
Parallel and High Performance Computing

Dr. Pablo Antoĺın

Solution Series 1

February 27 2025

Development and execution in an HPC environment

2 Remote access and file transfer

Exercise 1: Simple connection

To connect to the front node of a cluster if it is your first time.

• ssh <username>@<machine>

• ssh -l <username> <machine>

Front nodes:

• helvetios.hpc.epfl.ch

• izar.hpc.epfl.ch

• Connect to helvetios front node.

• Check the different folders /home , /scratch .

Exercise 2: Using scp

How to use scp / pscp.exe

• Send data to remote machine:

scp [-r] <local path> <username>@<remote>:<remote path>

• Retrieve data from remote machine:

scp [-r] <username>@<remote>:<remote path> <local path>

• Copy a file from your machine to the cluster.

• Retrieve a file from the cluster to your machine.

1



Exercise 3: Connection using keys

• Generate a pair of public/private key using ssh-keygen .

• Copy the public key .ssh/id rsa.pub using scp in a file called .ssh/authorized keys on
the remote machine.

• Try to connect (it should not ask your password).

3 Compiling code on clusters

Exercise 4: Compilation

GCC: g++ -o <executable> <sources>

Intel: icpc -o <executable> <sources>

• Compile the code hello.c.

• Note: remember to load either gcc or intel modules, respectively, before invoking the com-
pilations above.

Exercise 5: Separated compilation

g++ -c <source>

g++ -o <executable> <object 1> ... <object n>

• Enter the folder hello-separated-files

• Generate hello.o

• Generate greetings.o

• Generate hello from hello.o greetings.o

Exercise 6: Module command

• List all available modules

• Try g++ --version

• Load the module gcc

• Try again g++ --version

• Try icpc --version

• Load the intel module

• Try again icpc --version

• List the currently loaded modules

2



Exercise 7: Makefiles

• Enter the folder hello-makefile

• Read the Makefile

• Add the -Wall -Werror option to the compilation options

• Compile the code

• Introduce an error or a warning in the code (e.g., declare a non used variable).

• Compile the code

4 Submitting a job

Exercise 8: SLURM: first commands

• Check the queue state

• Use salloc to allocate one node with --qos=math-454 --account=math-454

• Try srun hostname , we will see this command more in detail in later exercise sessions

• Exit the allocation to note block resources: exit or Ctrl-d

Exercise 9: SLURM: command sbatch

• Write a script that runs the hello world code

• Try your script.
note: in general you should not try your codes on the front node there is a debug partition
for that

• Submit your script with sbatch using the QOS

• Try squeue -u <username> or Squeue

• A file named slurm-<jobid>.out should have been created, check its content Add the QOS
as an option directly in the script

• Submit it again

3



5 Basics on GIT

Exercise 10: First step with Git

• If you do not have git installed, get it from https://git-scm.com/downloads or from your
package manager

• Go on https://gitlab.epfl.ch and login with your EPFL credentials.

• Once connected go to the preferences page (left bar, user icon on top)

• In the User settings > SSH Keys menu add your public ssh key. This key will be used to
connect to the git server through ssh.

Exercise 11: First steps with Git

• git clone <repo url> [local name] : Clone a repository

• git add <files...> : Stage modified/new files

• git commit -m "comment" : Commit staged files

• git pull : Pull and merge remote modifications

• git push : Push the local modifications to the remote server

• git status : Check the local state

• Now you should be able to clone a repository
Either create a repository or git clone git@gitlab.epfl.ch:math454-phpc/test-repo.git

• Create a file, use a filename that will not clash with the others

• Check the state of your working copy

• Add the file to the repository

• Commit your modifications

• Clone the same repository in a different folder

• Pull the potential modifications from the server

• Push your changes to the server

Exercise 12: Generate and solve conflicts

• Modify the file created in the previous exercise in both clones

• Commit this both modifications

4

https://git-scm.com/downloads
https://gitlab.epfl.ch


• Pull and push in one of the clone

• Pull in the second clone, You should get a conflict

<<<<<<<<<<

One version

==========

Other version

>>>>>>>>>>

• Check the local status

• Correct the conflict and commit using git commit -a

• Push the modifications

Exercise 13: Branches / merges

• git branch <name> : Create a new branch from the current HEAD

• git checkout <name> : Switch to the specified branch

• git merge <name> : Merge the branch specified in the current one

• git branch -d : Delete a branch

• git branch -a : List all branches

• git log : List the different commits of the current branch

• git log --graph --all : Show also the branches

• Create a branch with the name of your choice

• Modify a file and commit the changes

• Checkout the master branch

• Modify a file and commit the changes

• Merge the branch previously created in the master branch

• List all branches

• Print the logs of the different modifications

• Delete the merged branch

5



Exercise 14: Handle remotes

• git init --bare : Create a new server

• git remote add server <url> : Add a remote server

• git remote -v : Show the remotes configured

• git push <remote name> : Push to a given remote

• Connect on the front node of your favorite cluster

• Create a new folder that will contain your server

• In this folder initialize a new git server

• In one of the former clone of scitas-test add the new remote URL <cluster name>:<path to repo>

• List the remotes to see if everything looks correct

• Push the local content to the new server

• On the cluster clone this new server URL <path to repo>

• Note: The access permission on this new server are based on the file system permissions

6


	Remote access and file transfer
	Compiling code on clusters
	Submitting a job
	Basics on GIT

