
Parallel and High Performance Computing

Dr. Pablo Antoĺın

Solution Series 7

April 10 2025

CUDA - Intro to GPU programming

1 CUDA

Exercise 1.1: Hello, World

You have to use blockIdx.x, blockIdx.y, and blockIdx.z for accessing the index of blocks, and
threadIdx.x, threadIdx.y, and threadIdx.z for the threads.
After the kernel call, you have to call cudaDeviceSynchronize, otherwise the code will end without
printing anything.

Exercise 1.2: Vector addition

• The first version has to by called with 1 block 1 thread, i.e., <<<1, 1>>>.

• The second version is called with <<<1, 256>>>. In the kernel, the loop has to go up to
N/blockDim.x, so the index of the computation is b * blockDim.x + threadIdx.x, with b

the loop counter.

• Finally, the last call is with <<<N / 256, 256>>>. In this case, each thread takes care of one
entry in the vector, with index i = blockIdx.x * blockDim.x + threadIdx.x. If N is not
a multiple of blockDim.x, you have to check than i is smaller then N, and add an extra block
in the call.

Exercise 1.3: Matrix multiplication

The kernel is called with

1 dim3 threads = dim3(BLOCK_SIZE, BLOCK_SIZE);

2 dim3 grid = dim3(device_C.cols() / threads.x, device_C.rows() / threads.y);

which means each thread computes one entry in the C matrix. The entry is

1 int j = blockIdx.x * blockDim.x + threadIdx.x;

2 int i = blockIdx.y * blockDim.y + threadIdx.y;

1



So, you just need to loop over the common dimension between A and B. Here we do not take care
of the case where the size of the matrix is not a multiple of the block sizes.

2


	CUDA

