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Solutions – Nonlinear equations: fixed point iterations

Solution I (MATLAB)

a) We consider the following implementation of the function fixed point iterations.m:

�
function [xvect, nit] = fixed point iterations( phi, x0, tol, nmax )
% FIXED POINT ITERATIONS Finds a fixed point of a scalar function.
% [XVECT] = FIXED POINT ITERATIONS(PHI,X0,TOL,NMAX) finds a fixed point of
% the iteration function PHI using the fixed point iterations method and
% returns a vector XVECT containing the successive approximations of the
% fixed point (iterates).
% PHI accepts a real scalar input x and returns a real scalar value;
% PHI can also be an inline object. X0 is the initial guess.
% TOL is the tolerance on error allowed and NMAX the maximum number of
% iterations.
% The stopping criterion based on the difference of successive iterates is used.
% If the search fails a warning message is displayed.
%
% [XVECT,NIT] = FIXED POINT ITERATIONS(PHI,X0,TOL,NMAX) also returns the
% number of iterations NIT.
% Note: the length of the vectors is equal to ( NIT + 1 ).
%

nit = 0;
xvect(nit+1) = x0;
err estim = tol + 1;
while ( err estim ≥ tol && nit < nmax )

xvect(nit+2) = phi( xvect(nit+1) );
err estim = abs( xvect(nit+2) − xvect(nit+1) ); % diff. successive iterates
nit = nit + 1;

end

if err estim ≥ tol
warning(['Fixed point iter. stopped without converging to the desired '...

'tolerance, the maximum number of iterations was reached.']);
end
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return� �
We consider two choices of the initial guess x(0) = −π/4 and x(0) = π/5. For x(0) = −π/4 we
obtain x(kc) = 0.7390854 . . .. For x(0) = π/5 we get x(kc) = 0.7390847 . . ..

b) We obtain that kc = 30 and e(kc) = 3.3407 · 10−7 for the case x(0) = −π/4. Instead, for
x(0) = π/5, we obtain kc = 32 and e(kc) = 3.4167 · 10−7. We use the following MATLAB
commands:

�
phi = @(x) cos(x);
tol = 1e−6;
kmax = 1500;
alpha = 0.739085133215161;
x0 = −pi/4;
[xvect, kc] = fixed point iterations( phi, x0, tol, kmax );
errvect = abs( xvect − alpha );
kc, err = errvect( end )
% kc =
%
% 30
%
% err =
%
% 3.3407e−07� �

c) We plot the error in semi-logarithmic scale by means of the following MATLAB commands:

�
kvect = 0 : kc;
figure( 1 ); semilogy( kvect, errvect, '−ok' ); grid on; legend('xˆ{(0)}=−\pi/4');� �
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Figure 1: e(k) vs k with x(0) = −π/4.

The results for the case x(0) = −π/4 are depicted in Figure 1. We can observe graphically the
linear convergence of the fixed point iterations algorithm to α starting from the inital guess
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x(0) = −π/4. Similar results can be obtained for the case x(0) = π/5.

Solution II (Theoretical and MATLAB)

a) We recall that α is a fixed point of ϕ(x) iff ϕ(α) = α. From this, we can verify that α2 is indeed
a fixed point of ϕ(x). Moreover, we verify that the iteration function ϕ(x) is continuously
differentiable on I2 (in fact, ϕ ∈ C∞(R)). Then, we recall the following results for the global
and local convergence of the fixed point iterations algorithm valid for the case of continuous
differentiable iteration functions.

Proposition 1 (global (Proposition 2.8 in the lecture notes)) If the iteration function
ϕ(x) is such that ϕ ∈ C1([a, b]), ϕ(x) ∈ [a, b] for all x ∈ [a, b], and |ϕ′(x)| < 1 for all x ∈ [a, b],
then there exists a unique fixed point α of ϕ(x) in the interval [a, b] and the fixed point itera-
tions algorithm is convergent to α (x(k) → α for k → ∞) for all the initial values x(0) ∈ [a, b];
moreover, the algorithm is at least linearly convergent to α (order 1), i.e.:

lim
k→∞

x(k+1) − α

x(k) − α
= ϕ′(α).

