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Solutions — Nonlinear equations: fixed point iterations

Solution I (MATLAB)

a)

We consider the following implementation of the function fixed_point_iterations.m:

function [xvect, nit] = fixed_point_iterations( phi, x0, tol, nmax )
FIXED_POINT_ITERATIONS Finds a fixed point of a scalar function.
[XVECT] = FIXED_POINT_ITERATIONS (PHI,XO0,TOL,NMAX) finds a fixed point of
the iteration function PHI using the fixed point iterations method and
returns a vector XVECT containing the successive approximations of the
fixed point (iterates).
PHI accepts a real scalar input x and returns a real scalar value;
PHI can also be an inline object. X0 is the initial guess.
TOL is the tolerance on error allowed and NMAX the maximum number of
iterations.
The stopping criterion based on the difference of successive iterates is used.
If the search fails a warning message is displayed.

[XVECT,NIT] = FIXED_POINT_ITERATIONS (PHI,X0,TOL,NMAX) also returns the
number of iterations NIT.
Note: the length of the vectors is equal to ( NIT + 1 ).
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nit = 0;

xvect (nit+1) = x0;

err_estim = tol + 1;

while ( err_estim > tol && nit < nmax )
xvect (nit+2) = phi( xvect (nit+l) );
err_estim = abs( xvect (nit+2) - xvect (nit+l) ); % diff. successive iterates
nit = nit + 1;

end

if err_estim > tol
warning ([ 'Fixed point iter. stopped without converging to the desired
'tolerance, the maximum number of iterations was reached.']);

end




Lreturn J

We consider two choices of the initial guess 2(*) = —7/4 and z(©) = /5. For 2(©) = —7/4 we
obtain z(ke) = 0.7390854 . ... For z(9) = 7/5 we get z(ke) = 0.7390847 .. ..

b) We obtain that k. = 30 and e(*e) = 3.3407 - 107 for the case z(®) = —x/4. Instead, for
20 = 7/5, we obtain k. = 32 and e(k) = 3.4167-10~7. We use the following MATLAB

commands:

phi = @(x) cos(x);

tol = le-6;

kmax = 1500;

alpha = 0.739085133215161;

x0 = -pi/4;

[xvect, kc] = fixed._point_iterations( phi, x0, tol, kmax );
errvect = abs( xvect - alpha );
kc, err = errvect ( end )

% kc =

% 30

$ err =

% 3.3407e-07

c) We plot the error in semi-logarithmic scale by means of the following MATLAB commands:

kvect = 0 : kc;
figure( 1 ); semilogy( kvect, errvect, '-ok' ); grid on; legend('xA{(O)}:*\pi/4');
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Figure 1: e vs k with (0 = —7/4.

The results for the case z(0) = —m/4 are depicted in Figure 1. We can observe graphically the

linear convergence of the fixed point iterations algorithm to « starting from the inital guess




2(©) = —7/4. Similar results can be obtained for the case 2(®) = 7/5.

Solution IT (Theoretical and MATLAB)

a) We recall that « is a fixed point of ¢(z) iff ¢(ar) = . From this, we can verify that as is indeed
a fixed point of ¢(x). Moreover, we verify that the iteration function ¢(z) is continuously
differentiable on I5 (in fact, ¢ € C°°(R)). Then, we recall the following results for the global
and local convergence of the fixed point iterations algorithm valid for the case of continuous
differentiable iteration functions.

