 2,3,5, and 6. We observe the convergence
of the interpolating polynomials IT, f(z) to f(x) for increasing values of n. For n = 3, we
observe that the data points are aligned on a horizontal line, so that II3f(z) = ¢ € R; more
specifically, we obtain that II3f(x) = 0.

b) We compute the error as follows:

f = Q@(x) sin( x ); a = 0; b =3 x pi;
n.vect =1 : 7; % vector containing all the degrees of desired polynomials
x_values = linspace( a, b, 1001 );
f_ values = f( x_-values );
err = [ 1; % initialization of the vector containing the true errors
for n = n_vect
x_nodes = linspace( a, b, n + 1 );
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Figure 1: Interpolating polynomials IT,, f (x) of the function f(x) = sin(x) at uniformly spaced nodes
in I =[0,3n] for n =2,3,5, and 6.




y-nodes = f( x_nodes );

P = polyfit( x_-nodes, y-nodes, n );

P_values = polyval( P, x_values );

err = [ err, max( abs( P_values - f_values ) ) 1; % append errors to err
end
err
% err =
% 1.0000 1.5925 1.0000 0.6363 0.4228 0.1301 0.0895
plot ( n.vect, err, '-ko' );

As we can observe from Figure 2 (left), the error e, (f) decreases when n increases.

Error e,(f) for Lagr. polynomial interp. vs. n Error e,(f) and estimated error é,(f) vs. n
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Figure 2: Errors e, (f) vs. n for the interpolating polynomials IT,, f(x) of the function f(z) = sin(z)
(left) and comparison with the error estimator e, (f) (right).

c) We observe that max ¢y ‘f(”+1)(ac)| =1, since fM(x) = cos(z), fP(z) = —sin(z), fO)(z) =

. ~ _ 1 o
—cos(x), ... . As a consequence, the error estimator reads e, (f) = m (bT“)n+ , which is
monotonically decreasing when n increases. We plot in Figure 2 (right) the error estimator

€n(f) by means of the following commands:

err_estimated = [ ];
for n = n_vect

df max = 1; % for all n and x \in I=[0,3 xpi]

err_estimated = [ err_estimated,

1/ (4% (n+1))*((b-a)/n)"(n+ 1) x dfmax ];

end
err_estimated
$ err_estimated =
% 11.1033 8.7205 6.0881 3.6310 1.8689 0.8427 0.3375
plot ( n_vect, err, '-ko', n_vect, err_estimated, '--ks' );

)

We verify that e, (f) < ey (f) for all n. Since lim,_o €,(f) = 0, we have that lim, . en(f) =
0, i.e. the polynomial I, f(z) converges to f(z) as n increases, for all x € I.

Solution III (Theoretical)




a) The interpolating polynomial of degree n for f(z) is IL,f(xz) = >.p_, f(zk) pr(x), where

or(x) = [y, 2k % are the Lagrange characteristic functions and z; are distinct nodes.

For n = 2, we calculate ¢ (z) for k =0,1,2 as:

r—x1 T—2X 5
wo(x) = ! 2 =22 - S +1,
Tro— T1 o — T2 2

r—Tg T—T 4 8
p1(x) = - 2 = —22? + oz,
r1 — Ty 1 — X9 3 3
(2) T—To T—T1 1, 1
x) = = -z — =
v2 Tro — o T2 — X1 3 6

By observing that f(zo) = —2, f(z1) = —&, and f(z2) = 2, we obtain Il f(z) = 32>+ z — 2.

b) In this case, we have po(z) = %3:2 - %x +1, p1(2) = —22 + 22, and po(x) = %:BQ - %:c By
observing that f(xg) = —2, f(z1) =0, and f(x2) = 2, we obtain Ily f(z) = 2z — 2 which is a
polynomial of degree 1. The result is due to the fact that the data points {(x;, f(z;))}i, are
aligned on a straight line.

c) It is sufficient to observe that f(z) is polynomial of degree 3 to conclude that I3 f(x) = f(x).

Solution IV (MATLAB)

a) We execute the following commands to compare the interpolating polynomials I, f(z) with
f(z) in Figure 3:

f=0Q(x) 1 ./ (1+ x.72); a = -5; b = 5;
nvect = [ 2 4 8 12 1;
x_values = linspace( a, b, 1001 );
f values = f( x_.values );
for n = n_vect
x_nodes = linspace( a, b, n + 1 );
y-nodes = f( x_nodes );
P = polyfit( x_.nodes, y-nodes, n );
P_values = polyval( P, x_values );
figure( n );
plot ( x_-values, P_values, '-k',
x_-values, f_values, '—--k', x_nodes, y-nodes, 'xk' );
legend ( '\Pi,n f(x)', "f£(x)', "(x_i,y-1i)");
end

We observe that oscillations of the polynomials II,, f(z) appear at the endpoints of the interval
I for “large” n, thus highlighting the so-called Runge phenomenon; the amplitude of these
oscillations increases with n.

b) We plot the error e, (f) vs. n in Figure 4 with the following commands:

err = [ ];

for n = n_vect
x_nodes = linspace( a, b, n + 1 );
y-nodes = f( x_nodes );
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Figure 3: Interpolating polynomials II,, f(z) of the function f(z) = ﬁ at uniformly spaced nodes
in I =[-5,5] for n =2,4,8, and 12.




