
Parallel and High Performance Computing

Dr. Pablo Antoĺın

Solution Series 5

April 10 2025

MPI - Graded exercise

1 Profiling

Performance profiling, using tools such as gprof or perf, is essential for identifying computational
bottlenecks in the algorithm. However, obtaining clear insights can be challenging, particularly when
analyzing code compiled with high optimization levels (e.g., -O3) applied to small input matrices,
as the resulting efficiency leads to very short execution times. To mitigate this and achieve more
meaningful results, one can either increase the problem size substantially by using a larger input
matrix or compile the code with lower optimization levels (like -O0). While compiling with lower
optimization helps correlate runtime more directly with the source code structure, it is important
to remember that this does not represent the performance characteristics of the final, optimized
application.
In this particular project, profiling analysis consistently reveals that the matrix-vector product is
the most computationally dominant part of the algorithm. When compiled without optimization
(-O0), this operation accounts for approximately 76% of the total execution time, allowing for a
conservative estimate of the parallel fraction, α ≈ 0.76 if one only parallelizes the matrix-vector
product. In contrast, if one parallelizes the entire loop including the scalar products, the parallel
fraction is significantly higher, estimated to be α ≥ 0.99. This is due to the fact that even at the
highest sampling frequency, perf does not detect any other operations apart from the matrix-vector
product or the daxpy calls, which are used for the scalar products in the algorithm. The same holds
for higher compiler optimization settings.

2 Parallelization Strategy

From the profiling results, we conclude that the matrix-vector product is the most time-consuming
part of the algorithm and therefore the first candidate for parallelization. The matrix-vector product
in COO format can be parallelized in two ways: Either, the matrix is partitioned in blocks of entries
(variant 1) or the matrix is partitioned in blocks of rows (variant 2). In a more refined approach, one
can combine the row-wise partitioning of the matrix-vector product with the row-wise partitioning
of all the scalar products (variant 3).

1

2.1 Variant 1: Entry-wise partitioning of the matrix

In this variant (folder solution 1), the matrix is partitioned in blocks of entries, when it is parsed in
COO format; see MatrixCOO::read(const std::string & fn) in matrix coo.cc. More precisely,
the three vectors representing the matrix A in COO format are partitioned into p blocks, where p
is the number of processors. Let M denote the number of non-zero entries in the matrix A. If M/p
is not an integer, the last processor will be assigned M − (p− 1)(M/p) entries. This allows for an
even distribution of the work among the processors, as each processor is assigned a block of entries
to process. Mathematically, this corresponds to decomposing the matrix A into a sum of p matrices
A1, A2, . . . , Ap such that

A = A1 +A2 + . . .+Ap (1)

where Ai is the submatrix assigned to processor i. The matrix-vector product can then be computed
as

y = Apk = A1pk +A2pk + . . .+Appk = y1 + y2 + . . .+ yp (2)

where pk is the search direction in the k-th iteration, y is the output vector and yi is the output
vector computed by processor i. The latter are computed on each processor in parallel with the
same code as in the serial version. However, note that the vectors yi may contain non-zero entries
at the same index. Therefore, the final result must be computed by summing the vectors yi on each
processor. This can be done using the MPI Allreduce function, which computes the sum of the
vectors yi and stores the result in the vector y on each processor. The rest of the code remains in
serial form.

2.2 Variant 2: Row-wise partitioning of the matrix

This variant (folder solution 2) is similar to the previous one, but the matrix is partitioned in
blocks of rows (see MatrixCOO::read(const std::string & fn) in matrix coo.cc). More pre-
cisely, the matrix A is partitioned into p blocks of rows, where p is the number of processors. This
also leads to a decomposition of the matrix A into a sum of p matrices. However, this time, the
local vectors yi are disjoint in the sense that they do not contain non-zero entries at the same index.
Therefore, the final result can be computed by an MPI Allgatherv operation that simply stacks
the resulting vectors and without actually summing them. The latter improves the scalability of
the algorithm.

2.3 Variant 3: Row-wise partitioning of the matrix and the scalar products

This variant (folder solution 3) is similar to variant 2. But instead of gathering the local vectors
yi = Aipk directly, we continue to compute the subsequent scalar products pk ·Aipk and rk+1 · rk+1

locally too. This improves the parallel efficiency since we use the computational resources for a
maximum of operations. Nevertheless, we still must reduce the scalar products to all processors
and communicate the local search directions to all processors at the end of each iteration.