Proposition 1 (global (Proposition 2.8 in the lecture notes)) If the iteration function
o(z) is such that ¢ € C*([a,b]), ¢(x) € [a,b] for all € [a,b], and |¢'(x)| < 1 for all x € [a,b],
then there exists a unique fized point a of ¢p(x) in the interval [a,b] and the fixed point itera-
tions algorithm is convergent to o (x*) — o for k — o) for all the initial values x(°) € [a,b];
moreover, the algorithm is at least linearly convergent to v (order 1), i.e.:

(k+1) _
T @

lim ~———— = ¢'(a).
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Proposition 2 (local, Ostrowski’s theorem (Proposition 2.10 in the lecture notes))
Let o be a fized point of the iteration function ¢(x). If ¢ € CY(1,), with I, a neighborhood of
a, and |¢' ()| < 1, then, for 2O sufficiently close to «, the fized point iterations algorithm is
convergent to « (:c(k) — « for k — o0); moreover, the algorithm is at least linearly convergent
to a (order 1), i.e.:

(k+1) _
lim % = (),

k—o00 l’(k) -

with the asymptotic convergence factor p = ¢'(«).

We plot ¢(x) and ¢'(z) for x € Iy in Figure 2. We verify the existence and uniqueness of the
fixed point ag € Iy = [ag, bo] = [7/2, 7] (¢(az2) = a2).

phi = @(x) x/2 + sin(x) - pi/6 + sqrt(3)/2;
dphi = @(x) 1/2 + cos(x);

a2 = pi/2; b2 = pi;

xv = linspace( a2, b2, 1001 );

figure( 1 ); plot( xv, phi( xv ), '-k', xv, xv, '--k' ); grid on

axis equal; axis([ a2 b2 a2 b2 1);

figure( 2 ); plot( xv, dphi( xv ), '-k', xv, -ones( 1, length( xv ) ),
'-—-k', xv, ones( 1, length( xv ) ), '—.k' ); axis([ a2 b2 -1.1 1.1 1);

alpha2 = 2.246005589297;
phi( alpha2 ) - alpha2

dphi ( alpha2 )
% ans =

; 1.0960e-12
; ans =

; -0.1251




28 ’

26 7

24 /

22 7

Figure 2: ¢(x) (left) and ¢'(z) (right) for x € I5.

We verify that ¢(z) € Iz (i.e. ag < ¢(x) < by) for all € Iy and that |¢'(x)| < 1 for all z € I.
By Proposition 1, the fixed point iterations algorithm is globally convergent to ao over Is.
The fixed point iterations are also locally convergent to « in the sense of Proposition 2, with
convergence order equal to one (linear convergence) and the asymptotic convergence factor

w=¢'(az) = —0.1251.

We consider two choices of the initial guess (%) = 7/2 and (9 = 7. For 20 = 7 /2:

phi = @(x) x/2 + sin(x) - pi/6 + sqrt(3)/2;
tol = 1le-6;

kmax = 1500;

alpha2 = 2.246005589297;

x0 = pi/2;

[x2vect, kc2] = fixed-point_iterations( phi, x0, tol, kmax );
err2vect = abs( x2vect - alpha2 );

kc2, err2 = err2vect( end )

% kc2 =

% 8

% err2 =

% 3.5940e-08

We obtain that k. = 8 and elke) = 3.5940 - 10~8. By repeating the calculation for z(®) = T,
we obtain k. = 8 and e(ke) = 1.8954 - 107%. We plot the errors e*) vs. k and the ratios a(¥)
vs k, for both z(®) = /2 and z(®) = 7. For instance, for z(9) = 7 /2:

k2vect = 0 : kc2;

figure( 1 ); semilogy( k2vect, err2vect, '-ok' );

ak2vect = ( x2vect( 2 : end ) - alpha2 ) ./ ( x2vect( 1 : end - 1 ) - alpha2 );
figure( 2 ); plot( k2vect( 1 : end - 1 ), ak2vect, '-ok' );

We obtain the results reported in Figure 3. We deduce the linear convergence of the fixed point
iterations algorithm to ay with the asymptotic convergence factor p = ¢'(az) = —0.1251. The
numerical results confirm the what was discussed in point a).
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Figure 3: ) (left) and a®) (right) vs k for ag, with (0 = 7/2 and 2(®) = x.

c) We repeat point a) for oy € I; by plotting ¢(z) and ¢/(z) for € I} = [a1,b1] = —[7/2,0] in

