
MATH-454 Parallel and High Performance Computing
Lecture 6: Hybrid MPI / OpenMP and mpi4py

Pablo Antolin
Slides of N. Richart, E. Lanti, V. Keller’s lecture notes

April 3 2025

What will we learn today?

Hybrid MPI + OpenMP programming
▶ Introduction
▶ Partitioned point-to-point communications
▶ Matching probe/receive

MPI for Python
This week’s exercise

P. Antolin 2 / 42

Hybrid programming model

Situation

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Interconnection Network

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Interconnection Network

OpenMP OpenMP OpenMP

MPI

P. Antolin 4 / 42

Situation

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Interconnection Network

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Interconnection Network

OpenMP OpenMP OpenMP

MPI

P. Antolin 4 / 42

Situation
Problems

Thread safety? Data visibility? OpenMP private?
Which thread/process can/will call the MPI library?
MPI process placement in the case of multi-CPU processors?
Does my problem fit with the targeted machine?
Levels of parallelism within my problem?

P. Antolin 5 / 42

Situation
Hybrid vs Pure MPI

Pure MPI
+ no code modification (portability).
+ most of the libraries support multi-thread (e.g., BLAS libraries). Thread safety
− does the application’s topology fit the system’s topology?
− useless communications and repeated memory.

Hybrid
+ no messages within a SMP node.
+ less (no) topology problems.
− all threads sleep when master communicates.
− MPI-libs must support (at least) thread safety.

P. Antolin 6 / 42

Topology problems

How to deal with:
topology / mapping? (Which physical core is assigned to which process/thread)
sub-domain decomposition?
halos (ghost) size? halos shapes?
uncessary communications?
computation to communication ratio?

Pure MPI? Hybrid?

A good solution may be: one MPI process per SMP node.

P. Antolin 7 / 42

Halo regions

Halo regions are local copies of remote data that are needed for communications
(ghost rows in Poisson problem)
Halo regions need to be copied frequently.
Using threads reduces the size of halo regions copies that need to be stored.
Reducing halo region sizes also reduces communication requirements.

P. Antolin 8 / 42

Example of halo regions

N

N

u(i , j) =
1
4
(uold(i − 1, j) + uold(i + 1, j)

+uold(i , j − 1) + uold(i , j + 1)− f (i , j) hm hn)

P. Antolin 9 / 42

Example of halo regions

N

N

The domain is decomposed by
lines.

P. Antolin 9 / 42

Example of halo regions

N

N
/p

p domains of size N/p each (1 per
process).

P. Antolin 9 / 42

Example of halo regions

N/p-1

1

N/p

1

N/p

N/p

1

1

N/p

0

0

0

0

N/p+1

N/p+1

N/p+1

Adding ghost lines (halo regions)
before and after

P. Antolin 9 / 42

Example of halo regions

Use ghost lines to communicate
information among pairs of
processes.

P. Antolin 9 / 42

Take-home messages

Always take into account the problems related to the physical topology.
A real application is not as easy as a hello world.
Some clusters have different connectivity topologies: Match them to your problem.
Examples of hardware topologies:
▶ all-to-all
▶ 2D/3D torus
▶ three
▶ . . .

One MPI process per physical node.

P. Antolin 10 / 42

Main messages

Do not use hybrid if the pure MPI code scales ok.
Be aware of intranode MPI behavior.
Always observe the topology dependence of:
▶ Intranode MPI.
▶ Threads’ overheads.

Finally: Always compare the best pure MPI code with the best hybrid code!

P. Antolin 11 / 42

Examples that can benefit from a hybrid approach

MPI codes with a lot of all-to-all communications.
MPI codes with a very poor load balancing at the algorithmic level (less
communications).
MPI codes with memory limitations.
MPI codes that can be easily fine-grained parallelized (at loop level).

