

MATH-454 Parallel and High Performance Computing Lecture 8: Advanced GPU computing

Pablo Antolin

Slides of N. Varini's lecture notes

April 17 2025

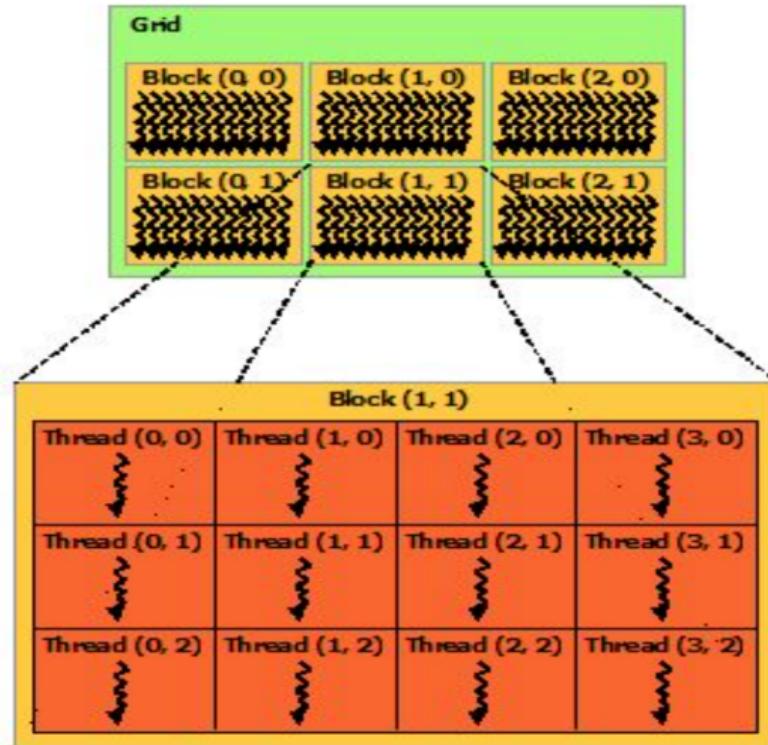
- Recap
- Thread Cooperation in GPU Computing
- GPU Memory Model
 - ▶ Shared memory
 - ▶ Constant memory
 - ▶ Global memory
- Test cases

- Performs operations on a data set organized into a common structure (e.g., an array)
- A set of tasks work **collectively and simultaneously** on the same structure with each task operating on its own part of the structure
- Tasks perform identical operations on their parts of the structure. Operations on each part must be data independent
- CUDA provide built-in variables in order to access to different data: `threadIdx`, `blockIdx`, `blockDim`, ...

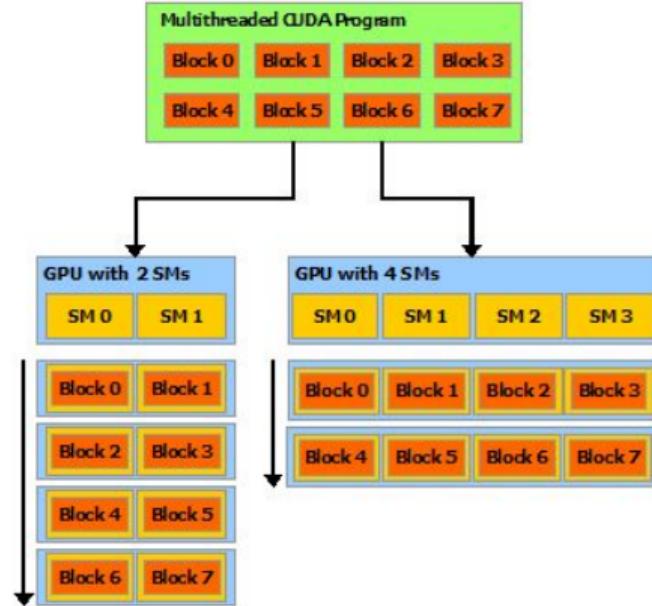
- GPUs are suited for number crunching problems
- Identical operations executed on many data elements in parallel
- Lots of transistors are dedicated to the computation

- We know that GPUs are pieces of hardware that can run many threads
- Threads are organized in grids of blocks
- Threads are executed in warps (32 threads) in Streaming Multiprocessors (SM)
- But, how well do we need to know the hardware in order to obtain good performance?
- GPUs has different memory levels

- Thread blocks and grids can be 1D, 2D or 3D
- Dimensions set at launch time
- Thread blocks and grids do not need to have the same dimensionality, e.g. 1D grid of 2D blocks



- Blocks from the grid are distributed across the SM
- The programmer has no control on this distribution
- A block will execute on one (and only one) SM

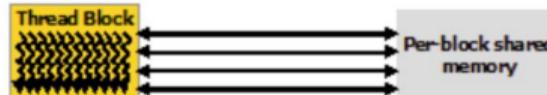
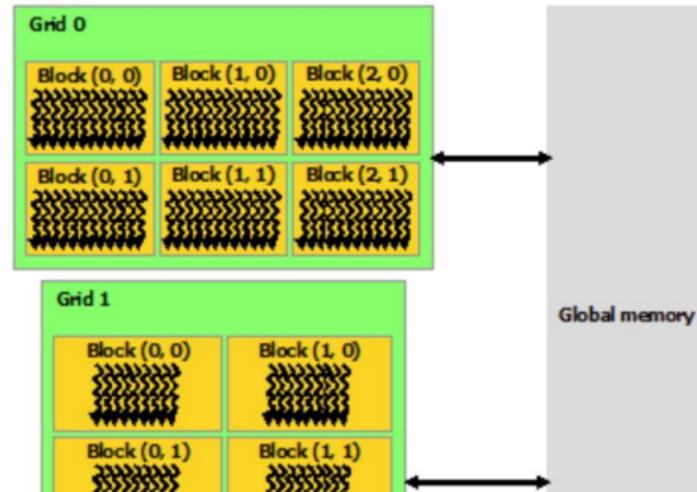


- Any possible distribution of blocks could be valid
 - ▶ Can run in any order
 - ▶ Can run sequentially or concurrently
- Blocks might need to be synchronized once in a while (more later)
- Independence requirements gives scalability
- There are mechanisms for synchronization among blocks, but we don't cover it in this course, so we consider them as independent.