2.4 Algorithmic complexities

In all the three variants, the main bottleneck to parallelize is the matrix-vector product Apk. For
the particular case of sparse matrices with bandwidth k, as the ones provided for testing, the
computation complexity of the parallelized matrix-vector product is O(c1kN/p) where N is the
number of rows in the matrix (for the Variant 1 we have that M = Nk and therefore the cost
is O(c1M/p)); and c1 is a constant independent from N or p, but that depends strongly on the
implementation and the optimization level.

2

In the same way, the complexity of the scalar products pk · Aipk and rk+1 · rk+1 is O(c2N). That
becomes O(c2N/p) in the parallel case. Discarding the involved constants, for the sake of simplicity,
we can estimate the total computation cost of the algorithm as

O(N/p+N) for Variants 1 and 2
O(N/p) for Variant 3

. (3)

On the communication side, the most costly operation are the MPI Allgatherv calls (in Variants
2 and 3) and the MPI Allreduce calls (in Variant 1), whose complexities are1 O(c2 log p + c3N),
where c2 and c3 are constants that depend on the network topology and the implementation of the
MPI library, but are independent from N or p. Note that in the MPI Allreduce calls in Variant
3 the size of transferred data is N = 1, the result of scalar product, hence their complexity can
be estimated as O(c2 log p). Discarding the involved constants as before, we can estimate the total
communication cost of the algorithm as

O(log p+N) for all the Variants . (4)

2.5 Strong and weak scaling

2.5.1 Strong scaling

The idea behind strong scaling is to keep the size of the problem constant and increase the compu-
tational power (the number of processors). In our problem this translates into keeping the matrix
size N constant and increasing the number of processors p. Thus, as p grows the computation cost
decreases as O(1/p), while the communication cost grows as O(log p).

We recall that, according to Amdahl’s law, if α denotes the parallel fraction of the code, then the
ideal speedup is given by

S =
1

(1− α) + α
p

.

This constitutes the theoretical upper bound for the speedup of the algorithm.

According to these theoretical observations, the trend we expect to observe (independently of the
considered variant) is that initially the parallelization pays off and the total time (computation
plus communication) decreases (speedup increases) when the number of processors grows, while at
certain point the communication cost starts to dominate over the computation cost and the total
time starts to increase again (speedup decreases), deviating from Amdahl’s law. Due to its lower
computation cost, variant 3 is expected to be the one that scales better.

The point at which the communication cost starts to dominate over the computation cost depends of
course on N , but also on the complexity constants involved, the considered variant, the optimization
level, etc.

On the other hand, considering growing matrix sizes N should lead to larger communication (see
Equation (4)), and computation costs (specially for variants 1 and 2 due to the constant term N in
Equation (3)), what will lead to a deterioration of the speedup.

1See for example: https://who.rocq.inria.fr/Laura.Grigori/TeachingDocs/UPMC_Master2/Slides_HPC_MN_

DA/costMPIRoutines.pdf

3

https://who.rocq.inria.fr/Laura.Grigori/TeachingDocs/UPMC_Master2/Slides_HPC_MN_DA/costMPIRoutines.pdf
https://who.rocq.inria.fr/Laura.Grigori/TeachingDocs/UPMC_Master2/Slides_HPC_MN_DA/costMPIRoutines.pdf

2.5.2 Weak scaling

In the weak scaling analysis, the idea is to keep the work per processor constant when increasing
the number of processors. To that end, we will use an initial matrix with size N0 for p = 1 and
scale it as Np = N0p for an increasing number of processors. In this way, the computation cost per
processor will be

O(N0 +N0p) for Variants 1 and 2
O(N0) for Variant 3

. (5)

I.e., for the first two variants, the computation cost per processor grows with p, what contradicts
the definition of weak scaling (the work per processor must stay constant), but we will keep it for
the sake of the analysis. For variant 3, the computation cost per processor stays constant.
On the other hand, the communication cost will grow as O(log p + Np) = O(log p + N0p) in all
three cases. Therefore, the total cost (computation + communication) will grow linearly with p.
Then, we expect to observe a descending trend that will be more pronounced for the first two
variants (as the constant in front of the linear term p has contributions from both computation and
communication), than for variant 3.

3 Results

In the following, we will present and analyze the strong and weak scaling results for the parallel CG
implementation. All the results presented in the following are obtained on the jed cluster, using
gcc, openmpi, and openblas, and considering both -O0 and -O3 optimization flags.

