
Parallel and High Performance Computing

Dr. Pablo Antoĺın

Solution Series 3

March 13 2025

Debugging, profiling, and thread level parallelism
with OpenMP

1 Debugging

Exercise 1: Write overflow

• The execution ends abnormally in a segmentation fault.

• In gdb, when you hit run, the debugger will intercept the error and let you inspect the
variables. In this case, the error occurs on line 9, in the main function.

• If you print the value of i you should get i = 0. If you print data you will see that the
pointer of data is 0x0 (a null pointer), and that data has size 0, i.e., data was not allocated.

• At line 6 you should specify a size for the vector: data(N).

Exercise 2: Read overflow

• This code runs fine and most of the times the result is correct.

• However, if you run with valgrind, you will get an output that looks like this:

==14921== Memcheck, a memory error detector

==14921== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==14921== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==14921== Command: ./read

==14921==

==14921== Invalid read of size 8

==14921== at 0x400ABA: main (read.cc:14)

==14921== Address 0x5ab4bc0 is 0 bytes after a block of size 8,000 alloc'd

==14921== at 0x4C2A1E3: operator new(unsigned long)

(vg_replace_malloc.c:334)↪→

==14921== by 0x400A41: allocate (new_allocator.h:111)

==14921== by 0x400A41: allocate (alloc_traits.h:436)

1

==14921== by 0x400A41: _M_allocate (stl_vector.h:296)

==14921== by 0x400A41: _M_create_storage (stl_vector.h:311)

==14921== by 0x400A41: _Vector_base (stl_vector.h:260)

==14921== by 0x400A41: vector (stl_vector.h:416)

==14921== by 0x400A41: main (read.cc:6)

==14921==

499500 == 499500

==14921==

==14921== HEAP SUMMARY:

==14921== in use at exit: 0 bytes in 0 blocks

==14921== total heap usage: 2 allocs, 2 frees, 80,704 bytes allocated

==14921==

==14921== All heap blocks were freed -- no leaks are possible

==14921==

==14921== For counts of detected and suppressed errors, rerun with: -v

==14921== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

• The way to read this is that there is and invalid operation at line 14. This is a read of size
8 bit just after an array of size 8000 bit. The last line tells you where the vector was allocated
in our code. In this case, line 6.

Line 6 contains std::vector<double> data(N); which is correct (N = 1000 and double are
8 bit, so 8000 bit in total). This means it is the access that is wrong.

If you look at the loop limits, it is i ∈ [0, N], and should be i ∈ [0, N [, such that i < N .

• The information output for ./read by the sanitizer is the same, but its presentation is different:

===

==1293390==ERROR: AddressSanitizer: heap-buffer-overflow on address

0x625000002040 at pc 0x0000004011a1 bp 0x7ffec59f85f0 sp 0x7ffec59f85e8↪→

READ of size 8 at 0x625000002040 thread T0

#0 0x4011a0 in main

/home/antolin/Teaching/exercises-2023/lecture_03/debugging/read ⌋

.cc:14

↪→

↪→

#1 0x7fba6b2b2492 in __libc_start_main (/lib64/libc.so.6+0x23492)

#2 0x400e0d in _start

(/home/antolin/Teaching/exercises-2023/lecture_03/debugging/read+0x400e0d)↪→

0x625000002040 is located 0 bytes to the right of 8000-byte region

[0x625000000100,0x625000002040)↪→

allocated by thread T0 here:

#0 0x7fba6c0b7a77 in operator new(unsigned long)

/tmp/scitasbuild/syrah.v1/tmp/spack-stage-gcc-11.3 ⌋

.0-yrewh277xaqlocj7zcuxnv2m4fq4p3tw/spack-src/libsanitizer/asan/asan_new_delete ⌋

.cpp:99

↪→

↪→

↪→

2

#1 0x400fb3 in __gnu_cxx::new_allocator<double>::allocate(unsigned long,

void const*)

/ssoft/spack/syrah/v1/opt/spack/linux-rhel8-x86_64_v2/gcc-8.5 ⌋

.0/gcc-11.3 ⌋

.0-yrewh277xaqlocj7zcuxnv2m4fq4p3tw/lib/gcc/x86_64-pc-linux-gnu/11 ⌋

.3.0/../../../../include/c++/11.3.0/ext/new_allocator.h:127

↪→

↪→

↪→

↪→

↪→

#2 0x400fb3 in std::allocator_traits<std::allocator<double>

>::allocate(std::allocator<double>&, unsigned long)

