=PFL

Parallel and High Performance Computing

Dr. Pablo Antolin

Solution Series 2

March 6 2025

Measuring CPU performances

Exercise 1: Theoretical analysis: Amdhal’s and Gustafson’s laws

a)

What is the definition of the Amdahl’s law (with the serial part 1 — «)? What does this law
measure?

The Amdahl’s law defines the maximum speedup as
T 1

S(p,a) = = .
(.) I-o)1 +27 (1-a)+2

It measures the maximum speedup a parallelized code can achieve by keeping the amount of
work constant and by increasing the number of processes. This is the so called strong scaling.

What is the definition of the Gustafson’s law (with the non-parallelizable part 1 — a(/NV) and
problem size N)? What does this law measure?

The Gustafson’s law defines the maximum speedup as
S, N) =1+ (p—Da(N),

where p is the number of processes. It measures the maximum speedup a parallelized code
can achieve by keeping the amount of work constant per process and by increasing the number
of processes. This is the so called weak scaling.

Considering the provided algorithm and information, provide an estimation of 1 — «, the serial
part of the code that can not be parallelized.

According to the provided algorithm, the non-parallelizable part corresponds to the initial-
ization stage. By computing tinit/ttotal we find 1 — o ~ 1% which is the serial part of the
code.

What is the upper bound of the speedup according to Amdahl’s law?
The speedup is bounded as
1 1
S = .
(P,) (1—a)+%<1—a

Therefore, with approximatively 1% of serial part, the speedup will be always below 100.

e) What would be the maximum efficiency with 128 processors?

The efficiency is

_ Sp,e) 1

o p pla—1D+a
and for « — 1 ~ 1% and p = 128 the efficiency will be around 44%.

i

Exercise 2: Theoretical roofline

On helvetios cat /proc/cpuinfo shows that the processors are Intel(R) Xeon(R) Gold 6140:

processor : 0

vendor_id : GenuinelIntel

cpu family : 6

model : 85

model name : Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz
stepping : 4

microcode : 0x2006£05

cpu MHz : 2881.881

cache size : 26344 KB

physical id : 0

siblings : 18

core id : 0

cpu cores : 18

apicid : 0

initial apicid : O

fpu : yes

fpu_exception : yes

cpuid level : 22

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

— pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgb
rdtscp 1m constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est
tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 ssed4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx fl6c¢c rdrand lahf_Im abm 3dnowprefetch
cpuid_fault epb cat_13 cdp_13 invpcid_single pti intel_ppin ssbd mba ibrs
ibpb stibp fsgsbase tsc_adjust bmil hle avx2 smep bmi2 erms invpcid rtm cqm
mpx rdt_a avxb512f avxb512dq rdseed adx smap clflushopt clwb intel_pt avxb512cd
avxb12bw avxb12vl xsaveopt xsavec xgetbvl xsaves cqm_llc cgqm_occup_llc
cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke md_clear

— flush_11d arch_capabilities

L I |

bugs : cpu_meltdown spectre_vl spectre_v2 spec_store_bypass 11tf mds
— swapgs taa itlb_multihit

bogomips : 4600.00

clflush size : 64

cache_alignment : 64
address sizes : 46 bits physical, 48 bits virtual

power management:

You can find all the information about that processor in the links below:
e https://en.wikichip.org/wiki/intel/xeon_gold/6140

e https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

a) From the micro-architecture page we can see:

e 3.5GHz (turbo frequency for AVX512 and 1 single core).

e 2 ports capable of floating point operations (ports 0 and 1 in the image below).