Figure 4. We verify the existence and uniqueness of the fixed point o € I; (¢(a1) = aq). In
the plot, we see that two of the hypotheses of Proposition 1 are violated, since there exists
x € [a1, b1] such that ¢(x) > by and ¢'(x) > 1. For these reasons, the global convergence to o
of the fixed point iterations algorithm is not guaranteed for all the choices of the initial value
() € I, and we need to study the local convergence properties of the method by means of
Proposition 2. However, we observe that the hypothesis on the derivative of ¢(z) at the fixed
point «; is not satisfied, since ¢'(ay) = 1. For this reason, Proposition 2 cannot be used and,
in general, we cannot guarantee the convergence of the fixed point iterations to «; even for
an initial value 2(©) sufficiently close to a.

Nevertheless, since the special case ¢'(a1) = 1 occurs, the convergence of the fixed point
iterations to a1 depends on the properties of the iteration function ¢(x) in a neighborhood
of a; and on the choice of z(¥). For example, we can deduce from Figure 4 (left) that the
algorithm converges to oy for (9 e [a1, 1], but diverges if 20 € (a1, by].
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Figure 4: ¢(x) (left) and ¢'(z) (right) for = € I4.

d) By repeating point b) for the fixed point «a;, we verify that, as expected, the fixed point

algorithm for 2(©) = —0.9 does not converge to a; (incidentally, for this choice of ), the
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algorithm converges to as). For £ = —1.1 the algorithm converges to a; in k. = 1473
iterations with the error e(*¢) = 1.5174 - 1073. We report in Figure 5 the errors ) and the
ratios a®) vs k for the latter case. We notice that the convergence order to a; is less than
linear and the ratio a(®) tends to 1 for large k. This justifies the slow convergence of the
algorithm.
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Figure 5: ) (left) and a® (right) vs k for ay, with 2(®) = —1.1.

Since ¢ € C!(I3), by using the Lagrange theorem (mean value theorem), there exists ¢(k)
between (%) and as such that £+t —ay = ¢(z®)) — d(an) = ¢’ (€F)) (2 — ay) for all k > 0.
We deduce that:

2D — ay| < max |¢ (z)]|z®) — ag|, for all k >0,
xz€ls
so that C' = maxgey, |¢/(x)|. From Figure 2 (right) or by using the MATLAB commands

below, we can deduce that C' = 1/2 (we can also use the expression of ¢'(z) = 1/2 + cos(z),
where x € Iy = [r/2, 7], which in turn implies |¢'(x)| < 1/2).

xv = linspace( a2, b2, 1001 );
dphi max_I2 = max( abs( dphi( xv ) ) )
% dphimax_I2 =

% 0.5000

From point e), we obtain by recursion that:
2% — ap] < ClatY —ay| < ... < CF|2® — ay], for all k> 0.

We seek the minimum number of iterations ky,;, for which we can guarantee an error |x(k”“’") —
az| smaller than the tolerance 2720 for all 2(0) € I>. To this aim, we observe that ]az(o) —ag| <
|I5|, for all as € I, and we solve the following inequality:

Ckmin|x(0) — a2| S Ckm”t|]-2‘ < tol.

Since C = 1/2, we need kpin > log(tol/|I2])/log C' = 20.6515, which means ki, = 21. Note
that, had as been known, we could have used the value max, o)y, \:L'(O) —ag| = T — ay instead
of |I3] in the previous formula. This yields ki, = 20.




g)

Since ¢ € C'(R), by using the Lagrange theorem as in point e), there exists £*) between z(*)
and a (o = oy or ag) such that 2+t — o = ¢/(60)(z*) — @) for all k > 0. By adding and
subtracting £(*) on the left hand side of the previous relation, we obtain:

1
S 1-¢/(EW)

For a = a, we have that ¢/ (€*)) ~ ¢/(as) = —0.1251, so that |2 —ay| ~ 0.8888|zk+1D) — ()|
for k — oco. Therefore, the stopping criterion based on the increment of successive approximate
zeros is satisfactory for the fixed point ay (the error is only slightly overestimated).