In order to analyze the strong scaling, we generated matrices of increasing sizesN ∈ {2002, 3002, 6002, 10002}
and computed the obtained speedups for an increasing number of processors p = 1, 2, . . . , 32. Re-
sults are shown in Sections 3.1 to 3.3. While for the weak scaling analysis, we will use initial sizes

N0 ∈ {256, 1024, 4096} to see the influence of the matrix size.
Finally, we stress that, in the weak scaling analysis, to keep the work per processor constant, we
also have to normalize the runtime by the number of iterations of the CG algorithm (that depends
on N).

Let us now analyze the results for the three variants.

3.1 Variant 1

In Figure 1, the strong scalings are shown. For the lower optimization setting (a), the strong
scaling closely follows Amdahl’s law up to 16 processors. Then the speedup starts to deteriorate
significantly. This suggests that for 32 processors, the communication cost starts to dominate over
the computations on each processor. Furthermore, we observe that the scaling is worse for increasing
problem sizes. Both observations are in line with the theoretical analysis presented in Section 2.5.
For the higher optimization setting (b), the strong scaling is terrible. The reason for this may
be the fact that, due to the compiler optimization, the constant c1 in the computation cost gets
significantly reduced, making the computation to communication ratio even further unbalanced.

Similarly, the weak scaling shown in Figure 2 shows that the parallel efficiency deteriorates rapidly
for increasing numbers of processors. In addition, the weak scaling is worse for larger problem sizes,
which is not surprising since both computation and communication costs grow linearly with p and
the initial matrix size N0. Both effects were already anticipated in Section 2.5.2.

4

1 2 4 8 16 32
number of processors p

100

2 × 100

3 × 100
4 × 100

sp
ee

du
p

matrix size N
40000
90000
360000

1000000
ideal scaling
 (= 0.76)

(a) -O0 optimization

1 2 4 8 16 32
number of processors p

100

101

sp
ee

du
p

matrix size N
40000
90000
360000

1000000
ideal scaling
 (= 0.99)

(b) -O3 optimization

Figure 1: Variant 1: Strong scaling results for optimization flag -O0 (a) and -O3 (b).

1 2 4 8 16 32
number of processors p

10 1

100

pa
ra

lle
l e

ffi
cie

nc
y

initial size N0
ideal scaling
1024
4096

16384
65536

Figure 2: Variant 1: Weak scaling results for optimization flag -O0.

5

1 2 4 8 16 32
number of processors p

100

2 × 100
3 × 100
4 × 100
6 × 100

sp
ee

du
p

matrix size N
40000
90000

360000
1000000

(a) -O0 optimization

1 2 4 8 16 32
number of processors p

100

3 × 10 1
4 × 10 1
6 × 10 1

2 × 100

sp
ee

du
p

matrix size N
40000
90000

360000
1000000

(b) -O3 optimization

Figure 3: Variant 2: Strong scaling results for optimization flag -O0 (a) and -O3 (b).

3.2 Variant 2

The results for variant 2 are very similar to the one for variant 1 (see Figures 3 and 4). Note,
however, that we are not parallelizing the exact same operations from the serial code since we
avoid having to sum the different vectors yi, i = 1, . . . , p, we just stack them with MPI Allgatherv.
Consequently, the parallel fraction cannot be estimated by 76% anymore. Therefore, we dropped
the ideal scaling from Figure 3 to avoid confusion. In particular, we observe that the strong scaling
is better compared to variant 1 for the same reason. Beyond that, the same appreciations that were
made for the strong and weak scaling of variant 1 hold here.

3.3 Variant 3

For variant 3, we note that for both optimization levels, we obtain a better speedup according
to Amdahl’s law (see Figure 5). In particular, this variant successfully parallelizes a much larger
fraction of the code (see Equation 3). And, even if still low, the parallel efficiency of the weak scaling
analysis (see Figure 6) is slightly better when compared with the ones obtained for variants 1 and
3 (cf. Figures 2 and 4). This may be due to the actual constant computation cost per processor
considered in this case (recall estimation (5)). Beyond these particularities, the same observations

made for the strong and weak scalings of variants 1 and 2 hold here.

4 Bonus: Dense matrices

The results above show that for sparse matrices in COO format, while the computation cost per
processor descreases with p according to the estimate (3), the communication cost grows as in (4).
Therefore, the algorithm total cost grows logarithmically with p. However, even if this holds true
when applying the same code to dense matrices (same COO format but containing all the zero
entries), slighlty different results can be observed.

6

1 2 4 8 16 32
number of processors p

10 1

100

pa
ra

lle
l e

ffi
cie

nc
y

initial size N0
ideal scaling
1024
4096

16384
65536

Figure 4: Variant 2: Weak scaling results for optimization flag -O0.