g | |2
8
H Integer Physical Register Fil 2EE Vector Physical Register Fi
® ger Physical Register File ; . g lector Physical Register File
3 nt-| (180 Regsters) Unified Reservation Station (RS) (168 Reglsters)
2 | Storg (97 entries)
[Porto | [Port1 | | Port5 | | Porté | [Port2 | | Port3 | | Port4 | [Port7 |
popP popP nor popP HOP por popP pop
INT ALU NTALU [INT ALU [EnTau] [Aacy] AGU [Store Data] [_AGU
INTDIV_|[INT MUL Vect Shuffle Branch Load Data Load Data
INT Vect ALUJ[INT Vect ALUJ[INT Vect ALU!
L |INT Vet MUL | [INT Vect MUL| LEA
FP_FMA FP FMA 256bit/cycle
AES Bit Scan
Vect string EUs
FP DIV
Branch

e 2 operations per cycle if we consider FP FMA (fused multiple add): one multiplication
and one addition.
e AVX512 FMA units which gives a vector size of 512 bit (8 double precision floating point).

Intel vector extensions being in order of increasing vector sizes: MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX512.

Then, the peak performance is computed as 3.5 - 107 x 2 x 2 x 512/64 = 112 GFLOP/(s core).

b) In the processor webpage we can read that the bandwidth single (max for 1 core) is 19.87 GiB/s
and max 119.21 GiB/s. This can be also computed manually. As specified in the first link,
this microprocessor has a memory of type DDR4-2666 with 6 channels. This is a memory with
data transfer rate of 2666 MT/c and bus width 64 bit (inherent to DDR4 memory). Then, the
bandwidth for one single channel is 2666 MT/cx8B/T = 21.33 GB/s = 19.87 GiB/s. And con-
sidering the 6 memory channels, the maximum bandwidth is 21.33 GB/s x 6 = 127.98 GB/s =
119.21 GiB/s.

Remark: Notice the difference between gibibytes and gigabytes units (see https://en.wikipedia.
org/wiki/Byte#Multiple-byte_units).

c¢) Thus, the ridge point is 112 -10%/21.33 - 10° = 5.25 FLOP/B for 1 core.

Exercise 3: Measured roofline

For OMP_NUM_THREADS=1 we obtained (taking the minimum of the four values for the sustained
memory performance):

a) Stream: 10.10GB/s on 1 core.

b) Dgemm: 99.7 GFLOP/s on 1 core.

https://en.wikichip.org/wiki/intel/xeon_gold/6140
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikipedia.org/wiki/Byte#Multiple-byte_units
https://en.wikipedia.org/wiki/Byte#Multiple-byte_units

)

Ridge point: 9.87 FLOP/B on 1 core.

Instead, for OMP_NUM_THREADS=8 we got:

2)
b)

c)

Stream: 72.48 GB/s on 8 cores.
Dgemm: 651.01 GFLOP/s on 8 cores.

Ridge point: 8.98 FLOP/B on 8 core.

Exercise 4: Jacobt stencil

a)

Arithmetic intensity: 4 FLOP/ (5 x 8 B) = 0.1 FLOP/B
4 operations (3 additions and one 1 multiplications)
5 data access on double precision FP (4 read and 1 write)

Targeted performance. Because we are on the left of the ridge point, the Jacobi stencil is
memory bounded (see Fig. 1):

10.10 GB/s x 0.1 FLOP/B = 1.00 GFLOP/s on 1 core

72.48 GB/s x 0.1 FLOP/B = 7.24 GFLOP//s on 8 cores.

The obtained GFLOP /s are reported in the table below (and in Fig. 1)

1000 points 10000 points
1 thread | 8 threads | 1 thread | 8 threads
jacobi-naive 3.15 22.52 2.74 14.16

Focusing first in the case with 1000 points, we observe that for 1 single thread, the ob-
tained performance was 3.15 GFLOP /s, while, according to b), a maximum theoretical value
1.00 GFLOP/s should be expected: In Fig. 1, the result of the naive implementation should
be below the roofline model, but it is above. This difference comes from compiler optimiza-
tions and the fact that our roofline model is based on DRAMM bandwidth. However, in this
problem we have cache hits, i.e., the required data is not retrieved from the main memory
every time, but most of the times is accessible through the different cache levels (spatial and
temporal localities), what is much faster. In order to do a more precise estimation, the caches
bandwidths should be considered in a refined version of the roofline model. The same applies
to the case with 7 threads: 22.52 GFLOP /s versus 7.24 GFLOP/s (expected).