Figure 4: Errors e,(f) vs. n for interpolating polynomials I, f(z) of the function f(x) =

P = polyfit( x_.nodes, y_-nodes, n );

P_values = polyval( P, x_-values );
err = [ err, max( abs( P_.values - f_values ) ) 1;
end
err
% err =
% 0.6462 0.4384 1.0452 3.6630
figure; plot( n.-vect, err, '-ko' );

Error e,(f) for Lagr. polynomial interp. vs. n

1

1122 at

uniformly spaced nodes in I = [-5, 5].

As already observed in point a), we note that the error e, (f) increases for increasing n.

We repeat point a) by using the Chebyshev-Gauss-Lobatto nodes, and we denote the corre-
sponding interpolating polynomials by II¢ f(z). In MATLAB, we use the following commands
to obtain the results in Figure 5:

for n = n_vect
x_nodes.c = (a+b)/2 + (b-a)/2 = ( —cos( pi * [ 0 :n 1 / n) );
y-nodes_c = f( x_nodes_.c );
P_.c = polyfit( x-nodes.c, y-nodes.c, n );
P_c_.values = polyval( P_c, x_values );
figure( n + 100);
plot ( x-values, P_c.values, '-k',
x_values, f_values, '--k', x_nodes._c, y.nodes.c, 'xk' );
legend( ’$\prod,n f(x)s', '"Sf(x)$', '"S(x_.i,y-1)S$" );
end

We observe that the interpolating polynomials II¢ f(z) converge to f(x) for increasing values
of n. In Figure 6 we compare the interpolating polynomials II§ f(z) and IIg f(z) with f(x).

By repeating point b) for the Chebyshev-Gauss-Lobatto nodes, we obtain that the error e ( f)
associated to II¢ f(z) decreases for increasing values of n (see Figure 7). We use the following
MATLAB commands:
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Figure 5: Interpolating polynomials I, f(x) of the function f(x) = ﬁ at the Chebyshev-Gauss-

Lobatto nodes in I = [—5,5] for n = 2,4, 8, and 12.
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Chebyshev-Gauss-Lobatto and uniformly spaced nodes in

Error ef(f) vs. n, Chebishev-G.-L. nodes

Figure 7: Errors €f(f) vs. n for interpolating polynomials IIS f(z) of the function f(z) = H% at

the Chebyshev-Gauss-Lobatto nodes in I = [—5,5]; n = 2,4,8, and 12.




err.c = [ 1;

for n = n_vect
x_nodes.c = (a+b)/2 + (b-a)/2 * ( —cos( pi *x [ 0 :n 1 / n) );
y-nodes_.c = f( x_nodes_c );
P_.c = polyfit( x-nodes.c, y-nodes.c, n );
P_values_.c = polyval( P_c, x_values );
err.c = [ err_c, max( abs( P_.values_.c - f_values ) ) 1;
end
err_c
% err_.c =
% 6.4623e-01 4.5998e-01 2.0468e-01 8.4396e-02
plot ( n.vect, err_c, '-ks' ) ;

J

The result is justified by the fact that the use of the Chebyshev-Gauss-Lobatto nodes ensures
that lim,,_,~ €5 (f) = 0 for f(z) € C®(I).

Solution V (Theoretical)

a)

In general, given a function f(z) € C"*1(I) with I = [a, b] and the corresponding interpolating
polynomial II,, f(x) at uniformly spaced nodes {x;}",, we have the following estimate for the

error ey (f) := maxger | f(x) — I, f(x)]:

—a n+1
) Sl = o () max 1@

sin (%), we obtain that fD(z) = %cos (%), @) = —%sin (2),
; as consequence, since I = [a, b] = [0, 1], we deduce that

Specifically, for f(
f(3)( = ——7 cos (

. By the previous result, we obtain that:
1
4(n +1)(3n)nt1’

Since lim,,—~ €, (f) = 0, we conclude that the error e, (f) tends to zero as n increases.

en(f) <en(f) =

We proceed by trial-and-error, evaluating e, (f) for n = 1,2,3,.... We obtain e;(f) = 1.3889-
1072, &(f) = 3.8580-107%, and, finally, €3(f) = 9.5260-107%. As a consequence, the minimum
number of equally spaced nodes in I necessary to ensure that e,(f) < 10™*isn+1 = 4.

The Chebyshev-Gauss-Lobatto nodes in I = [a, b] are determined by the formula

a+b b—a . . .
T; = 5 + T, where T; := — cos (ﬁl>’ fori=0,...,n
For n = 3, we have Ty = —1, 71 = —%, Ty = %, To = 1. Since a = 0 and b = 1, we obtain

1 3
320:0,1'1:1,.%'2:1,332:1.

Since the Chebyshev-Gauss-Lobatto nodes are not uniformly spaced in I, we consider the
following error estimate for the interpolating polynomials IT,, f (x):

enll) < &) = Ty e £V @) mae (o)

We observe that max,es [ws(z)| < 0.016 (from Figure 1 of the exercise sheet) and max,¢s [ f4) (2
31 from point a). We obtain that e3(f) < €s(f) = 8.2305- 107