Proposition 2 (local, Ostrowski’s theorem (Proposition 2.10 in the lecture notes))
Let α be a fixed point of the iteration function ϕ(x). If ϕ ∈ C1(Iα), with Iα a neighborhood of
α, and |ϕ′(α)| < 1, then, for x(0) sufficiently close to α, the fixed point iterations algorithm is
convergent to α (x(k) → α for k → ∞); moreover, the algorithm is at least linearly convergent
to α (order 1), i.e.:

lim
k→∞

x(k+1) − α

x(k) − α
= ϕ′(α),

with the asymptotic convergence factor µ = ϕ′(α).

We plot ϕ(x) and ϕ′(x) for x ∈ I2 in Figure 2. We verify the existence and uniqueness of the
fixed point α2 ∈ I2 = [a2, b2] = [π/2, π] (ϕ(α2) = α2).�
phi = @(x) x/2 + sin(x) − pi/6 + sqrt(3)/2;
dphi = @(x) 1/2 + cos(x);
a2 = pi/2; b2 = pi;
xv = linspace( a2, b2, 1001 );
figure( 1 ); plot( xv, phi( xv ), '−k', xv, xv, '−−k' ); grid on
axis equal; axis([ a2 b2 a2 b2 ]);
figure( 2 ); plot( xv, dphi( xv ), '−k', xv, −ones( 1, length( xv ) ), ...

'−−k', xv, ones( 1, length( xv ) ), '−.k' ); axis([ a2 b2 −1.1 1.1 ]);
alpha2 = 2.246005589297;
phi( alpha2 ) − alpha2
dphi( alpha2 )
% ans =
%
% 1.0960e−12
%
% ans =
%
% −0.1251� �
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Figure 2: ϕ(x) (left) and ϕ′(x) (right) for x ∈ I2.

We verify that ϕ(x) ∈ I2 (i.e. a2 ≤ ϕ(x) ≤ b2) for all x ∈ I2 and that |ϕ′(x)| < 1 for all x ∈ I2.
By Proposition 1, the fixed point iterations algorithm is globally convergent to α2 over I2.
The fixed point iterations are also locally convergent to α in the sense of Proposition 2, with
convergence order equal to one (linear convergence) and the asymptotic convergence factor
µ = ϕ′(α2) = −0.1251.

b) We consider two choices of the initial guess x(0) = π/2 and x(0) = π. For x(0) = π/2:

�
phi = @(x) x/2 + sin(x) − pi/6 + sqrt(3)/2;
tol = 1e−6;
kmax = 1500;
alpha2 = 2.246005589297;
x0 = pi/2;
[x2vect, kc2] = fixed point iterations( phi, x0, tol, kmax );
err2vect = abs( x2vect − alpha2 );
kc2, err2 = err2vect( end )
% kc2 =
%
% 8
%
% err2 =
%
% 3.5940e−08� �
We obtain that kc = 8 and e(kc) = 3.5940 · 10−8. By repeating the calculation for x(0) = π,
we obtain kc = 8 and e(kc) = 1.8954 · 10−8. We plot the errors e(k) vs. k and the ratios a(k)

vs k, for both x(0) = π/2 and x(0) = π. For instance, for x(0) = π/2:

�
k2vect = 0 : kc2;
figure( 1 ); semilogy( k2vect, err2vect, '−ok' );
ak2vect = ( x2vect( 2 : end ) − alpha2 ) ./ ( x2vect( 1 : end − 1 ) − alpha2 );
figure( 2 ); plot( k2vect( 1 : end − 1 ), ak2vect, '−ok' );� �
We obtain the results reported in Figure 3. We deduce the linear convergence of the fixed point
iterations algorithm to α2 with the asymptotic convergence factor µ = ϕ′(α2) = −0.1251. The
numerical results confirm the what was discussed in point a).
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Figure 3: e(k) (left) and a(k) (right) vs k for α2, with x(0) = π/2 and x(0) = π.

c) We repeat point a) for α1 ∈ I1 by plotting ϕ(x) and ϕ′(x) for x ∈ I1 = [a1, b1] = −[π/2, 0] in
Figure 4. We verify the existence and uniqueness of the fixed point α1 ∈ I1 (ϕ(α1) = α1). In
the plot, we see that two of the hypotheses of Proposition 1 are violated, since there exists
x ∈ [a1, b1] such that ϕ(x) > b1 and ϕ′(x) ≥ 1. For these reasons, the global convergence to α1

of the fixed point iterations algorithm is not guaranteed for all the choices of the initial value
x(0) ∈ I1 and we need to study the local convergence properties of the method by means of
Proposition 2. However, we observe that the hypothesis on the derivative of ϕ(x) at the fixed
point α1 is not satisfied, since ϕ′(α1) = 1. For this reason, Proposition 2 cannot be used and,
in general, we cannot guarantee the convergence of the fixed point iterations to α1 even for
an initial value x(0) sufficiently close to α1.