For a = o, we have that ¢/(€%)) =~ ¢/(a1) = 1, so that |2 — ay| ~ M|z*+D) — 2®)| with M
large (M — o0) for k — oo. Provided that the fixed point iterations algorithm converges to
the fixed point «aq, the stopping criterion based on the increment of successive approximate
zeros is not satisfactory for a1 and the error is largely underestimated.

We verify these results numerically with MATLAB. Starting from z(°) = /2 for the fixed point
g, we verify that the stopping criterion based on the difference of successive approximate

zeros is satisfactory and slightly overestimating the error. Indeed, as predicted, we obtain
elke=1) /|gke) — g(ke=1)| = M, = 0.8888 with the following command:

a—z® (z D — 28 for all k > 0.

M2 = err2vect( end — 1 ) / abs( x2vect( end ) - x2vect( end - 1 ) )
$ M2 =
% 0.8888

By repeating for #(?) = —1.1 for the fixed point o, we obtain e(ke=1) /|zke) — plke=1)| = pfy =
1520.4. We conclude that the stopping criterion is not satisfactory and the error is largely
underestimated by the difference of successive approximate zeros.

Solution III (Theoretical)

a)

We observe that f(z) € C°(I), with I = [0.02,0.2]. We can verify, also by using MATLAB,
that f(0.02) = —0.555... and f(0.2) = 0.563..., so that there is a change of sign in the
interval. We deduce that there exists at least one zero a € I. Moreover, the zero « is unique,
since the function f(z) is monotonically increasing in the interval (f’(z) > 0 over the interval),
as we can verify by plotting the function f(z) in MATLAB (Figure 6).

First, we need to verify that the zero a of f(z) is a fixed point of ¢ (z) and ¢2(z). We observe
that ¢1(a) = log(2 — 3y/a) = log(e®) = a (we deduce that 2 — 3\/a = e from f(a) = 0);
similarly, ¢o(a) = (2 —€*)?/9 = (2 — (2 — 3v/a))?/9 = a. As a consequence, both iteration
functions admit a fixed point a corresponding to the zero of the function f(x). Both iteration
functions ¢1, ¢2 are continuously differentiable over I. We plot them and their derivatives
¢ () = 3/(2y/x (3/x — 2)) and ¢h(x) = (2¢* (e* — 2))/9 in Figures 7 and 8, respectively.
We observe that iteration function ¢;(x) violates the hypotheses of Proposition 1 (there exist
values = € [0.02,0.2] such that ¢1(x) < 0.02 or ¢1(xz) > 0.2, and |¢}(z)| > 1). Moreover,
Proposition 2 cannot be used since |¢] («)| > 1. Specifically, the fixed point iterations algo-
rithm cannot converge to o for any z(9) # q, since |¢ ()] > 1.
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Figure 6: Function f(z) for x € I.
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Figure 7: Iteration function ¢;(z) (left) and its derivative ¢/ (x) (right) for z € I.

When considering ¢s(z), we observe that all the hypotheses of Proposition 1 are satisfied, so
that the fixed point iterations algorithm is globally convergent to a for all (9 e I = [0.02,0.2].
The algorithm is also locally and linearly convergent to o with the asymptotic convergence

factor ¢h(a) # 0.