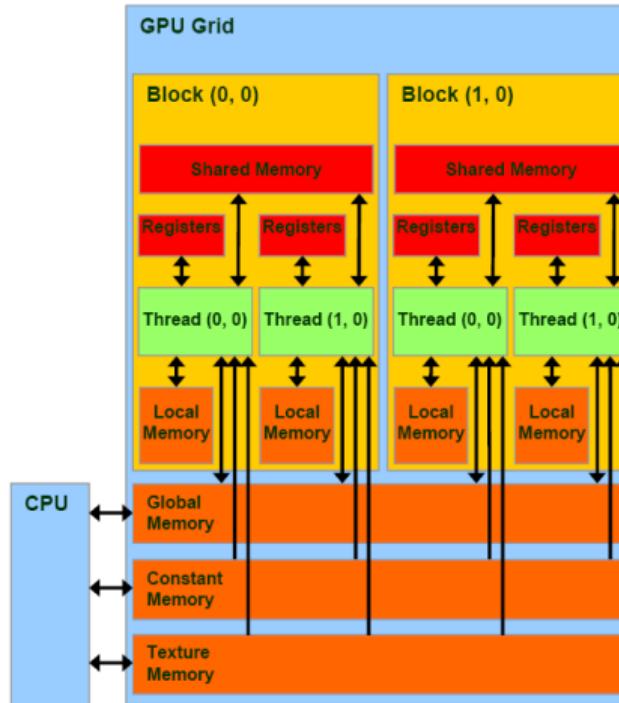
- However, within a block, CUDA permits **non data-parallel approaches**
 - ▶ Implemented via control-flows statements in a kernel
 - ▶ Threads are free to execute unique paths through a kernel
- Since all threads within a block are active at the same time they can communicate between each other

CUDA threads may access data from **multiple memory spaces** during their execution.

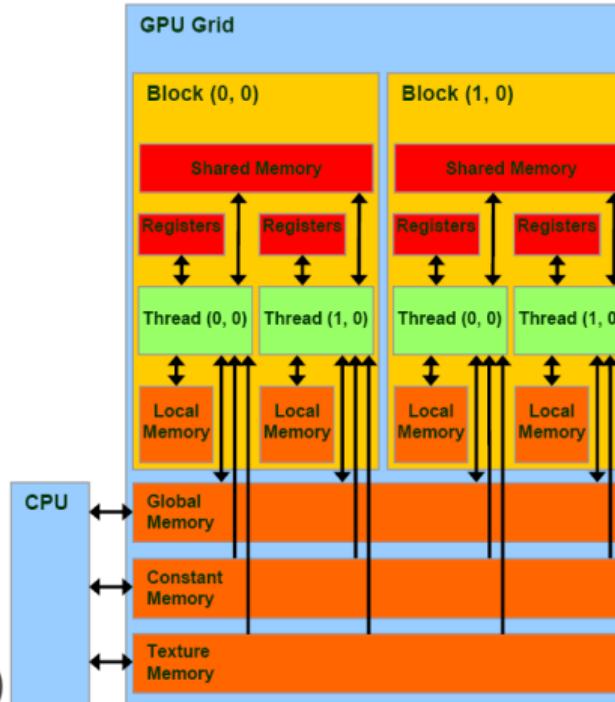
- Each thread has its own registers private local memory.
- Each thread block has shared memory visible to all threads of the block and with the same lifetime as the block.
- All threads have access to the same global memory (and constant and texture memories).



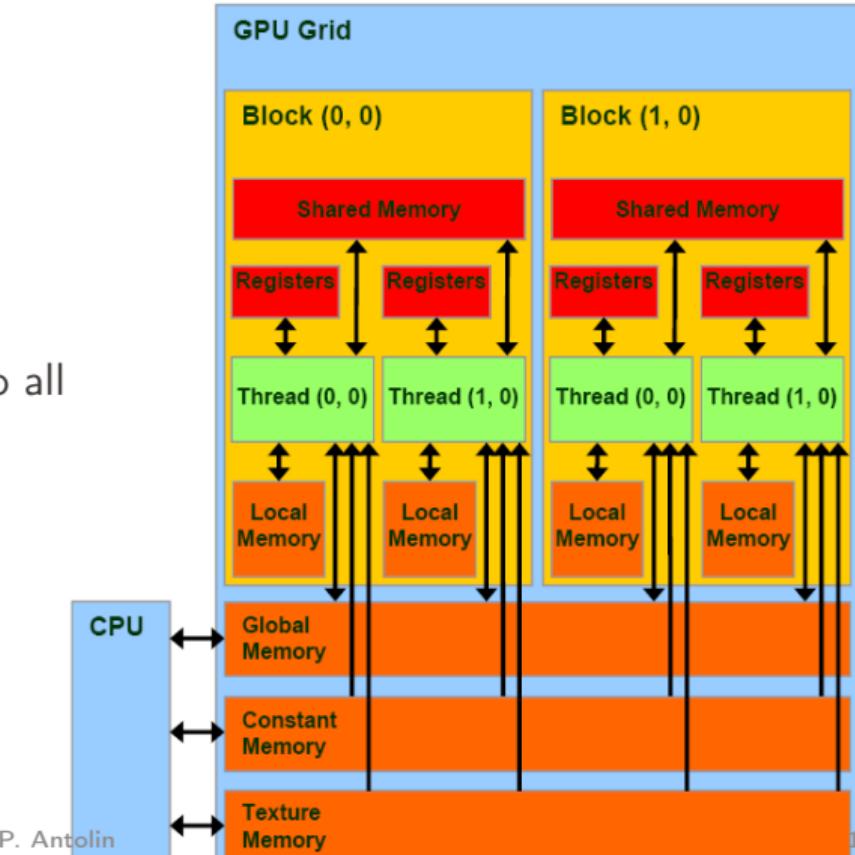
- Transfer to/from CPU is very slow
- Global memory is slow
- Texture, Constant, and Shared Memory are fast
- Registers are very fast



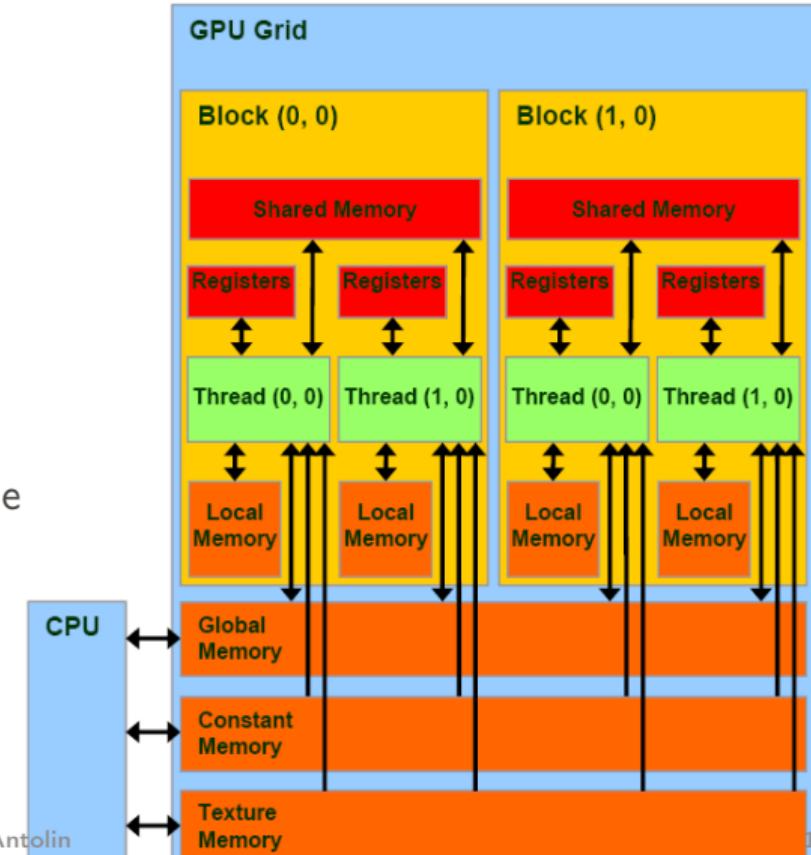
- Visible by all threads
- Read/write
- Shared between blocks and grids
- Stays alive during multiple kernel executions
- Slow access
- Programmer explicitly manages allocation and deallocation with cuda API (`cudaMallocManaged`, `cudaFree`)