/ssoft/spack/syrah/v1/opt/spack/linux-rhel8-x86_64_v2/gcc-8.5 ⌋

.0/gcc-11.3 ⌋

.0-yrewh277xaqlocj7zcuxnv2m4fq4p3tw/lib/gcc/x86_64-pc-linux-gnu/11 ⌋

.3.0/../../../../include/c++/11.3.0/bits/alloc_traits.h:464

↪→

↪→

↪→

↪→

↪→

#3 0x400fb3 in std::_Vector_base<double, std::allocator<double>

>::_M_allocate(unsigned long)

/ssoft/spack/syrah/v1/opt/spack/linux-rhel8-x86_64_v2/gcc-8.5 ⌋

.0/gcc-11.3 ⌋

.0-yrewh277xaqlocj7zcuxnv2m4fq4p3tw/lib/gcc/x86_64-pc-linux-gnu/11 ⌋

.3.0/../../../../include/c++/11.3.0/bits/stl_vector.h:346

↪→

↪→

↪→

↪→

↪→

#4 0x400fb3 in std::_Vector_base<double, std::allocator<double>

>::_M_create_storage(unsigned long)

/ssoft/spack/syrah/v1/opt/spack/linux-rhel8-x86_64_v2/gcc-8.5 ⌋

.0/gcc-11.3 ⌋

.0-yrewh277xaqlocj7zcuxnv2m4fq4p3tw/lib/gcc/x86_64-pc-linux-gnu/11 ⌋

.3.0/../../../../include/c++/11.3.0/bits/stl_vector.h:361

↪→

↪→

↪→

↪→

↪→

#5 0x400fb3 in std::_Vector_base<double, std::allocator<double>

>::_Vector_base(unsigned long, std::allocator<double> const&)

/ssoft/spack/syrah/v1/opt/spack/linux-rhel8-x86_64_v2/gcc-8.5 ⌋

.0/gcc-11.3 ⌋

.0-yrewh277xaqlocj7zcuxnv2m4fq4p3tw/lib/gcc/x86_64-pc-linux-gnu/11 ⌋

.3.0/../../../../include/c++/11.3.0/bits/stl_vector.h:305

↪→

↪→

↪→

↪→

↪→

#6 0x400fb3 in std::vector<double, std::allocator<double>

>::vector(unsigned long, std::allocator<double> const&)

/ssoft/spack/syrah/v1/opt/spack/linux-rhel8-x86_64_v2/gcc-8.5 ⌋

.0/gcc-11.3 ⌋

.0-yrewh277xaqlocj7zcuxnv2m4fq4p3tw/lib/gcc/x86_64-pc-linux-gnu/11 ⌋

.3.0/../../../../include/c++/11.3.0/bits/stl_vector.h:511

↪→

↪→

↪→

↪→

↪→

#7 0x400fb3 in main

/home/antolin/Teaching/exercises-2023/lecture_03/debugging/read.cc:6↪→

#8 0x401387

(/home/antolin/Teaching/exercises-2023/lecture_03/debugging/read+0x401387)↪→

SUMMARY: AddressSanitizer: heap-buffer-overflow

/home/antolin/Teaching/exercises-2023/lecture_03/debugging/read.cc:14 in

main

↪→

↪→

Shadow bytes around the buggy address:

0x0c4a7fff83b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c4a7fff83c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

3

0x0c4a7fff83d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c4a7fff83e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0c4a7fff83f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=>0x0c4a7fff8400: 00 00 00 00 00 00 00 00[fa]fa fa fa fa fa fa fa

0x0c4a7fff8410: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x0c4a7fff8420: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x0c4a7fff8430: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x0c4a7fff8440: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x0c4a7fff8450: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

Shadow byte legend (one shadow byte represents 8 application bytes):

Addressable: 00

Partially addressable: 01 02 03 04 05 06 07

Heap left redzone: fa

Freed heap region: fd

Stack left redzone: f1

Stack mid redzone: f2

Stack right redzone: f3

Stack after return: f5

Stack use after scope: f8

Global redzone: f9

Global init order: f6

Poisoned by user: f7

Container overflow: fc

Array cookie: ac

Intra object redzone: bb

ASan internal: fe

Left alloca redzone: ca

Right alloca redzone: cb

Shadow gap: cc

==1293390==ABORTING

And for ./write

AddressSanitizer:DEADLYSIGNAL

===

==1295964==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000

(pc 0x000000400f9b bp 0x7ffe353d3510 sp 0x7ffe353d3510 T0)↪→

==1295964==The signal is caused by a WRITE memory access.

==1295964==Hint: address points to the zero page.