For these reasons, we would select ¢2(z) as iteration function to find the zero a € I = [0.02,0.2]

of f(x).
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Figure 8: Iteration function ¢o(z) (left) and its derivative ¢f(x) (right) for z € I.

c¢) The first approximate zeros for ¢;(x) are (1) = 0.2846 and () = —0.9171. This clearly
highlights the divergence of the algorithm. For ¢, (z) we have (M =0.1000 and z? = 0.0890,
converging towards « ~ 0.0910. In MATLAB, e.g. for ¢1(z):

phil = @(x) log( 2 - 3 % sqgrt(x) );
x = 0.05;
for i =1 : 2
x = phil( x )
end

In Figures 9 and 10 we graphically highlight the first fixed points iterations for ¢;(x) and
¢2($)
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Figure 9: Fixed point iterations for ¢1(z) with 2(®) = 0.05.
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Solution IV (OPTIONAL, Theoretical)

a)

The k-th iteration of the Newton method corresponds to z#+1) = 2(®) — (2 )/ (2(*)), for
all k > 0, if f'(z®) #£ 0, for some initial guess z(°). If we introduce the iteration function
on(x) = x — f(x)/f (x), then the Newton method can be recast as a fixed point iterations
algorithm whose k-th iteration reads z(*t1) = ¢y ().

By setting f(z) = (x — a)™g(z) in a neighborhood of I, of «, with g(a) # 0, we obtain:
f'(@) = (z—a)"Hmg(z) + (v —a) ¢'(2)] and f"(z) = (z — @)™ ?[m (m — 1) g(x) + 2m(z —
a) g (z) + (r — @)? ¢"(z)]. Then, we observe that:

Srlw) =1 — [@? = f@) (@) . mg*(@) + (z = a)’[(g' () - g(z)g"(2)]
N f(z)? m? g?(z) + 2m(z — a)g(z)g'(x) + (z — a)*(¢'(2))*
For x = o we obtain:
Sl@) =1- =,

since g(a) # 0.

We recall Proposition 2 and the following result.

Proposition 3 (local) By assuming that the hypotheses of Proposition 2 are satisfied and
that, in addition, ¢ € C*(Iy) with ¢/ (o) = 0 and ¢"(a) # 0, then, for 2O sufficiently close
to «, the fized point iterations algorithm converges quadratically to v (order 2) and:

l'(k—H) —« 1

N C N Y
klggo (x(k) —«)? Qd) (a).

When considering the Newton method with ¢y (a) =1 —1/m, we obtain that the method is
at least linearly convergent to « in virtue of Proposition 2.

If the zero « is single (m = 1), then the hypotheses of Proposition 3 are satisfied and the
Newton method is quadratically convergent to « with the asymptotic convergence factor

= 1¢f(a) = 51},(( )), the result is obtained by observing that ¢/ (z) = [(f'(z))*f"(z) +
f@) f'(2) " (x)=2f (@) (f'(2))?]/(f'(2))?, f(a)=0and f'(a) # 0 for the zero a of multiplicity
m = 1. If the zero a is multiple (m > 1), then ¢’y (o) # 0 and Proposition 3 cannot be
used; therefore, we only expect linear convergence of the Newton method for the zero a of

multiplicity m > 1 according to what stated in Proposition 2.

The k-th iteration of the modified Newton method corresponds to z*+1) = z(*) —m f((*)) / f/((

for all k > 0, such that f’ (ac(k)) # 0, with m > 1. The iteration function corresponding to the
modified Newton method is ¢y (x) =z —mf(z)/f'(z). By proceeding similarly to point b),
we deduce that:

1
Py, (@) =1—m— =0, forallm>1.
m
As consequence, following point c¢) and Proposition 3, the modified Newton method converges

quadratically to the zero a of multiplicity m > 1, since, in general, ¢}y (a) # 0.
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e) Following Exercise 2, point g), we deduce that the stopping criterion on the increment of
successive approximate zeros is satisfactory for the Newton method only for the zeros « of
multiplicity m = 1. Indeed, for k£ — oo:

|2®) — a| ~ mlaEH) — gk,

since ¢y (£) ~ ¢/ (a) = 1 — 1/m in a neighborhood of a. For m > 1 the error is under-
estimated by the difference of the successive approximate zeros. for m = 100 the error is
underestimated by two orders of magnitude.

On the contrary, when using the modified Newton method, the criterion is always satisfactory,
since ¢y (a) = 0 and |2 — af ~ |z*+D — 2(0)| for k — oo, independently of m.
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