1 2 4 8 16 32
number of processors p

100

101

sp
ee

du
p

matrix size N
40000
90000
360000

1000000
ideal scaling
 (= 0.99)

(a) -O0 optimization

1 2 4 8 16 32
number of processors p

100

101

sp
ee

du
p

matrix size N
40000
90000
360000

1000000
ideal scaling
 (= 0.99)

(b) -O3 optimization

Figure 5: Variant 3: Strong scaling results for optimization flag -O0 (a) and -O3 (b).

7

1 2 4 8 16 32
number of processors p

100

3 × 10 1
4 × 10 1

6 × 10 1

pa
ra

lle
l e

ffi
cie

nc
y

initial size N0
ideal scaling
1024
4096

16384
65536

Figure 6: Variant 3: Weak scaling results for optimization flag -O0.

Indeed, for the dense case the computational cost per processor is now of orderO(N2/p) (bigger than
the original cost O(N/p) for sparse matrices), while the communication cost still is O(log p + N).
Both, dense and sparse cases present identical asymptotic trend O(log p) in the case of the strong
scaling, however, the dense one presents a better behavior in the pre-asymptotic regime due to its
larger computation cost constant term. This effect can be seen in the results in Figure 7, where a
better speedup compared to the sparse case is observed for growing matrix sizes. Inevitably, as the
theory predicts, and already observed in previous sections, for large enough p, the communication
cost will eventually dominate over the computation cost and the speedup will start to deteriorate
for large enough p.

The same reasoning developed for the strong scaling of the sparse matrices in Section 2.5 applies in
the case: Keeping N constant and growing p, the computation cost decreases as O(1/p) while the
communication cost increases as O(log p). However, the constant in front of the computation cost is
larger in this case, as it depends on N2 instead of N , what increases the computation cost, delaying
the inflection point. This effect can be seen in the strong scaling results for the dense matrices in
Figure 7, where we observe that the speedup is much better than for the sparse matrices for large
matrices, being its inflection point delayed respect to p.

Regarding the weak scaling, the analysis is slightly different in this case. In order to keep the
computation cost per processor constant, i.e., O(N2

p /p) = O(N2
0), we have to increase the size of

the matrix as Np = N0
√
p. In that setting, the communication cost becomes O(log p + Np) =

O(log p + N0
√
p), while the computation cost O(N2

0) stays constant. Note that in this case the
communication cost is smaller as it grows as O(

√
p), instead of O(p) for the sparse one (recall

Section 2.5.2). This explains why the weak scaling, even if still decaying (as total cost grows with√
p), presents a significantly better behavior compared to the one observed for sparse matrices (see

Figure 8).

Thus, the strong and weak scaling results for dense matrices seem to suggest that, given a large
enough N , it seems possible to mask longer the (inevitably) increasing communication costs with
sufficiently large computational costs.

8

1 2 4 8 16 32 64
number of processors p

10 1

100

101

sp
ee

du
p

matrix size N
256
1024
4096

16384
ideal scaling
 (= 0.99)

(a) -O0 optimization

1 2 4 8 16 32 64
number of processors p

10 1

100

101

sp
ee

du
p

matrix size N
256
1024
4096

16384
ideal scaling
 (= 0.99)

(b) -O3 optimization

Figure 7: Variant 3: Strong scaling results for optimization flag -O0 (a) and -O3 (b) for dense
matrices.

1 2 4 8 16 32 64
number of processors p

10 2

10 1

100

pa
ra

lle
l e

ffi
cie

nc
y

initial size N0
ideal scaling
64

256
1024

Figure 8: Variant 3: Weak scaling results for optimization flag -O0 for dense matrices.

9

5 Conclusion

We conclude that the parallelization of the CG algorithm for sparse matrices in COO format is
challenging due to the bad scaling of the communication cost. In particular, we point out that
to achieve a good parallel efficiency, the communication costs must stay small compared to the
computation cost. This could be potentially achieved by reducing the amount of the data to be
communicated, for example by using a more refined partitioning of the matrix and the vectors.

10

	Profiling
	Parallelization Strategy
	Variant 1: Entry-wise partitioning of the matrix
	Variant 2: Row-wise partitioning of the matrix
	Variant 3: Row-wise partitioning of the matrix and the scalar products
	Algorithmic complexities
	Strong and weak scaling
	Strong scaling
	Weak scaling

	Results
	Variant 1
	Variant 2
	Variant 3

	Bonus: Dense matrices
	Conclusion

