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Solutions – Approximation of functions and data

Solution II (MATLAB)

a) We execute the following commands:

�
f = @(x) sin( x ); a = 0; b = 3 * pi;
n vect = 1 : 7; % vector containing all the degrees of desired polynomials
x values = linspace( a, b, 1001 );
f values = f( x values );
for n = n vect % for all the degrees in n vect

x nodes = linspace( a, b, n + 1 );
y nodes = f( x nodes );
P = polyfit( x nodes, y nodes, n );
P values = polyval( P, x values );
figure( n );
plot( x values, P values, '−k', ...

x values, f values, '−−k', x nodes, y nodes, 'xk' );
legend( '\Pi n f(x)', 'f(x)', '(x i,y i)');

end� �
We obtain the results reported in Figure 1 n = 2, 3, 5, and 6. We observe the convergence
of the interpolating polynomials Πnf(x) to f(x) for increasing values of n. For n = 3, we
observe that the data points are aligned on a horizontal line, so that Π3f(x) = c ∈ R; more
specifically, we obtain that Π3f(x) = 0.

b) We compute the error as follows:

�
f = @(x) sin( x ); a = 0; b = 3 * pi;
n vect = 1 : 7; % vector containing all the degrees of desired polynomials
x values = linspace( a, b, 1001 );
f values = f( x values );
err = [ ]; % initialization of the vector containing the true errors
for n = n vect

x nodes = linspace( a, b, n + 1 );
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Figure 1: Interpolating polynomials Πnf(x) of the function f(x) = sin(x) at uniformly spaced nodes
in I = [0, 3π] for n = 2, 3, 5, and 6.
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y nodes = f( x nodes );
P = polyfit( x nodes, y nodes, n );
P values = polyval( P, x values );
err = [ err, max( abs( P values − f values ) ) ]; % append errors to err

end
err
% err =
% 1.0000 1.5925 1.0000 0.6363 0.4228 0.1301 0.0895
plot( n vect, err, '−ko' );� �
As we can observe from Figure 2 (left), the error en(f) decreases when n increases.
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Figure 2: Errors en(f) vs. n for the interpolating polynomials Πnf(x) of the function f(x) = sin(x)
(left) and comparison with the error estimator ẽn(f) (right).

c) We observe that maxx∈I
∣∣f (n+1)(x)

∣∣ = 1, since f (1)(x) = cos(x), f (2)(x) = − sin(x), f (3)(x) =

− cos(x), ... . As a consequence, the error estimator reads ẽn(f) =
1

4(n+1)

(
b−a
n

)n+1
, which is

monotonically decreasing when n increases. We plot in Figure 2 (right) the error estimator
ẽn(f) by means of the following commands:

�
err estimated = [ ];
for n = n vect

df max = 1; % for all n and x \in I=[0,3 *pi]
err estimated = [ err estimated, ...

1 / ( 4 * ( n + 1 ) ) * ( ( b − a ) / n )ˆ( n + 1 ) * df max ];
end
err estimated
% err estimated =
% 11.1033 8.7205 6.0881 3.6310 1.8689 0.8427 0.3375
plot( n vect, err, '−ko', n vect, err estimated, '−−ks' );� �
We verify that en(f) ≤ ẽn(f) for all n. Since limn→∞ ẽn(f) = 0, we have that limn→∞ en(f) =
0, i.e. the polynomial Πnf(x) converges to f(x) as n increases, for all x ∈ I.

Solution III (Theoretical)
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a) The interpolating polynomial of degree n for f(x) is Πnf(x) =
∑n

k=0 f(xk)φk(x), where
φk(x) :=

∏n
i=0, i ̸=k

x−xi
xk−xi

are the Lagrange characteristic functions and xi are distinct nodes.
For n = 2, we calculate φk(x) for k = 0, 1, 2 as:

φ0(x) =
x− x1
x0 − x1

x− x2
x0 − x2

= x2 − 5

2
x+ 1,

φ1(x) =
x− x0
x1 − x0

x− x2
x1 − x2

= −4

3
x2 +

8

3
x,

φ2(x) =
x− x0
x2 − x0

x− x1
x2 − x1

=
1

3
x2 − 1

6
x.