Nevertheless, since the special case ϕ′(α1) = 1 occurs, the convergence of the fixed point
iterations to α1 depends on the properties of the iteration function ϕ(x) in a neighborhood
of α1 and on the choice of x(0). For example, we can deduce from Figure 4 (left) that the
algorithm converges to α1 for x(0) ∈ [a1, α1], but diverges if x

(0) ∈ (α1, b1].
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Figure 4: ϕ(x) (left) and ϕ′(x) (right) for x ∈ I1.

d) By repeating point b) for the fixed point α1, we verify that, as expected, the fixed point
algorithm for x(0) = −0.9 does not converge to α1 (incidentally, for this choice of x(0), the
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algorithm converges to α2). For x(0) = −1.1 the algorithm converges to α1 in kc = 1473
iterations with the error e(kc) = 1.5174 · 10−3. We report in Figure 5 the errors e(k) and the
ratios a(k) vs k for the latter case. We notice that the convergence order to α1 is less than
linear and the ratio a(k) tends to 1 for large k. This justifies the slow convergence of the
algorithm.
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Figure 5: e(k) (left) and a(k) (right) vs k for α2, with x(0) = −1.1.

e) Since ϕ ∈ C1(I2), by using the Lagrange theorem (mean value theorem), there exists ξ(k)

between x(k) and α2 such that x(k+1)−α2 = ϕ(x(k))−ϕ(α2) = ϕ′(ξ(k))(x(k)−α2) for all k ≥ 0.
We deduce that:

|x(k+1) − α2| ≤ max
x∈I2

|ϕ′(x)||x(k) − α2|, for all k ≥ 0,

so that C = maxx∈I2 |ϕ′(x)|. From Figure 2 (right) or by using the MATLAB commands
below, we can deduce that C = 1/2 (we can also use the expression of ϕ′(x) = 1/2 + cos(x),
where x ∈ I2 = [π/2, π], which in turn implies |ϕ′(x)| ≤ 1/2).

�
xv = linspace( a2, b2, 1001 );
dphi max I2 = max( abs( dphi( xv ) ) )
% dphi max I2 =
%
% 0.5000� �

f) From point e), we obtain by recursion that:

|x(k) − α2| ≤ C|x(k−1) − α2| ≤ . . . ≤ Ck|x(0) − α2|, for all k ≥ 0.

We seek the minimum number of iterations kmin for which we can guarantee an error |x(kmin)−
α2| smaller than the tolerance 2−20 for all x(0) ∈ I2. To this aim, we observe that |x(0)−α2| ≤
|I2|, for all α2 ∈ I2, and we solve the following inequality:

Ckmin |x(0) − α2| ≤ Ckmin |I2| < tol.

Since C = 1/2, we need kmin > log(tol/|I2|)/ logC = 20.6515, which means kmin = 21. Note
that, had α2 been known, we could have used the value maxx(0)∈I2 |x

(0)−α2| = π−α2 instead
of |I2| in the previous formula. This yields kmin = 20.
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g) Since ϕ ∈ C1(R), by using the Lagrange theorem as in point e), there exists ξ(k) between x(k)

and α (α = α1 or α2) such that x(k+1) − α = ϕ′(ξ(k))(x(k) − α) for all k ≥ 0. By adding and
subtracting x(k) on the left hand side of the previous relation, we obtain:

α− x(k) =
1

1− ϕ′(ξ(k))
(x(k+1) − x(k)), for all k ≥ 0.

For α = α2, we have that ϕ
′(ξ(k)) ≃ ϕ′(α2) = −0.1251, so that |x(k)−α2| ≃ 0.8888|x(k+1)−x(k)|

for k → ∞. Therefore, the stopping criterion based on the increment of successive approximate
zeros is satisfactory for the fixed point α2 (the error is only slightly overestimated).