#0 0x400f9b in main

/home/antolin/Teaching/exercises-2023/lecture_03/debugging/write ⌋

.cc:9

↪→

↪→

#1 0x7f186b941492 in __libc_start_main (/lib64/libc.so.6+0x23492)

#2 0x400dbd in _start

(/home/antolin/Teaching/exercises-2023/lecture_03/debugging/write+0x400dbd)↪→

AddressSanitizer can not provide additional info.

4

SUMMARY: AddressSanitizer: SEGV

/home/antolin/Teaching/exercises-2023/lecture_03/debugging/write.cc:9 in

main

↪→

↪→

==1295964==ABORTING

2 Profiling 101

Exercise 3: Sequential profiling with gprof

If you compile and run, with an annotated code for gprof, you will get something like this:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

71.73 0.48 0.48 345 1.39 1.39 DumperASCII::dump(int)

28.39 0.67 0.19 345 0.55 0.55 Simulation::compute_step()

0.00 0.67 0.00 346 0.00 0.00 DoubleBuffer::old()

0.00 0.67 0.00 345 0.00 0.00 DoubleBuffer::swap()

0.00 0.67 0.00 345 0.00 0.00 DoubleBuffer::current()

0.00 0.67 0.00 345 0.00 0.00 Grid::m() const

0.00 0.67 0.00 345 0.00 0.00 Grid::n() const

0.00 0.67 0.00 3 0.00 0.00 Grid::clear()

0.00 0.67 0.00 3 0.00 0.00 Grid::Grid(int, int)

0.00 0.67 0.00 1 0.00 0.00

_GLOBAL__sub_I__ZN10SimulationC2Eii↪→

0.00 0.67 0.00 1 0.00 0.00

Simulation::set_epsilon(float)↪→

0.00 0.67 0.00 1 0.00 0.00

Simulation::set_initial_conditions()↪→

0.00 0.67 0.00 1 0.00 670.80 Simulation::compute()

0.00 0.67 0.00 1 0.00 0.00

Simulation::Simulation(int, int)↪→

0.00 0.67 0.00 1 0.00 0.00

DoubleBuffer::DoubleBuffer(int, int)↪→

We can see that 70% of the time is spent in the dump function. This function creates an image on
disk representing the solution. We can call it only once at the end instead of at every iteration of
the Jacobi solver. Thus, removing those calls to dump we get:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

100.12 0.15 0.15 345 0.44 0.44 Simulation::compute_step()

0.00 0.15 0.00 346 0.00 0.00 DoubleBuffer::old()

0.00 0.15 0.00 345 0.00 0.00 DoubleBuffer::swap()

0.00 0.15 0.00 345 0.00 0.00 DoubleBuffer::current()

0.00 0.15 0.00 3 0.00 0.00 Grid::clear()

0.00 0.15 0.00 3 0.00 0.00 Grid::Grid(int, int)

5

0.00 0.15 0.00 1 0.00 0.00

_GLOBAL__sub_I__ZN10SimulationC2Eii↪→

0.00 0.15 0.00 1 0.00 0.00

Simulation::set_epsilon(float)↪→

0.00 0.15 0.00 1 0.00 0.00

Simulation::set_initial_conditions()↪→

0.00 0.15 0.00 1 0.00 150.18 Simulation::compute()

0.00 0.15 0.00 1 0.00 0.00

Simulation::Simulation(int, int)↪→

0.00 0.15 0.00 1 0.00 0.00 DumperASCII::dump(int)

0.00 0.15 0.00 1 0.00 0.00

DoubleBuffer::DoubleBuffer(int, int)↪→

0.00 0.15 0.00 1 0.00 0.00 Grid::m() const

0.00 0.15 0.00 1 0.00 0.00 Grid::n() const

Exercise 4: Sequential profiling with perf

With perf you will get something similar:

Samples: 742 of event 'cycles:u', Event count (approx.): 288228356

Children Self Command Shared Object Symbol

- 97.84% 0.00% poisson poisson [.] _start

_start

__libc_start_main

- main

+ 95.62% Simulation::compute

+ 1.92% Simulation::set_initial_conditions

- 97.84% 0.00% poisson libc-2.28.so [.] __libc_start_main

__libc_start_main

- main

- 95.62% Simulation::compute

90.10% Simulation::compute_step

- 5.49% DumperASCII::dump

- 2.33% ?? (inlined)

+ 1.96% ?? (inlined)