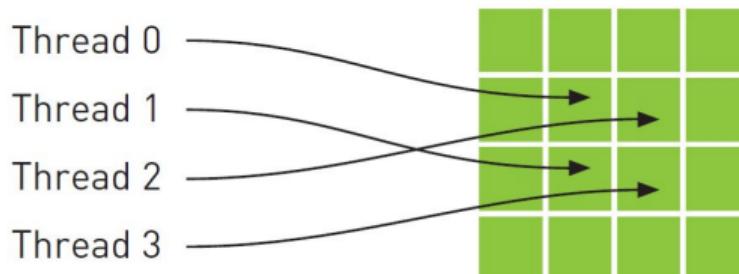
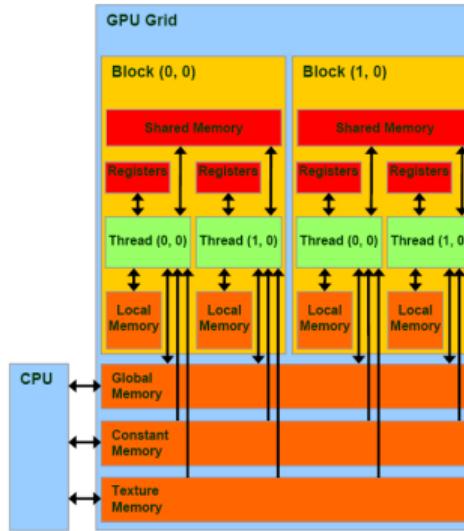
- Special region of device memory
- Read-only in device
- Cached in multiprocessor
- Fairly quick, cache can broadcast to all active threads
- It is small: 64KB in NVIDIA V100
- To use when:
 - ▶ All threads access to the same location
 - ▶ Data is constant



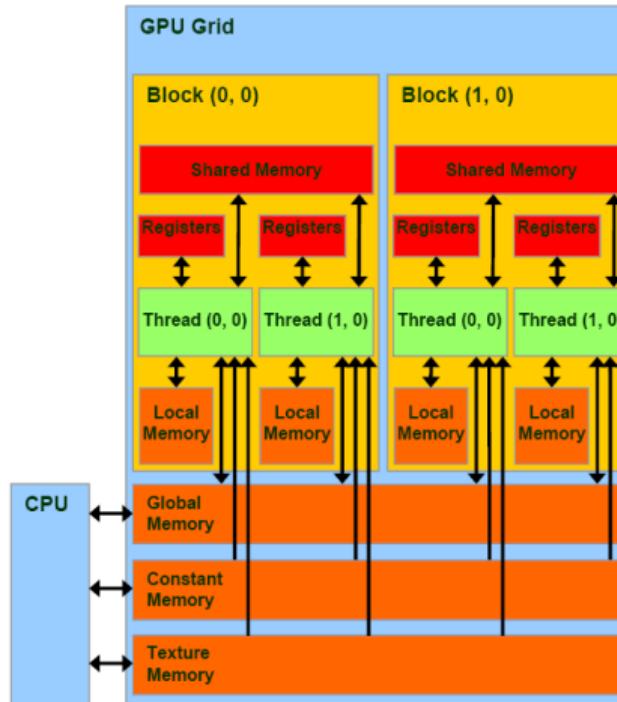
- Read-only from kernel
- Constants are declared at file scope
 - ▶ `__device__ __constant__`
- Constant values are set from host code
 - ▶ `cudaMemcpyToSymbol()`



- Texture caches are designed for graphics applications where memory access patterns exhibit a great deal of **spatial locality**.
- A thread is likely to read from an address “near” to the address that nearby threads area

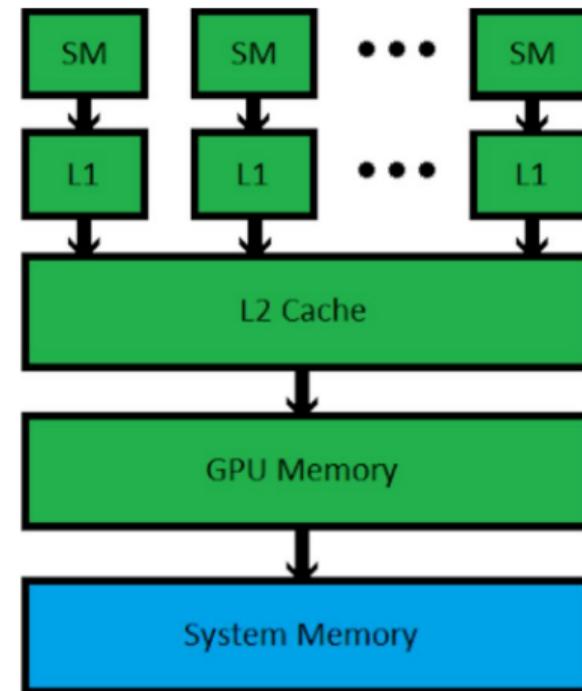


- High performance memory
- Read/write per block
- Memory is shared within a block
- Very fast
 - ▶ 2 orders of magnitude lower latency than global memory
 - ▶ Order of magnitude higher bandwidth than global memory
- In V100, up to 128 KB per multiprocessor, but a maximum of 48 KB per block