P. Antolin 12 / 42

Hybrid MPI/OpenMP hello world

hybrid/hello_world.cc
1 # include <iostream>
2 # include <mpi.h>
3 # include <omp.h>
4

5 int main(int argc, char *argv[]) {
6 int provided, size, rank, nthreads, tid;
7 MPI_Init_thread(&argc, &argv, MPI_THREAD_SINGLE, &provided);
8

9 MPI_Comm_size(MPI_COMM_WORLD, &size);
10 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
11

12 # pragma omp parallel default(shared) private(tid, nthreads)
13 {
14 nthreads = omp_get_num_threads();
15 tid = omp_get_thread_num();
16 std::printf("Hello from thread %i out of %i from process %i out of %i\n", tid,

nthreads, rank, size);↪→
17 }
18 MPI_Finalize();
19 return 0;
20 }

P. Antolin 13 / 42

Hybrid MPI/OpenMP hello world

Compilation using the GNU g++ compiler:

$> mpicxx -fopenmp hello_world.cc -o hello_world

Compilation using the Intel C++ compiler:

$> mpiicpc -fopenmp hello_world.cc -o hello_world

P. Antolin 14 / 42

Submission script the clusters

#!/bin/bash
#SBATCH --ntasks 2
#SBATCH --nodes 2
#SBATCH --cpus-per-task 3
#SBATCH --ntasks-per-node 1
#SBATCH --qos math-454
#SBATCH --account math-454

export OMP_NUM_THREADS=3
srun ./hello_world

P. Antolin 15 / 42

Submission script the clusters

It will start 2 MPI processes and each one will spawn 3 threads

Hello from thread 0 out of 3 from process 0 out of 2
Hello from thread 1 out of 3 from process 0 out of 2
Hello from thread 0 out of 3 from process 1 out of 2
Hello from thread 1 out of 3 from process 1 out of 2
Hello from thread 2 out of 3 from process 0 out of 2
Hello from thread 2 out of 3 from process 1 out of 2

P. Antolin 16 / 42

Changes to your code

Change your MPI initialization routine
▶ MPI_Init is replaced by MPI_Init_thread
▶ MPI_Init_thread has two additional parameters for the level of thread

support required, and for the level of thread support provided by the library
implementation

1 int MPI_Init_thread(int *argc, char ***argv, int required, int
*provided)↪→

Make sure that the provided support matches the required one

1 if (provided < required)
2 MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);

Add OpenMP directives as long as you stick to the level of thread safety you
specified in the call to MPI_Init_thread

P. Antolin 17 / 42

The 4 options for thread support

MPI_THREAD_SINGLE
▶ Only one thread will execute (no multi-threading)
▶ Standard MPI-only application

MPI_THREAD_FUNNELED
▶ Only the Master Thread will make calls to the MPI library
▶ A thread can determine whether it is the master thread by a call to

MPI_Is_thread_main
MPI_THREAD_SERIALIZED
▶ Only one thread at a time will make calls to the MPI library, but all threads

are eligible to make such calls
MPI_THREAD_MULTIPLE
▶ Any thread may call the MPI library at any time

In most cases MPI_THREAD_FUNNELED provides the best choice for hybrid
programs

P. Antolin 18 / 42

The 4 options for thread support

MPI_THREAD_SINGLE
▶ Only one thread will execute (no multi-threading)
▶ Standard MPI-only application

MPI_THREAD_FUNNELED
▶ Only the Master Thread will make calls to the MPI library
▶ A thread can determine whether it is the master thread by a call to

MPI_Is_thread_main
MPI_THREAD_SERIALIZED
▶ Only one thread at a time will make calls to the MPI library, but all threads

are eligible to make such calls
MPI_THREAD_MULTIPLE
▶ Any thread may call the MPI library at any time

In most cases MPI_THREAD_FUNNELED provides the best choice for hybrid
programs

P. Antolin 18 / 42

The 4 options for thread support

Thread support values are monotonic, i.e.
MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED < MPI_THREAD_SERIALIZED
< MPI_THREAD_MULTIPLE

Gets the maximum level of thread support provided by the MPI library

1 int MPI_Query_thread(int *thread_level_provided);

Different processes in MPI_COMM_WORLD can have different thread safety
The level(s) of provided thread support depends on the implementation

P. Antolin 19 / 42

MPI partitioned communications

MPI partitioned communications

New feature from MPI 4.0 standard (June 2021!)
We have already talked about persistent point-to-point communications
Partitioned comms are just persistent comms where the message is constructed in
partitions
Typical case: multi-threading with each thread building a portion of the message

P. Antolin 21 / 42

MPI partitioned communications

Remember the typical cycle for persistent point-to-point communications
Init (Start Test/Wait)* Free

where * means zero or more
Partitioned are very similar

PInit (Start PReady)* Free

1 MPI_Psend_init(msg, parts, count, MPI_INT, dest, tag, info, MPI_COMM_WORLD, &request);
2 MPI_Start(&request);
3 # pragma omp parallel for shared(request)
4 for (int i = 0; i < parts; ++i) {
5 /* compute and fill partition #i of msg, then mark ready: */
6 MPI_Pready(i, request);
7 }
8 while(!flag) {
9 /* Do useful work */

