=Pi-L

Parallel and High Performance Computing

Dr. Pablo Antolin

Solution Series 1

February 27 2025

Development and execution in an HPC environment

2 Remote access and file transfer

Exercise 1: Simple connection

To connect to the front node of a cluster if it is your first time.

® [ssh <username>@<machine>]

® [ssh -1 <username> <machine>]

Front nodes:
e helvetios.hpc.epfl.ch

e izar.hpc.epfl.ch

e Connect to helvetios front node.

e Check the different folders [/home), [/scratch|

Exercise 2: Using scp

How to use [SCp] / [PScp.exe]

e Send data to remote machine:
’scp [-r] <local path> <username>@<remote>:<remote path>‘

e Retrieve data from remote machine:
’scp [-r] <username>@<remote>:<remote path> <local path>‘

e Copy a file from your machine to the cluster.

e Retrieve a file from the cluster to your machine.

Exercise 3: Connection using keys

e Generate a pair of public/private key using |ssh-keygen)|.

e Copy the public key ’ .ssh/id,rsa.pub‘ using in a file called ’ .ssh/authorized keys|on
the remote machine.

e Try to connect (it should not ask your password).

3 Compiling code on clusters

Exercise 4: Compilation

GCC: ’g++ -0 <executable> <sources>‘
Intel:]icpc -0 <executable> <sources>‘

e Compile the code hello.c.

e Note: remember to load either gcc or intel modules, respectively, before invoking the com-
pilations above.

Exercise 5: Separated compilation

g++ —c <source>|
g+t+ -o <executable> <object 1> ... <object n>

e Enter the folder]hello—separated—files

e Generate hello.o
e Generate greetings.o

e Generate hello from hello.o greetings.o

Exercise 6: Module command

e List all available modules

o Try |[g++ --version]|

e Load the module gcc

e Try again |g++ --version]|

e Try[icpc --version]

e Load the intel module

e Try again ’icpc —-version‘

e List the currently loaded modules

Exercise 7: Makefiles

Enter the folder [hello-makefile]

Read the [Makefile

Add the [-Wall -Werror] option to the compilation options

Compile the code

Introduce an error or a warning in the code (e.g., declare a non used variable).

Compile the code

4 Submitting a job

Exercise 8 SLURM: first commands

e Check the queue state

o Use to allocate one node with ’--qos=math—454 --account=math-454

e Try [srun hostname|, we will see this command more in detail in later exercise sessions

e Exit the allocation to note block resources: or Ctrl-d

Exercise 9: SLURM: command sbatch

e Write a script that runs the hello world code

e Try your script.
note: in general you should not try your codes on the front node there is a debug partition
for that

e Submit your script with using the QOS

e Try [squeue -u <username>|or [Squeue]

e A file named slurm-<jobid>.out should have been created, check its content Add the QOS
as an option directly in the script

e Submit it again

5 Basics on GIT

Exercise 10: First step with Git

If you do not have git installed, get it from https://git-scm.com/downloads or from your
package manager

Go on https://gitlab.epfl.ch and login with your EPFL credentials.

e Once connected go to the preferences page (left bar, user icon on top)

In the User settings > SSH Keys menu add your public ssh key. This key will be used to
connect to the git server through ssh.

Exercise 11: First steps with Git

° ’git clone <repo url> [local name] ‘: Clone a repository

e [git add <files...>| Stage modified/new files

e [git commit -m "comment"|: Commit staged files

e |git pull| Pull and merge remote modifications
° : Push the local modifications to the remote server
° : Check the local state

e Now you should be able to clone a repository

Either create arepository or|git clone git@gitlab.epfl.ch:math454-phpc/test-repo.git

e Create a file, use a filename that will not clash with the others
e Check the state of your working copy

e Add the file to the repository

e Commit your modifications

e Clone the same repository in a different folder

e Pull the potential modifications from the server

e Push your changes to the server

Exercise 12: Generate and solve conflicts

e Modify the file created in the previous exercise in both clones

e Commit this both modifications

https://git-scm.com/downloads
https://gitlab.epfl.ch

Pull and push in one of the clone

Pull in the second clone, You should get a conflict

<LLLLLLKLKLKL
One version

Other version
DOOOOOOO>>

Check the local status

Correct the conflict and commit using [git commit -a

e Push the modifications

Exercise 13: Branches / merges

° ’git branch <name>‘: Create a new branch from the current HEAD

e |git checkout <name>| Switch to the specified branch

. ’git merge <name>‘: Merge the branch specified in the current one

e [git branch -d|: Delete a branch

e [git branch -a| List all branches

° : List the different commits of the current branch

e |git log --graph --all| Show also the branches

e Create a branch with the name of your choice

e Modify a file and commit the changes

e Checkout the branch

e Modify a file and commit the changes

e Merge the branch previously created in the branch
e List all branches

e Print the logs of the different modifications

e Delete the merged branch

Exercise 14: Handle remotes

e |git init --bare| Create a new server

e [git remote add server <url>|: Add a remote server

e [git remote -v|: Show the remotes configured

e [git push <remote name>| Push to a given remote

e Connect on the front node of your favorite cluster
e Create a new folder that will contain your server

e In this folder initialize a new git server

¢ In one of the former clone of [scitas-test]|add the new remote URL]<c1uster name>:<path to repo>

e List the remotes to see if everything looks correct

e Push the local content to the new server

e On the cluster clone this new server URL]<path to repo>‘

e Note: The access permission on this new server are based on the file system permissions

	Remote access and file transfer
	Compiling code on clusters
	Submitting a job
	Basics on GIT