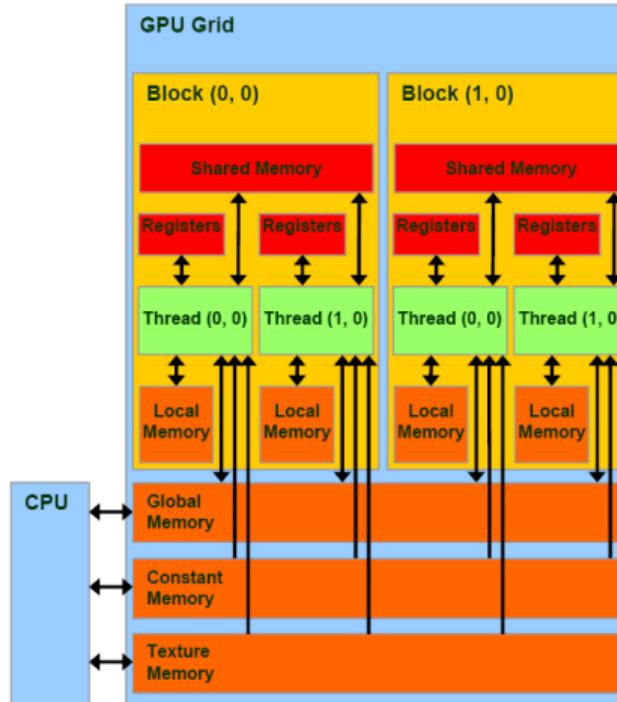


- Shared memory has block scope (stays alive while the block lives)
- Only visible to threads in the same block
- Threads can share results, avoid redundant computations
- Threads can share memory access (avoid redundant accesses to global memory)
- Similar benefits as CPU cache, however, must be explicitly managed by the programmer with the qualifier `__shared__`

- When a variable is declared in shared memory the compiler creates a copy of that variable for each block.
- Every thread within the blocks sees this memory, can access and modify its content. Threads from other blocks do not see the same memory.
- This provides an excellent means by which threads within a block can communicate and collaborate on computations.
- However, threads have to be synchronized explicitly.



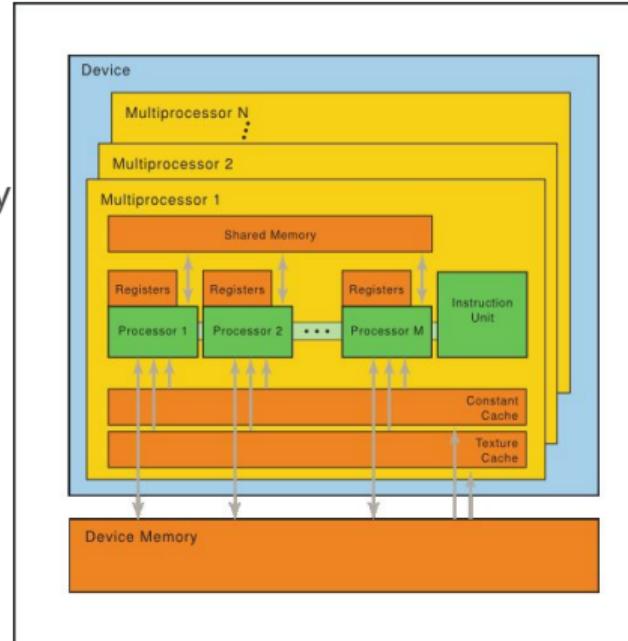
- Part of the global memory private to a thread.
- Read/write
- Slow
- Used for whatever does not fit into registers (including arrays)
- http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf



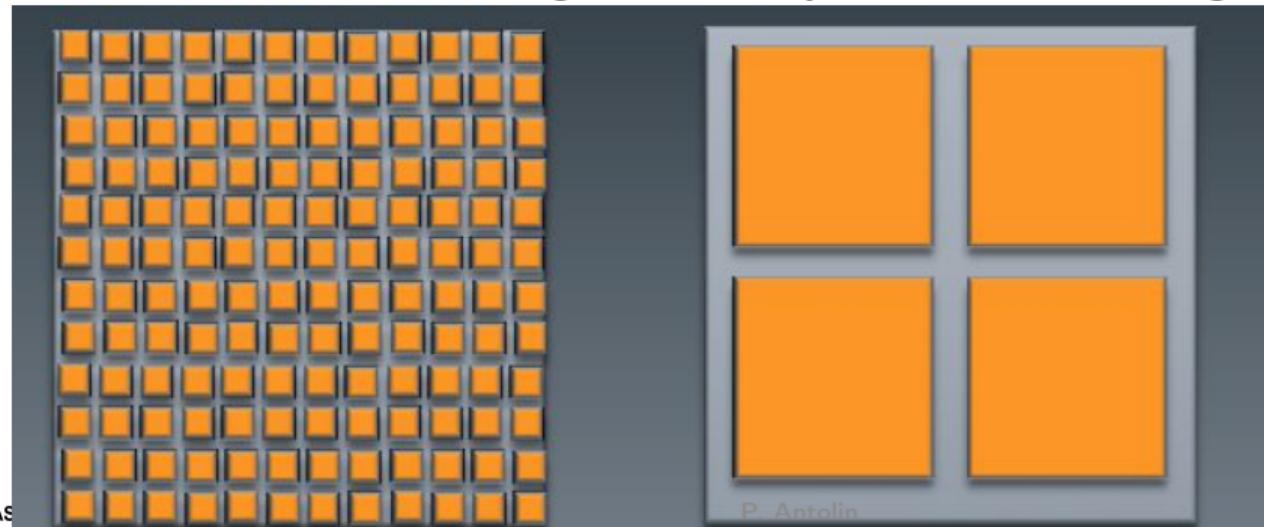
- Variable declared within a kernel is allocated per thread
- It is only accessible by the threads
- It has the lifetime of a thread

```
1  __global__  
2  void kernel() {  
3      // Each thread has its own copy of idx and  
4      //      array  
5      int idx = threadIdx.x + blockIdx.x * blockDim.x;  
6      float array[16];  
7  }
```

- Compilers control where these variables are stored in physical memory (programmer does not have control)
- Registers: fastest memory, on chip
- Local memory: when registers are not available compilers put off chip



- Each multiprocessor has limited amount of memory
- Limits amount of blocks we can have
- $\# \text{blocks} \times \text{mem_used_per_block} \leq \text{total memory}$
- Either lots of blocks using little memory, or fewer blocks using lots of memory

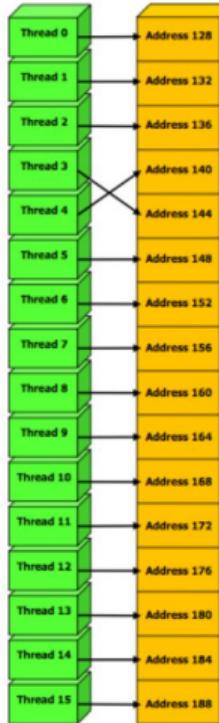


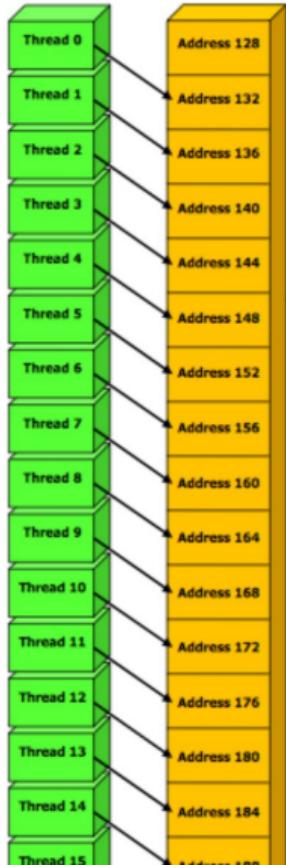
- Register memory is limited!
- Shared memory in blocks is limited!
- Can have many threads using fewer registers, or few threads using many registers
- What does not fit into registers goes to local memory (slow).