By observing that f(x0) = −2, f(x1) = −11
8 , and f(x2) = 2, we obtain Π2f(x) =

1
2x

2+x− 2.

b) In this case, we have φ0(x) =
1
2x

2 − 3
2x + 1, φ1(x) = −x2 + 2x, and φ2(x) =

1
2x

2 − 1
2x. By

observing that f(x0) = −2, f(x1) = 0, and f(x2) = 2, we obtain Π2f(x) = 2x− 2 which is a
polynomial of degree 1. The result is due to the fact that the data points {(xi, f(xi))}ni=0 are
aligned on a straight line.

c) It is sufficient to observe that f(x) is polynomial of degree 3 to conclude that Π3f(x) ≡ f(x).

Solution IV (MATLAB)

a) We execute the following commands to compare the interpolating polynomials Πnf(x) with
f(x) in Figure 3:

�
f = @(x) 1 ./ ( 1 + x.ˆ2 ); a = −5; b = 5;
n vect = [ 2 4 8 12 ];
x values = linspace( a, b, 1001 );
f values = f( x values );
for n = n vect

x nodes = linspace( a, b, n + 1 );
y nodes = f( x nodes );
P = polyfit( x nodes, y nodes, n );
P values = polyval( P, x values );
figure( n );
plot( x values, P values, '−k', ...

x values, f values, '−−k', x nodes, y nodes, 'xk' );
legend( '\Pi n f(x)', 'f(x)', '(x i,y i)');

end� �
We observe that oscillations of the polynomials Πnf(x) appear at the endpoints of the interval
I for “large” n, thus highlighting the so-called Runge phenomenon; the amplitude of these
oscillations increases with n.

b) We plot the error en(f) vs. n in Figure 4 with the following commands:

�
err = [ ];
for n = n vect

x nodes = linspace( a, b, n + 1 );
y nodes = f( x nodes );
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Figure 3: Interpolating polynomials Πnf(x) of the function f(x) = 1
1+x2 at uniformly spaced nodes

in I = [−5, 5] for n = 2, 4, 8, and 12.
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P = polyfit( x nodes, y nodes, n );
P values = polyval( P, x values );
err = [ err, max( abs( P values − f values ) ) ];

end
err
% err =
% 0.6462 0.4384 1.0452 3.6630
figure; plot( n vect, err, '−ko' );� �

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

n

e
n
(f

)

E rror en(f ) for Lagr. polynomial interp. vs. n

Figure 4: Errors en(f) vs. n for interpolating polynomials Πnf(x) of the function f(x) = 1
1+x2 at

uniformly spaced nodes in I = [−5, 5].

As already observed in point a), we note that the error en(f) increases for increasing n.

c) We repeat point a) by using the Chebyshev-Gauss-Lobatto nodes, and we denote the corre-
sponding interpolating polynomials by Πc

nf(x). In MATLAB, we use the following commands
to obtain the results in Figure 5:

�
for n = n vect

x nodes c = (a+b)/2 + (b−a)/2 * ( − cos( pi * [ 0 : n ] / n ) );
y nodes c = f( x nodes c );
P c = polyfit( x nodes c, y nodes c, n );
P c values = polyval( P c, x values );
figure( n + 100);
plot( x values, P c values, '−k', ...

x values, f values, '−−k', x nodes c, y nodes c, 'xk' );
legend( '$\prod n f(x)$', '$f(x)$', '$(x i,y i)$' );

end� �
We observe that the interpolating polynomials Πc

nf(x) converge to f(x) for increasing values
of n. In Figure 6 we compare the interpolating polynomials Πc

8f(x) and Π8f(x) with f(x).

d) By repeating point b) for the Chebyshev-Gauss-Lobatto nodes, we obtain that the error ecn(f)
associated to Πc

nf(x) decreases for increasing values of n (see Figure 7). We use the following
MATLAB commands:
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Figure 5: Interpolating polynomials Πnf(x) of the function f(x) = 1
1+x2 at the Chebyshev-Gauss-