For α = α1, we have that ϕ
′(ξ(k)) ≃ ϕ′(α1) = 1, so that |x(k)−α1| ≃ M |x(k+1)−x(k)| with M

large (M → ∞) for k → ∞. Provided that the fixed point iterations algorithm converges to
the fixed point α1, the stopping criterion based on the increment of successive approximate
zeros is not satisfactory for α1 and the error is largely underestimated.

We verify these results numerically with MATLAB. Starting from x(0) = π/2 for the fixed point
α2, we verify that the stopping criterion based on the difference of successive approximate
zeros is satisfactory and slightly overestimating the error. Indeed, as predicted, we obtain
e(kc−1)/|x(kc) − x(kc−1)| = M2 = 0.8888 with the following command:

�
M2 = err2vect( end − 1 ) / abs( x2vect( end ) − x2vect( end − 1 ) )
% M2 =
%
% 0.8888� �
By repeating for x(0) = −1.1 for the fixed point α1, we obtain e(kc−1)/|x(kc)−x(kc−1)| = M1 =
1520.4. We conclude that the stopping criterion is not satisfactory and the error is largely
underestimated by the difference of successive approximate zeros.

Solution III (Theoretical)

a) We observe that f(x) ∈ C0(I), with I = [0.02, 0.2]. We can verify, also by using MATLAB,
that f(0.02) = −0.555 . . . and f(0.2) = 0.563 . . ., so that there is a change of sign in the
interval. We deduce that there exists at least one zero α ∈ I. Moreover, the zero α is unique,
since the function f(x) is monotonically increasing in the interval (f ′(x) > 0 over the interval),
as we can verify by plotting the function f(x) in MATLAB (Figure 6).

b) First, we need to verify that the zero α of f(x) is a fixed point of ϕ1(x) and ϕ2(x). We observe
that ϕ1(α) = log(2 − 3

√
α) = log(eα) = α (we deduce that 2 − 3

√
α = eα from f(α) = 0);

similarly, ϕ2(α) = (2 − eα)2/9 = (2 − (2 − 3
√
α))2/9 = α. As a consequence, both iteration

functions admit a fixed point α corresponding to the zero of the function f(x). Both iteration
functions ϕ1, ϕ2 are continuously differentiable over I. We plot them and their derivatives
ϕ′
1(x) = 3/(2

√
x (3

√
x− 2)) and ϕ′

2(x) = (2ex (ex − 2))/9 in Figures 7 and 8, respectively.

We observe that iteration function ϕ1(x) violates the hypotheses of Proposition 1 (there exist
values x ∈ [0.02, 0.2] such that ϕ1(x) < 0.02 or ϕ1(x) > 0.2, and |ϕ′

1(x)| > 1). Moreover,
Proposition 2 cannot be used since |ϕ′

1(α)| > 1. Specifically, the fixed point iterations algo-
rithm cannot converge to α for any x(0) ̸= α, since |ϕ′

1(α)| > 1.
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Figure 6: Function f(x) for x ∈ I.
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Figure 7: Iteration function ϕ1(x) (left) and its derivative ϕ′
1(x) (right) for x ∈ I.

When considering ϕ2(x), we observe that all the hypotheses of Proposition 1 are satisfied, so
that the fixed point iterations algorithm is globally convergent to α for all x(0) ∈ I = [0.02, 0.2].
The algorithm is also locally and linearly convergent to α with the asymptotic convergence
factor ϕ′

2(α) ̸= 0.

For these reasons, we would select ϕ2(x) as iteration function to find the zero α ∈ I = [0.02, 0.2]
of f(x).
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Figure 8: Iteration function ϕ2(x) (left) and its derivative ϕ′
2(x) (right) for x ∈ I.

c) The first approximate zeros for ϕ1(x) are x(1) = 0.2846 and x(2) = −0.9171. This clearly
highlights the divergence of the algorithm. For ϕ2(x) we have x