10 MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
11 /* Do useful work */
12 }
13 MPI_Request_free(&request);

P. Antolin 22 / 42

MPI matching probe

Probing reminder

Syntax

1 int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
2 MPI_Status *status);
3

4 int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status
*status);↪→

Check incoming messages without receiving.
Immediate variant returns true if matching message exists.
Can be used in combination with a successive MPI_Get_count for
deducing the size of an incoming message before actually recieving it.
Thus, we can allocate a buffer for holding the message.

P. Antolin 24 / 42

MPI matching probe

We have already talked before about MPI_Probe to obtain information about a
message waiting to be received
This is typically used when the size of the message is unknown (probe, allocate,
receive)

Care must be taken because it is a stateful method:
A subsequent receive [...] will receive the message that was matched by the probe,
if no other intervening receive occurs after the probe [...]
Problem with multi-threading!
Imagine two threads A and B that must do a Probe, Allocation, and Receive

AP −→ AA −→ AR −→ BP −→ BA −→ BR

but may also be

AP −→ BP −→ BA −→ BR −→ AA −→ AR

Thread B stole thread A’s message!

P. Antolin 25 / 42

MPI matching probe

We have already talked before about MPI_Probe to obtain information about a
message waiting to be received
This is typically used when the size of the message is unknown (probe, allocate,
receive)
Care must be taken because it is a stateful method:
A subsequent receive [...] will receive the message that was matched by the probe,
if no other intervening receive occurs after the probe [...]

Problem with multi-threading!
Imagine two threads A and B that must do a Probe, Allocation, and Receive

AP −→ AA −→ AR −→ BP −→ BA −→ BR

but may also be

AP −→ BP −→ BA −→ BR −→ AA −→ AR

Thread B stole thread A’s message!

P. Antolin 25 / 42

MPI matching probe

We have already talked before about MPI_Probe to obtain information about a
message waiting to be received
This is typically used when the size of the message is unknown (probe, allocate,
receive)
Care must be taken because it is a stateful method:
A subsequent receive [...] will receive the message that was matched by the probe,
if no other intervening receive occurs after the probe [...]
Problem with multi-threading!
Imagine two threads A and B that must do a Probe, Allocation, and Receive

AP −→ AA −→ AR −→ BP −→ BA −→ BR

but may also be

AP −→ BP −→ BA −→ BR −→ AA −→ AR

Thread B stole thread A’s message!
P. Antolin 25 / 42

MPI matching probe

The solution of this problem is the matching probe
MPI provides two versions, MPI_Improbe and MPI_Mprobe
It allows to receive only a MPI_Message matching a specific probe

Counterpart operations are the matching receive MPI_Imrecv and MPI_Mrecv
They are used to receive messages that have been previously matched by a
matching probe

P. Antolin 26 / 42

MPI matching probe

The solution of this problem is the matching probe
MPI provides two versions, MPI_Improbe and MPI_Mprobe
It allows to receive only a MPI_Message matching a specific probe

Counterpart operations are the matching receive MPI_Imrecv and MPI_Mrecv
They are used to receive messages that have been previously matched by a
matching probe

P. Antolin 26 / 42

Concluding remarks

Always keep in mind that you are mixing (OpenMP) threads and (MPI) processes
You will need to test your code performance on every machine
There are no magic rules on the best configuration to use
Often 1 MPI task per NUMA region seems to give the best performance

P. Antolin 27 / 42

MPI for Python

mpi4py

Python wrappers for MPI.
Covers most of the features.
Much simpler than Fortran and C interfaces.
Based on pickle serialization.

P. Antolin 29 / 42

Learning by example: Hello, World

mpi4py/ex_0.py

1 from mpi4py import MPI
2

3 comm = MPI.COMM_WORLD
4 rank = comm.Get_rank()
5 size = comm.Get_size()
6

7 print(f'I am process {rank} out of
{size}.')↪→

Output

I am process 1 out of 4.
I am process 3 out of 4.
I am process 0 out of 4.
I am process 2 out of 4.