Lobatto nodes in I = [−5, 5] for n = 2, 4, 8, and 12.
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Figure 6: Interpolating polynomials Πc
8f(x) and Π8f(x) of the function f(x) = 1

1+x2 at the
Chebyshev-Gauss-Lobatto and uniformly spaced nodes in I = [−5, 5], respectively.
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Figure 7: Errors ecn(f) vs. n for interpolating polynomials Πc
nf(x) of the function f(x) = 1

1+x2 at
the Chebyshev-Gauss-Lobatto nodes in I = [−5, 5]; n = 2, 4, 8, and 12.
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�
err c = [ ];
for n = n vect

x nodes c = (a+b)/2 + (b−a)/2 * ( − cos( pi * [ 0 : n ] / n ) );
y nodes c = f( x nodes c );
P c = polyfit( x nodes c, y nodes c, n );
P values c = polyval( P c, x values );
err c = [ err c, max( abs( P values c − f values ) ) ];

end
err c
% err c =
% 6.4623e−01 4.5998e−01 2.0468e−01 8.4396e−02
plot( n vect, err c, '−ks' );� �
The result is justified by the fact that the use of the Chebyshev-Gauss-Lobatto nodes ensures
that limn→∞ ecn(f) = 0 for f(x) ∈ C∞(I).

Solution V (Theoretical)

a) In general, given a function f(x) ∈ Cn+1(I) with I = [a, b] and the corresponding interpolating
polynomial Πnf(x) at uniformly spaced nodes {xi}ni=0, we have the following estimate for the
error en(f) := maxx∈I |f(x)−Πnf(x)|:

en(f) ≤ ẽn(f) =
1

4(n+ 1)

(
b− a

n

)n+1

max
x∈I

∣∣f (n+1)(x)
∣∣.

Specifically, for f(x) = sin
(
x
3

)
, we obtain that f (1)(x) = 1

3 cos
(
x
3

)
, f (2)(x) = −1

9 sin
(
x
3

)
,

f (3)(x) = − 1
27 cos

(
x
3

)
, ...; as consequence, since I = [a, b] = [0, 1], we deduce that

maxx∈I
∣∣f (n+1)(x)

∣∣ ≤ 1
3n+1 . By the previous result, we obtain that:

en(f) ≤ ẽn(f) =
1

4(n+ 1)(3n)n+1
.

Since limn→∞ ẽn(f) = 0, we conclude that the error en(f) tends to zero as n increases.

b) We proceed by trial-and-error, evaluating ẽn(f) for n = 1, 2, 3, . . .. We obtain ẽ1(f) = 1.3889 ·
10−2, ẽ2(f) = 3.8580·10−4, and, finally, ẽ3(f) = 9.5260·10−6. As a consequence, the minimum
number of equally spaced nodes in I necessary to ensure that en(f) < 10−4 is n+ 1 = 4.

c) The Chebyshev-Gauss-Lobatto nodes in I = [a, b] are determined by the formula

xi =
a+ b

2
+

b− a

2
x̂i, where x̂i := − cos

(π
n
i
)
, for i = 0, . . . , n.

For n = 3, we have x̂0 = −1, x̂1 = −1
2 , x̂2 = 1

2 , x̂2 = 1. Since a = 0 and b = 1, we obtain
x0 = 0, x1 =

1
4 , x2 =

3
4 , x2 = 1.

d) Since the Chebyshev-Gauss-Lobatto nodes are not uniformly spaced in I, we consider the
following error estimate for the interpolating polynomials Πnf(x):

en(f) ≤ ẽn(f) =
1

(n+ 1)!
max
x∈I

∣∣f (n+1)(x)
∣∣ max

x∈I
|ωn(x)|.

We observe that maxx∈I |ω3(x)| < 0.016 (from Figure 1 of the exercise sheet) and maxx∈I
∣∣f (4)(x)

∣∣ ≤
1
34

from point a). We obtain that e3(f) ≤ ẽ3(f) = 8.2305 · 10−6.
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