(1) = 0.1000 and x(2) = 0.0890,
converging towards α ≃ 0.0910. In MATLAB, e.g. for ϕ1(x):�
phi1 = @(x) log( 2 − 3 * sqrt(x) );
x = 0.05;
for i = 1 : 2

x = phi1( x )
end� �
In Figures 9 and 10 we graphically highlight the first fixed points iterations for ϕ1(x) and
ϕ2(x).
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Figure 9: Fixed point iterations for ϕ1(x) with x(0) = 0.05.
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Figure 10: Fixed point iterations for ϕ2(x) with x(0) = 0.05.
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Solution IV (OPTIONAL, Theoretical)

a) The k-th iteration of the Newton method corresponds to x(k+1) = x(k) − f(x(k))/f ′(x(k)), for
all k ≥ 0, if f ′(x(k)) ̸= 0, for some initial guess x(0). If we introduce the iteration function
ϕN (x) = x − f(x)/f ′(x), then the Newton method can be recast as a fixed point iterations
algorithm whose k-th iteration reads x(k+1) = ϕN (x(k)).

b) By setting f(x) = (x − α)mg(x) in a neighborhood of Iα of α, with g(α) ̸= 0, we obtain:
f ′(x) = (x− α)m−1[mg(x) + (x− α) g′(x)] and f ′′(x) = (x− α)m−2[m (m− 1) g(x) + 2m(x−
α) g′(x) + (x− α)2 g′′(x)]. Then, we observe that:

ϕ′
N (x) = 1− f ′(x)2 − f(x) f ′′(x)

f ′(x)2
= 1− mg2(x) + (x− α)2[(g′(x))2 − g(x)g′′(x)]

m2 g2(x) + 2m(x− α)g(x)g′(x) + (x− α)2(g′(x))2
.

For x = α we obtain:

ϕ′
N (α) = 1− 1

m
,

since g(α) ̸= 0.

c) We recall Proposition 2 and the following result.

Proposition 3 (local) By assuming that the hypotheses of Proposition 2 are satisfied and
that, in addition, ϕ ∈ C2(Iα) with ϕ′(α) = 0 and ϕ′′(α) ̸= 0, then, for x(0) sufficiently close
to α, the fixed point iterations algorithm converges quadratically to α (order 2) and:

lim
k→∞

x(k+1) − α

(x(k) − α)2
=

1

2
ϕ′′(α).

When considering the Newton method with ϕ′
N (α) = 1− 1/m, we obtain that the method is

at least linearly convergent to α in virtue of Proposition 2.

If the zero α is single (m = 1), then the hypotheses of Proposition 3 are satisfied and the
Newton method is quadratically convergent to α with the asymptotic convergence factor

µ = 1
2ϕ

′′
N (α) = 1

2
f ′′(α)
f ′(α) ; the result is obtained by observing that ϕ′′

N (x) = [(f ′(x))2f ′′(x) +

f(x)f ′(x)f ′′′(x)−2f(x)(f ′(x))2]/(f ′(x))3, f(α) = 0 and f ′(α) ̸= 0 for the zero α of multiplicity
m = 1. If the zero α is multiple (m > 1), then ϕ′

N (α) ̸= 0 and Proposition 3 cannot be
used; therefore, we only expect linear convergence of the Newton method for the zero α of
multiplicity m > 1 according to what stated in Proposition 2.

d) The k-th iteration of the modified Newton method corresponds to x(k+1) = x(k)−mf(x(k))/f ′(x(k)),
for all k ≥ 0, such that f ′(x(k)) ̸= 0, with m ≥ 1. The iteration function corresponding to the
modified Newton method is ϕ′

Nm
(x) = x−mf(x)/f ′(x). By proceeding similarly to point b),

we deduce that:

ϕ′
Nm

(α) = 1−m
1

m
= 0, for all m ≥ 1.

As consequence, following point c) and Proposition 3, the modified Newton method converges
quadratically to the zero α of multiplicity m ≥ 1, since, in general, ϕ′′

Nm
(α) ̸= 0.
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e) Following Exercise 2, point g), we deduce that the stopping criterion on the increment of
successive approximate zeros is satisfactory for the Newton method only for the zeros α of
multiplicity m = 1. Indeed, for k → ∞:

|x(k) − α| ≃ m|x(k+1) − x(k)|,

since ϕ′
N (ξ(k)) ≃ ϕ′

N (α) = 1 − 1/m in a neighborhood of α. For m > 1 the error is under-
estimated by the difference of the successive approximate zeros. for m = 100 the error is
underestimated by two orders of magnitude.

On the contrary, when using the modified Newton method, the criterion is always satisfactory,
since ϕ′

Nm
(α) = 0 and |x(k) − α| ≃ |x(k+1) − x(k)| for k → ∞, independently of m.
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