- Global accesses: slow!
- Can be sped up when memory is contiguous
 - ▶ All threads in a warp execute the same instruction
 - ▶ During a load the hardware detect whether all threads access to consecutive memory locations.
 - ▶ If thread 0 access location n , thread 1 to location $n+1$, thread 31 to location $n+31$ the all accesses are **coalesced**: combined in a single memory access.
 - ▶ Coalesced access are: **contiguous, in-order, aligned**

- Contiguous = memory is together
- Do not skip addresses
- Example of non-contiguous memory
 - ▶ Left: Address 140 skipped
 - ▶ Right: Lots of addresses skipped

- In-order access
- Access addresses in order in memory
- Examples of non-ordered accesses
 - ▶ Thread 3 and 4 swapped accesses

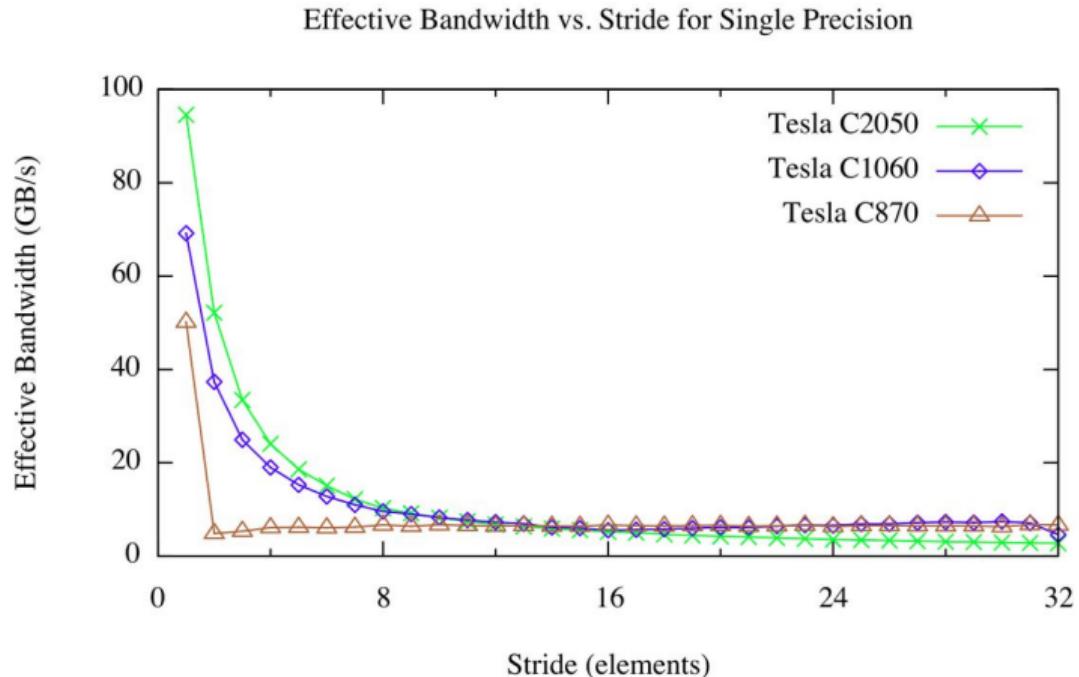




Bad alignment

- Built-in types force alignment
- `float3(12B)` takes up the same space as `float4(16B)`
- `float3` arrays are not aligned;
- To align a struct use `__align__(x)` // `x = 4, 8, 16`
- `CudaMalloc` aligns the start of each block automatically

```
1 template<typename T>
2 __global__
3 void stride(T *a, int s)
4 {
5     int i = (blockDim.x * blockIdx.x + threadIdx.x) * s;
6     a[i] = a[i] + 1;
7 }
```



- It is on-chip memory → much faster
- Latency can be $\sim 100x$ lower than global memory access
- Allocated per block. All the threads can access to it.
- If threads A and B load data from global memory and write in shared there could be race conditions → explicit synchronization

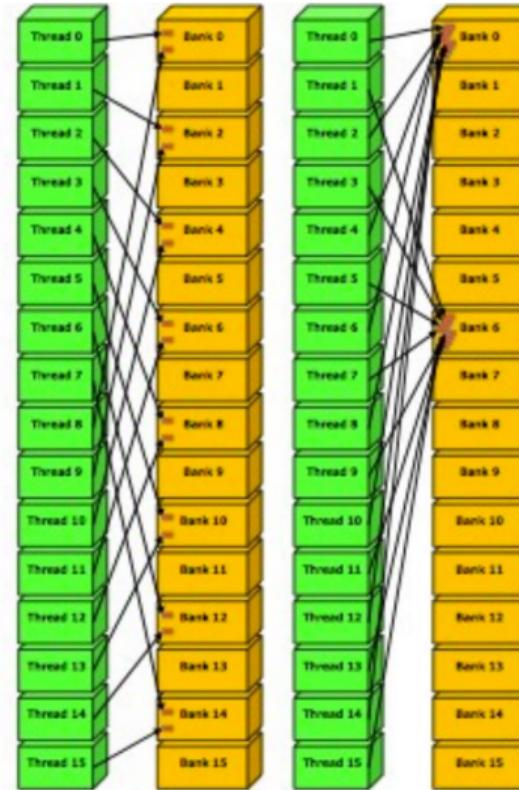
```
1  __global__ void staticFunction(int *arr, int N)
2  {
3      __shared__ int shared_array[THREADS_PER_BLOCK]; //shared block memory
4      int idx = blockIdx.x * blockDim.x + threadIdx.x;
5
6      // ... calculate results
7      shared_array[threadIdx.x] = results;
8
9      //synchronize the shared threads writing to the shared memory cache
10     __syncthreads();
11
12     // read the results of another thread in the current thread
13     int val = shared_array[(threadIdx.x + 1) % THREADS_PER_BLOCK];
14
15     arr[idx] = val; // write back the value to global memory
16 }
```

```
1  __global__  
2  void dynamicFunction(int *arr, int N)  
3  {  
4      extern __shared__ int local_array[];  
5  
6      ...  
7  }  
8  
9  ...  
10  
11 dynamicFunction<<<1,N,N*sizeof(int)>>>(arr,N)
```