- 1.33% std::ostream::_M_insert<long>

1.07% std::num_put<char, std::ostreambuf_iterator<char,

std::char_traits<char> > >::_M_insert_int<long>↪→

- 1.92% Simulation::set_initial_conditions

__sin_fma

- 97.84% 0.00% poisson poisson [.] main

- main

- 95.62% Simulation::compute

90.10% Simulation::compute_step

- 5.49% DumperASCII::dump

+ 2.33% ?? (inlined)

+ 1.33% std::ostream::_M_insert<long>

6

- 1.92% Simulation::set_initial_conditions

__sin_fma

- 95.62% 0.00% poisson poisson [.] Simulation::compute

- Simulation::compute

90.10% Simulation::compute_step

- 5.49% DumperASCII::dump

+ 2.33% ?? (inlined)

+ 1.33% std::ostream::_M_insert<long>

- 90.10% 90.10% poisson poisson [.] Simulation::compute_step

_start

__libc_start_main

main

Simulation::compute

Simulation::compute_step

- 5.49% 1.60% poisson poisson [.] DumperASCII::dump

- 3.89% DumperASCII::dump

+ 2.18% ?? (inlined)

+ 1.33% std::ostream::_M_insert<long>

- 1.60% _start

__libc_start_main

main

Simulation::comput

DumperASCII::dump

Changing the loops ordering from ji to ij, the computation time reduces from 32.4 s to 5.1 s. With
just perf stat we do not get much insight to understand what is happening. But, if we rerun
asking explicitly for the L1 cache access and misses we get:

$>srun [...] perf stat -e L1-dcache-loads,L1-dcache-load-misses ./poisson_ij

nb steps 2600 [l2 = 0.00499909]

Performance counter stats for './poisson_ij':

22,013,505,236 L1-dcache-loads:u

549,583,312 L1-dcache-load-misses:u # 2.50% of all L1-dcache

accesses↪→

7.317822412 seconds time elapsed

5.118036000 seconds user

2.166764000 seconds sys

$>srun [...] perf stat -e L1-dcache-loads,L1-dcache-load-misses ./poisson_ji

nb steps 2600 [l2 = 0.00499905]

Performance counter stats for './poisson_ji':

7

22,002,938,745 L1-dcache-loads:u

11,951,467,511 L1-dcache-load-misses:u # 54.32% of all L1-dcache

accesses↪→

34.776462873 seconds time elapsed

32.475311000 seconds user

2.185647000 seconds sys

So, as it can be seen above, the ji presents a 54.3% of cache misses, compared to the 2.5% of the
ij version, what explains the difference in performance between both versions.

3 Thread Level Parallelism: OpenMP

All the correction codes are in the corresponding solution sub-folders.

Exercise 5: OpenMP: hello world

By calling, omp get max threads the maximum number of threads to be used is computed. Check,
for instance, the code in pi for wrong.cc

Exercise 6: Parallelize the loop

The file pi for wrong.cc contains the solution code of this exercise. If you run it multiple times,
the value of pi should be wrong and “random”. It is also worth observing that the first goal was
achieved, as this code scales nicely. The “random” values obtained come from the access to the sum
variable: sum = sum + f(x) will result in a race condition, if not properly protected.

Exercise 7: Näıve reduction

The file pi critical.cc contains the solution code of this exercise. The access to sum needs to be
protected. The näıve way of doing this is to add a critical section protecting its access. If you
run it you should see that the more threads you add, the slower it becomes. This comes from the
need of synchronization between threads inside the critical section. Only one thread can execute
the critical code at a time, all the others have to wait and will “fight” to enter the critical

region, what causes a bottleneck.

Exercise 8: Näıve reduction ++

The file pi critical correct.cc contains the solution code of this exercise. By having one variable
by thread we remove the constrain that was serializing the execution. We still need to be careful
on the way we sum the local contributions of all threads. Having one critical region at the end
will generate a really small serial execution between threads.

Exercise 9: Reduction

The file pi reduction.cc contains the solution code of this exercise. Of course, all the previous
exercises where just fiddling around a capability provided by OpenMP. You can still notice that the
execution times are similar to the previous exercise. This might indicate that the previous exercise
is how the reduction is implemented in OpenMP.

8

Exercise 10: Poisson

A solution is provided in the solution sub-directory. There are no particular difficulties for this
code. We should mainly be careful on the reduction of l2. And remove the call to the dump

function and sort the loops in the “right” order. This solution is the first step to a OpenMP
implementation: For small grids it will not scale well due to the permanent fork/join when the
parallel region starts and ends. Nevertheless, when the grid is large enough, this effect will become
negligible in comparison to the computation time.

9

	Debugging
	Profiling 101
	Thread Level Parallelism: OpenMP