On the other hand, when we consider 10000 stencil points, the obtained performance is signif-
icantly worse. Assuming that the data in u is stored in a rowwise way, the values u(i,j-1),
u(i,j), and u(i,j+1) are contiguous in memory (spatial locality). However, the values
u(i-1,j) and u(i+1,j) are at a distance of 2 x 10000 x 8 = 160kB, that is larger than the
cache size (L1), see exercise 2. Therefore, at every iteration, cache misses occur, requiring to
retrieve the data from lower cache levels and the main memory, what slows the access to the
data. Still, the computed performance is superior to the expected one, as L2 and L3 cache
levels are still use, and they present a higher bandwidth than the main memory.

651 [| | T
= 100
~
ol
@)
—
m
O,
Y 10 |- .
= 1 core —_— 8 cores
a8 o Naive 1c o Naive 8c
:§ a Nalve vec 1c 2 Nalve vec 8c
CHES + AVX1le + AVXS8c]
o AVX-block 1¢c ¢ AVX-block 8c
o AVX-peel Ic o AVX-peel 8
* SSE 1c * SSE 8c
| | L
0'85.01 0.1 1 100
Arithmetic Intensity [FLOP/Byte]
(a) n = 1000
651 [T T JHl
- 100
~
[}
@)
—
[
o,
Y 10 |- .
= 1 core —_— 8 cores
= o Naive 1c o Naive 8c
:C} a Nalve vec 1c 2 Naive vec 8c
G + AVXle + AVXS8c |-
¢ AVX-block 1¢ ¢ AVX-block &
o AVX-peel Ic o AVX-peel 8¢
* SSE 1c * SSE 8c
| | 1
0'6.01 0.1 1 100

Arithmetic Intensity [FLOP/Byte]

(b) m = 10000

Figure 1: Peformance of different Jacobi stencil implementations (and optimizations) for n = 1000
and n = 10000.

Exercise 5: Optimized Jacobi stencil

a) In this exercise we explore Data Level Parallelism (DLP): in jacobi-naive-auto-vec, we let
the compiler full freedom for optimizing as much as possible the code'; the files jacobi-sse.c
and jacobi-avx*.c contain different implementations using DLP with intrinsics. All the
computed peformances in GFLOP /s are reported in the table below (as well as in Fig. 1).

We expect the AVX block version to be the most efficient since it subdivides the problem into
blocks of 512 x 512 points, maximiming the L1 cache reuse (hits). However, when 8 threads
are used, jacobi-avx-block is only able to reach a high performance when enough points per
direction are provided, as every thread works on a 512 x 512 points block. On the other hand,
the version jacobi-naive-auto-vec achieves very high performances for 1 and 8 threads and
1000 points just by using the compiler automatic vectorization. However, when the number of
points increases, that performance is bounded by the time to access memory (cache misses),
achieving the same performance as jacobi-naive.

1000 points 10000 points
1 thread | 8 threads | 1 thread | 8 threads
jacobi-naive-auto-vec 4.84 26.56 3.39 14.92
jacobi-avx 4.73 27.85 3.38 14.83
jacobi-avx-block 4.78 7.37 5.73 28.50
jacobi-avx-peel 3.69 19.34 2.40 17.54
jacobi-sse 4.50 28.03 3.18 14.63

b) To beat those performances it is difficult in a general case. But for a fixed number of points
in the stencil, and knowing the cache architecture of a target machine, it may be possible to
tune the jacobi-avx-block version for that specific case and squeeze a few more GFLOP/s,
but not much more, as the problem is memory bounded.

INotice that in the Makefile of the Jacobi stencil, automatic vectorization was disabled for the executable
jacobi-naive.