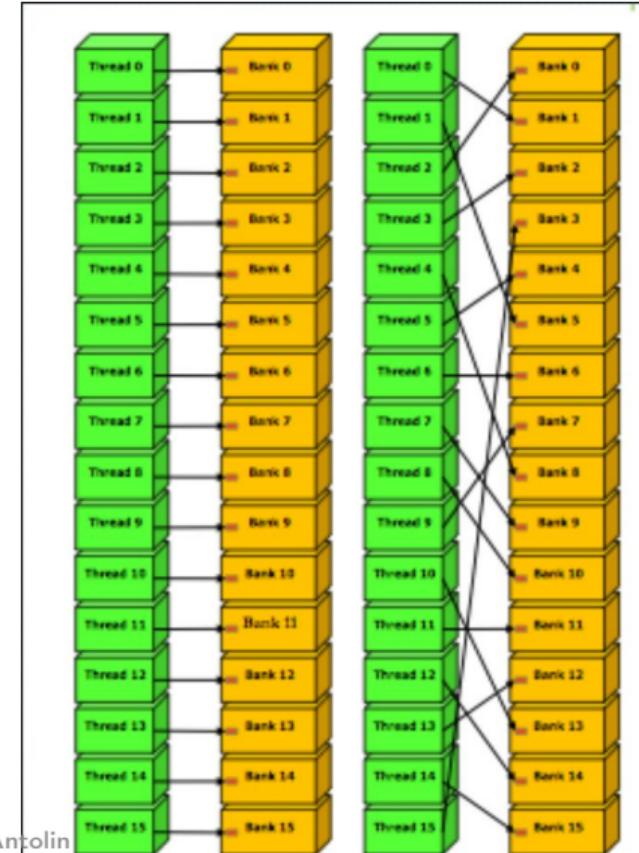
- The amount of shared memory is not known till runtime
- The amount of memory must be specified as 3rd parameter when then kernel is launched

- To achieve high memory bandwidth for concurrent access, shared memory is divided into banks that cannot be accessed simultaneously.
- If multiple threads requested addresses map to the same memory bank, the accesses are serialized.
- The hardware splits a conflicting memory request into as many separate conflict-free requests as necessary, decreasing the effective bandwidth by a factor equal to the number of colliding memory requests.
- To minimize bank conflicts, it is important to understand how memory addresses map to memory banks.
- Shared memory banks are organized such that successive 32-bit words are assigned to successive banks and the bandwidth is 32 bits per bank per clock cycle.
- For devices of compute capability 7.X, the warp size is 32 threads and the number of banks is also 32.