$> module load intel intel-oneapi-mpi
$> # or module load gcc openmpi
$> module load python py-mpi4py
$> srun -n 4 python ex_0.py

P. Antolin 30 / 42

Learning by example: Simple communication

mpi4py/ex_1.py

1 from mpi4py import MPI
2

3 comm = MPI.COMM_WORLD
4 rank = comm.Get_rank()
5

6 if rank == 0:
7 data = {'a': 7, 'b': 3.14}
8 comm.send(data, dest=1, tag=11)
9 elif rank == 1:

10 data = comm.recv(source=0, tag=11)
11 else:
12 data = None
13 print(rank, data)

Output

0 {'a': 7, 'b': 3.14}
2 None
3 None
1 {'a': 7, 'b': 3.14}

P. Antolin 31 / 42

Learning by example: Non-blocking communication

mpi4py/ex_2.py

1 from mpi4py import MPI
2

3 comm = MPI.COMM_WORLD
4 rank = comm.Get_rank()
5

6 if rank == 0:
7 data = {'a': 7, 'b': 3.14}
8 req = comm.isend(data, dest=1, tag=11)
9 req.wait()

10 elif rank == 1:
11 req = comm.irecv(source=0, tag=11)
12 data = req.wait()
13 else:
14 data = None
15 print(rank, data)

Output

0 {'a': 7, 'b': 3.14}
1 {'a': 7, 'b': 3.14}
2 None
3 None

P. Antolin 32 / 42

Learning by example: efficient numpy arrays

mpi4py/ex_3.py

1 from mpi4py import MPI
2 import numpy as np
3 comm = MPI.COMM_WORLD
4 rank = comm.Get_rank()
5

6 # passing MPI datatypes explicitly
7 data = None
8 if rank == 0:
9 data = np.arange(10, dtype='i')

10 comm.Send([data, MPI.INT], dest=1,
tag=77)↪→

11 elif rank == 1:
12 data = np.empty(10, dtype='i')
13 comm.Recv([data, MPI.INT], source=0,

tag=77)↪→

14 print(rank, data)

Output

0 [0 1 2 3 4 5 6 7 8 9]
1 [0 1 2 3 4 5 6 7 8 9]
2 None
3 None

P. Antolin 33 / 42

Learning by example: efficient numpy arrays

mpi4py/ex_4.py

1 from mpi4py import MPI
2 import numpy as np
3

4 comm = MPI.COMM_WORLD
5 rank = comm.Get_rank()
6

7 # automatic MPI datatype discovery
8 data = None
9 if rank == 0:

10 data = np.arange(10, dtype=np.float64)
11 comm.Send(data, dest=1, tag=13)
12 elif rank == 1:
13 data = np.empty(10, dtype=np.float64)
14 comm.Recv(data, source=0, tag=13)
15 print(rank, data)

Output

0 [0. 1. 2. 3. 4. 5. 6.
7. 8. 9.]↪→

1 [0. 1. 2. 3. 4. 5. 6.
7. 8. 9.]↪→

2 None
3 None

P. Antolin 34 / 42

Learning by example: collective communications (broadcast)

mpi4py/ex_5.py

1 from mpi4py import MPI
2

3 comm = MPI.COMM_WORLD
4 rank = comm.Get_rank()
5

6 if rank == 0:
7 data = {'key1' : 0,
8 'key2' : ('abc', 'xyz')}
9 else:

10 data = None
11 data = comm.bcast(data, root=0)
12 print(rank, data)

Output

0 {'key1': 0, 'key2':
('abc', 'xyz')}↪→

1 {'key1': 0, 'key2':
('abc', 'xyz')}↪→

3 {'key1': 0, 'key2':
('abc', 'xyz')}↪→

2 {'key1': 0, 'key2':
('abc', 'xyz')}↪→

P. Antolin 35 / 42

Learning by example: collective communications (scatter)

mpi4py/ex_6.py

1 from mpi4py import MPI
2

3 comm = MPI.COMM_WORLD
4 size = comm.Get_size()
5 rank = comm.Get_rank()
6

7 if rank == 0:
8 data = [(i+1)**2 for i in range(size)]
9 else:

10 data = None
11 data = comm.scatter(data, root=0)
12 assert data == (rank+1)**2
13 print(rank, data)