Bad: many threads trying to access to the same bank



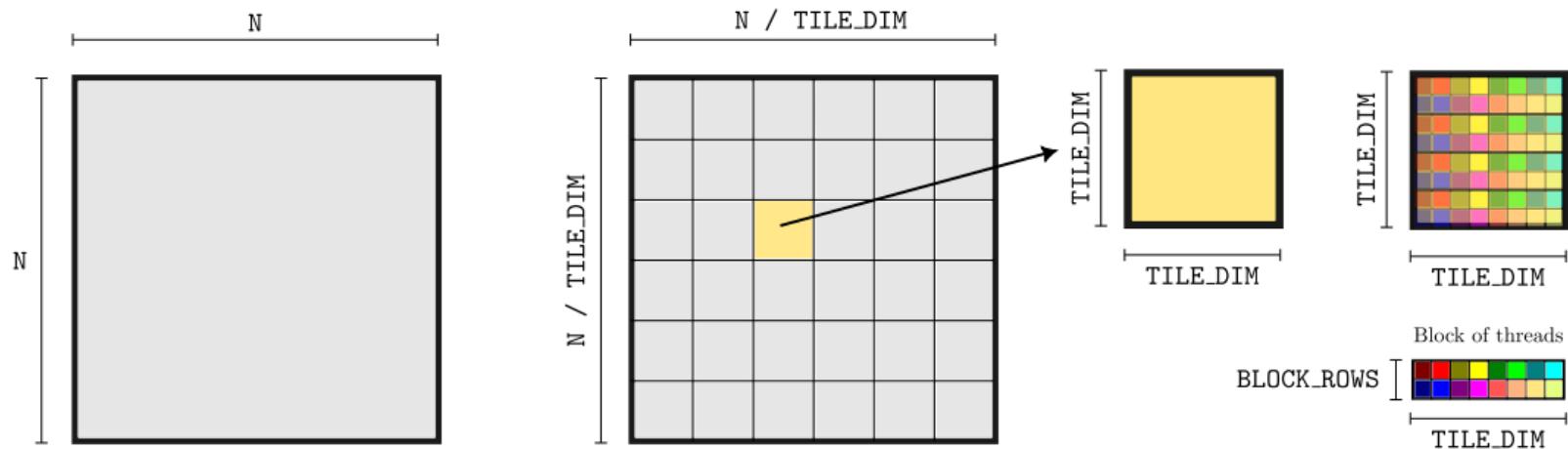
Good: Few to no bank conflicts



Banks service 32-bit words at a time at addresses mod 64

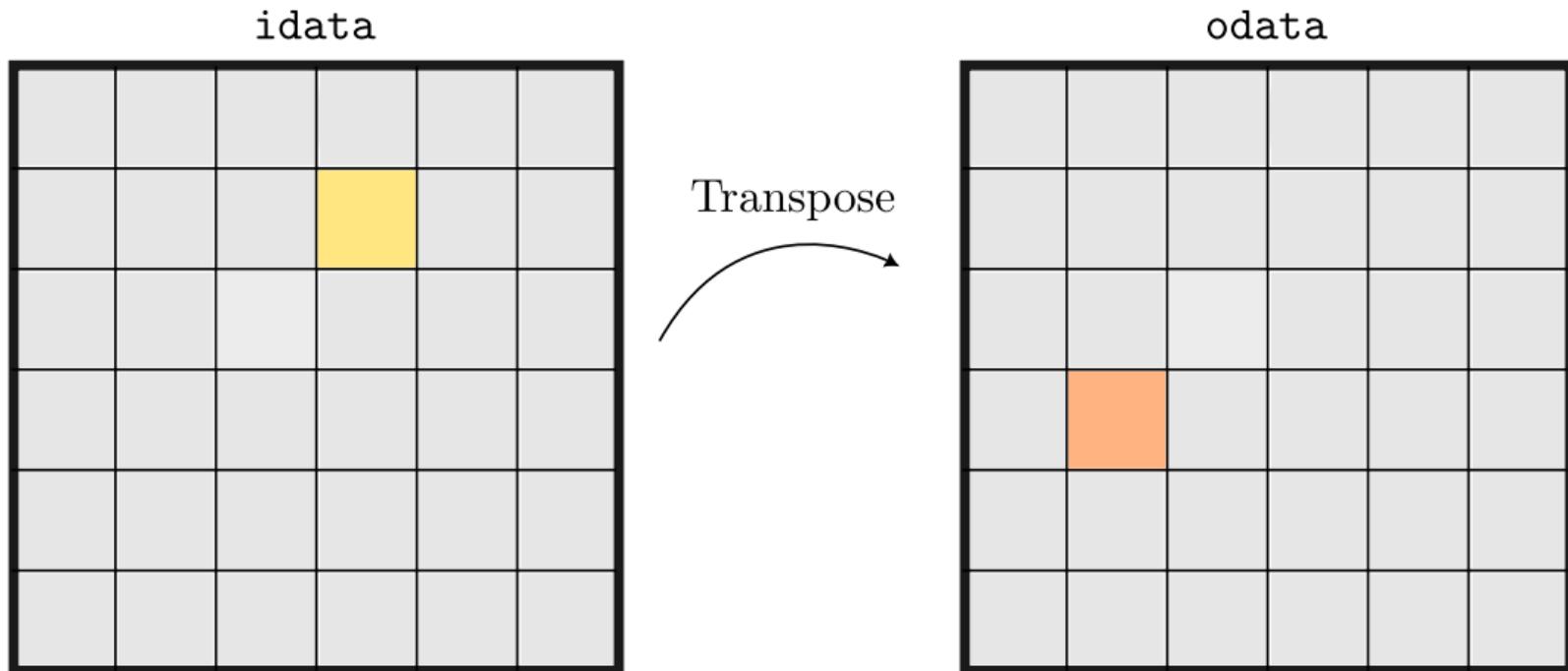
- Bank 0 manages 0x00, 0x40, 0x80, etc., bank 1 manages 0x04, 0x44, 0x84, etc.
- Want to avoid multiple thread access to same bank
 - ▶ Usually a problem if many threads access to the same bank
 - ▶ Padding if necessary
 - ▶ Last thing to worry about for performance

- This exercise is based on
<https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/>
- The code we wish to optimize is a transpose of a matrix of single precision values that operates out-of-place, i.e., the input and output are separate arrays in memory.
- **Data is allocated by row.** For simplicity , we consider square matrices with number of rows multiple of 32.
- All kernels in this study launch blocks of 32×8 threads (TILE_DIM=32, BLOCK_ROWS=8 in the code), and each thread block transposes (or copies) a tile of size 32×32 .
- Using a thread block with fewer threads than elements in a tile is advantageous for the matrix transpose because each thread transposes four matrix elements, so much of the index calculation cost is amortized over these elements.



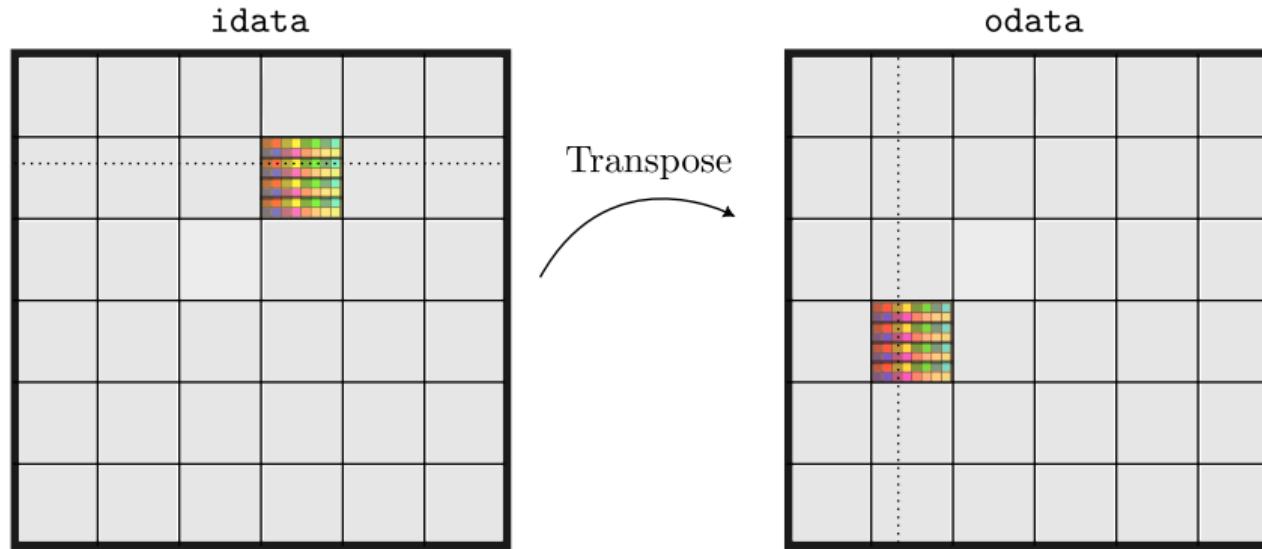
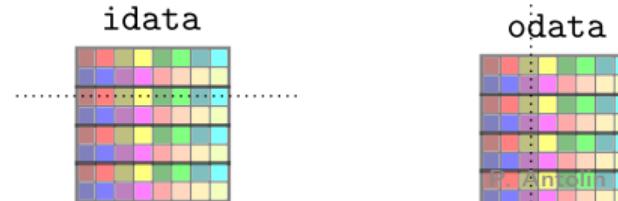
```
1  __global__  
2  void copy(float *odata, const float *idata) {  
3      int x = blockIdx.x * TILE_DIM + threadIdx.x;  
4      int y = blockIdx.y * TILE_DIM + threadIdx.y;  
5      int N = blockDim.x * TILE_DIM;  
6  
7      for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)  
8          odata[(y + j) * N + x] = idata[(y + j) * N + x];  
9  }
```

- Each thread copies TILE_DIM/BLOCK_ROWS values
- TILE_DIM must be used to compute the indices x, y
- This implementation is used as a reference of bandwidth



```
1  __global__  
2  void transposeNaive(float *odata, const float *idata) {  
3      int x = blockIdx.x * TILE_DIM + threadIdx.x;  
4      int y = blockIdx.y * TILE_DIM + threadIdx.y;  
5      int N = blockDim.x * TILE_DIM;  
6  
7      for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)  
8          odata[x * N + (y + j)] = idata[(y + j) * N + x];  
9  }
```

- The only difference is that the indices for odata are swapped.
- The access to idata is coalesced while for odata is not.



Routine	Effective Bandwidth [GB/s, ECC enabled]	
	Tesla M2050	Tesla K20c
copy	105.2	136.0
transposeNaive	18.8	55.3

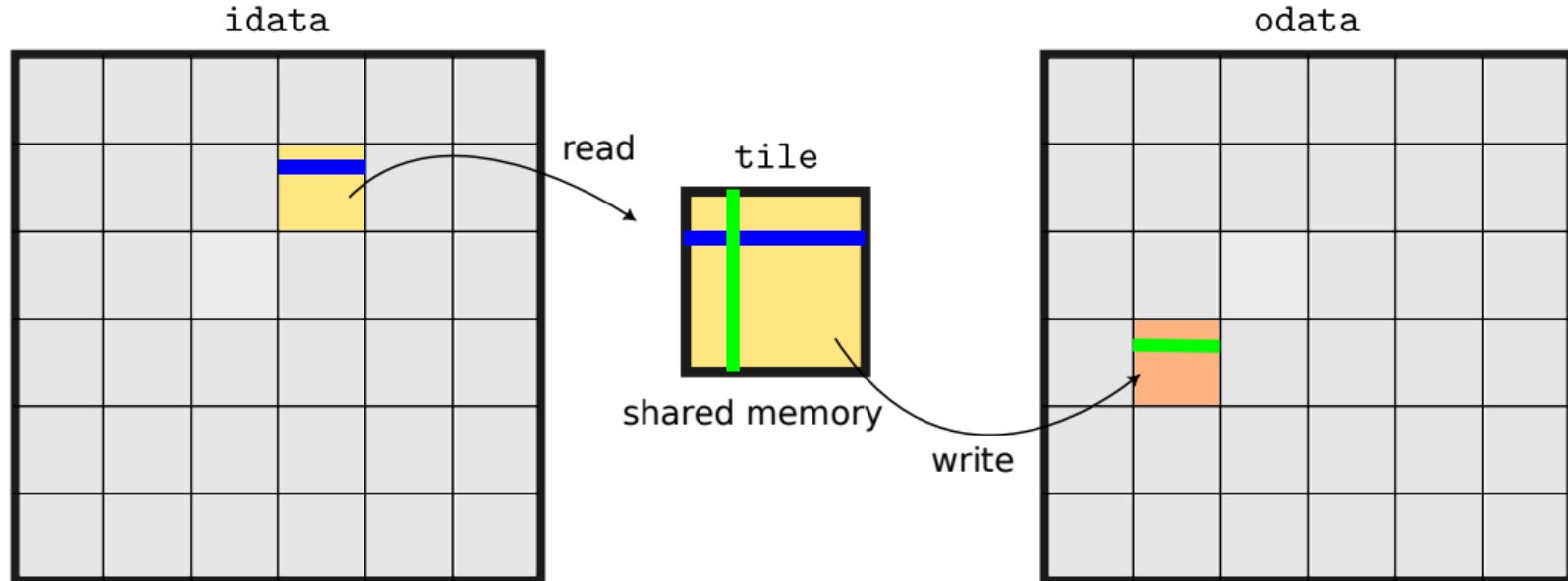
- The transposeNaive bandwidth is a fraction of the copy.

```
1  __global__ void transposeCoalesced(float *odata, const float *idata) {  
2  
3      __shared__ float tile[TILE_DIM][TILE_DIM];  
4  
5      int x = blockIdx.x * TILE_DIM + threadIdx.x;  
6      int y = blockIdx.y * TILE_DIM + threadIdx.y;  
7      int N = gridDim.x * TILE_DIM;  
8  
9      for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)  
10         tile[threadIdx.y+j][threadIdx.x] = idata[(y+j) * N + x];  
11  
12      __syncthreads();  
13  
14      // ... continues in next slide
```

- In the first loop, a warp of threads reads contiguous data from `idata` into rows of the shared memory tile

```
1  __syncthreads();  
2  
3  // ... continues from previous slide  
4  
5  // Transpose block offset  
6  x = blockIdx.y * TILE_DIM + threadIdx.x;  
7  y = blockIdx.x * TILE_DIM + threadIdx.y;  
8  
9  for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)  
10    odata[(y+j) * N + x] = tile[threadIdx.x][threadIdx.y+j];  
11 }
```

- After recalculating the array indices, a column of the shared memory tile is written to contiguous addresses in `odata`
- Because threads write in different data to `odata` than they read from `idata`, we must use a block-wise barrier synchronization `__syncthreads()`



Routine	Effective Bandwidth (GB/s, ECC enabled)	
	Tesla M2050	Tesla K20c
copy	105.2	136.0
transposeNaive	18.8	55.3
transposeCoalesced	51.3	97.6

- The results improved a lot but they are still far from copy.
- Copy data to shared memory and synchronization might be responsible for slow down.

```
1  __global__ void copySharedMem(float *odata, const float *idata) {  
2  
3      __shared__ float tile[TILE_DIM * TILE_DIM];  
4  
5      int x = blockIdx.x * TILE_DIM + threadIdx.x;  
6      int y = blockIdx.y * TILE_DIM + threadIdx.y;  
7      int N = blockDim.x * TILE_DIM;  
8  
9      for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)  
10          tile[(threadIdx.y+j) * TILE_DIM + threadIdx.x] = idata[(y+j)  
11                           * N + x];  
12  
13      __syncthreads();  
14      // ... continues in next slide
```

```
1  __syncthreads();
2  // ... continues from previous slide
3
4  for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
5      odata[(y+j)*width + x] = tile[(threadIdx.y+j)*TILE_DIM +
6          →    threadIdx.x];
6 }
```

- The `__syncthreads` is technically not needed (no race conditions)
- Included to mimic the behavior above
- The problem is not the barrier or the thread synchronization

Routine	Effective Bandwidth (GB/s, ECC enabled)	
	Tesla M2050	Tesla K20c
copy	105.2	136.0
copySharedMem	104.6	152.3
transposeNaive	18.8	55.3
transposeCoalesced	51.3	97.6

- For a shared memory tile of 32×32 elements, all elements in a column of data map to the same shared memory bank.
- Worst case scenario: reading a column of data results in a 32-way bank conflict.
- the solution for this is simply to pad the width in the declaration of the shared memory tile, making the tile 33 elements wide rather than 32.

```
1 __shared__ float tile[TILE_DIM] [TILE_DIM + 1];
```

Routine	Effective Bandwidth [GB/s, ECC enabled]	
	Tesla M2050	Tesla K20c
copy	105.2	136.0
copySharedMem	104.6	152.3
transposeNaive	18.8	55.3
transposeCoalesced	51.3	97.6
transposeNoBankConflicts	99.5	144.3

- Best memory management
- Balances memory optimization with parallelism
- Break problem up into a coalesced chunks
- Process data in shared memory, then copy to global
- Avoid bank conflicts!