Output

0 1
1 4
2 9
3 16

P. Antolin 36 / 42

Learning by example: collective communications (gather)

mpi4py/ex_7.py

1 from mpi4py import MPI
2

3 comm = MPI.COMM_WORLD
4 size = comm.Get_size()
5 rank = comm.Get_rank()
6

7 data = (rank+1)**2
8 data = comm.gather(data, root=0)
9 if rank == 0:

10 for i in range(size):
11 assert data[i] == (i+1)**2
12 else:
13 assert data is None
14 print(rank, data)

Output

2 None
0 [1, 4, 9, 16]
1 None
3 None

P. Antolin 37 / 42

Learning by example: numpy collective communications (broadcast)

mpi4py/ex_8.py

1 from mpi4py import MPI
2 import numpy as np
3

4 comm = MPI.COMM_WORLD
5 rank = comm.Get_rank()
6

7 if rank == 0:
8 data = np.arange(5, dtype='i')
9 else:

10 data = np.empty(5, dtype='i')
11 comm.Bcast(data, root=0)
12 for i in range(5):
13 assert data[i] == i
14 print(rank, data)

Output

0 [0 1 2 3 4]
1 [0 1 2 3 4]
2 [0 1 2 3 4]
3 [0 1 2 3 4]

P. Antolin 38 / 42

Learning by example: numpy collective communications (gather)

mpi4py/ex_9.py

1 import numpy as np
2

3 comm = MPI.COMM_WORLD
4 size = comm.Get_size()
5 rank = comm.Get_rank()
6

7 sendbuf = np.zeros(5, dtype='i') + rank
8 recvbuf = None
9 if rank == 0:

10 recvbuf = np.empty([size, 5], dtype='i')
11 comm.Gather(sendbuf, recvbuf, root=0)
12 if rank == 0:
13 for i in range(size):
14 assert np.allclose(recvbuf[i,:], i)
15 print(rank, recvbuf)

Output

3 None
0 [[0 0 0 0 0]
[1 1 1 1 1]
[2 2 2 2 2]
[3 3 3 3 3]]

2 None
1 None

P. Antolin 39 / 42

Learning by example: numpy collective communications (scatter)

mpi4py/ex_10.py

1 from mpi4py import MPI
2 import numpy as np
3

4 comm = MPI.COMM_WORLD
5 size = comm.Get_size()
6 rank = comm.Get_rank()
7

8 sendbuf = None
9 if rank == 0:

10 sendbuf = np.empty([size, 5], dtype='i')
11 sendbuf.T[:,:] = range(size)
12 recvbuf = np.empty(5, dtype='i')
13 comm.Scatter(sendbuf, recvbuf, root=0)
14 assert np.allclose(recvbuf, rank)
15 print(rank, recvbuf)

Output

3 [3 3 3 3 3]
1 [1 1 1 1 1]
2 [2 2 2 2 2]
0 [0 0 0 0 0]

P. Antolin 40 / 42

Poisson exercise

Parallelization of the Poisson code

N

N

This finite difference (5 points stencil)
computes the solution of the Poisson
equation in 2D in an iterative manner.
The equation is given by:

u(i , j) =
1
4
(uold(i − 1, j) + uold(i + 1, j)

+uold(i , j − 1) + uold(i , j + 1)− f (i , j) hm hn)

P. Antolin 42 / 42

Parallelization of the Poisson code

N

N
Parallelize the Poisson 2D problem
using the Messages Passing
Interface (MPI)

P. Antolin 42 / 42

Parallelization of the Poisson code

N

N
The memory allocation is done in
the C default manner, “Row-Major
Order”: make your domain
decomposition by lines

P. Antolin 42 / 42

Parallelization of the Poisson code

N

N
/p p domains of size N/p each (1 per

process)

P. Antolin 42 / 42

Parallelization of the Poisson code

N/p-1

1

N/p

1

N/p

N/p

1

1

N/p

0

0

0

0

N/p+1

N/p+1

N/p+1

Adding ghost lines before and after

P. Antolin 42 / 42

Parallelization of the Poisson code

Use the ghost lines to receive the
missing local data

P. Antolin 42 / 42

Parallelization of the Poisson code

Start using MPI_Sendrecv to
implement the communications
You can use the number of
iterations as a check
Once it is working try to use
non-blocking communications

P. Antolin 42 / 42

	What will we learn today?
	Hybrid programming model
	A simple hello world example
	Prepare your code for hybrid execution
	MPI partitioned communications
	MPI matching probe
	MPI for Python
	Poisson exercise

