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MATH 454 Parallei and ngh Performance Computlng
Lecture 8: Advanced GPU computing

Pablo Antolin
Slides of N. Varini’s lecture notes

April 17 2025

m SCITAS




m Recap

Thread Cooperation in GPU Computing

GPU Memory Model
» Shared memory
» Constant memory
» Global memory

Test cases
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Data-Parallel Computing - Recap

m Performs operations on a data set organized into a common structure (e.g., an
array)

m A set of tasks work collectively and simultaneously on the same structure with
each task operating on its own part of the structure

m Tasks perform identical operations on their parts of the structure. Operations on
each part must be data independent

m CUDA provide built-in variables in order to access to different data: threadIdx,
blockIdx, blockDim,

W SCITAS P. Antolin 3 /51



Data-Parallel Computing on the GPUs - Recap

m GPUs are suited for number crunching problems
m |dentical operations executed on many data elements in parallel

m |ots of transistors are dedicated to the computation

CPU GPU
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The CUDA Programming Model

We know that GPUs are pieces of hardware that can run many threads

Threads are organized in grids of blocks

Threads are executed in warps (32 threads) in Streaming Multiprocessors (SM)

But, how well do we need to know the hardware in order to obtain good
performance?

GPUs has different memory levels

W SCITAS P. Antolin 5 /51



CUDA Thread Hierarchy

Grid

Block (@ 0)  Blodk(1,0) Block (2 0)

Block (@ 1)“ Blodc (1, 1) (2.1)
m Thread blocks and grids can be 1D, W W W
2D or 3D

m Dimensions set at launch time

m Thread blocks and grids do not need

to have the same dimensionality, e.g.
1D grid of 2D blocks
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The CUDA Programming Model

m Blocks from the grid are distributed | |
across the SM l 1
m The programmer has no control on GPU with 25Hs GPU with 45M
thls dIStrlbutlon ‘ SM O ” SM1 | | SMO || SM1 H S5M2 ” S5M3

= A block will execute on one (and only (oo Haks] | medko Bk sz | oks
one) SM e S| ks ook [
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Blocks Must Be Independent!

Any possible distribution of blocks could be valid

» Can run in any order

» Can run sequentially or concurrently

Blocks might need to be synchronized once in a while (more later)

Independence requirements gives scalability

There are mechanisms for synchronization among blocks, but we don't cover it in
this course, so we consider them as independent.
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The CUDA Programming Model

m However, within a block, CUDA permits non data-parallel approaches

» Implemented via control-flows statements in a kernel
» Threads are free to execute unique paths through a kernel

m Since all threads within a block are active at the same time they can communicate
between each other

W SCITAS P. Antolin 9 /51



Memory Hierarchy

Thread
- . Perthread local

memory

CUDA threads may access data Tivead Block
from multiple memory spaces P
during their execution.

m Each thread has its own registers s
private local memory. Blodk (0, 0) || Block (1, 0) || Block (2. 0)

m Each thread block has shared memory
visible to all threads of the block and
with the same lifetime as the block.

Grid 1
Global memory
m All threads have access to the same Bock(0.0) | Block(1 0)
global memory (and constant and
= scias texture memories)_ P. Antolin m) m) 10 / 51



GPU Memory Overview

GPU Grid
Block (0, 0) Block (1, 0)
= Transfer to/from CPU is very slow “
m Global memory is slow ! ! ! v
Thread (0, 0) | Thread (1, 0) | Thread (0, 0) Thread (1, 0)
m Texture, Constant, and Shared
Memory are fast
CPU
. +—
m Registers are very fast
9
)
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Global Memor

m Visible by all threads GPU Grid

Block (0, 0) Block (1, 0)

m Read/write

m Shared between blocks and grids ! ’ ’

m Stays alive during multiple kernel
executions

Thread (0, 0)

Thread (1, 0)| | Thread (0, 0)

i 244 i FYVy

Thread (1, 0)

vV i FYYy

m Slow access

CPU «—
m Programmer explicitly manages —
allocation and deallocation with cuda
9
API (cudaMallocManaged, cudaFree)
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Constant Memory

GPU Grid

m Special region of device memory

Block (0, 0) Block (1, 0)

m Read-only in device

m Cached in multiprocessor ’

m Fairly quick, cache can broadcast to all
active threads

-

Thread (0, 0)| Thread (1,0)| | Thread (0, 0) | Thread (1, 0)

vy Fy vy yvy Fyy

L4

m |t is small: 64KB in NVIDIA V100

4.‘:

m To use when: ERY

» All threads access to the same
location
» Data is constant
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Constant Memory

GPU Grid

Block (0, 0) Block (1, 0)

m Read-only from kernel ’

m Constants are declared at file scope

-

Thread (0, 0)| Thread (1,0)| | Thread (0, 0) | Thread (1, 0)

» __device__ __constant__

vy Fy vy yvy Fyyy

m Constant values are set from host code

4.‘:

» cudaMemcpyToSymbol () cPU
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Texture Memory

m Texture caches are designed for graphics applications where memory access
patterns exhibit a great deal of spatial locality.

m A thread is likely to read from an address “near” to the address that nearby threads

area -
Block (0, 0) Block (1, 0)
]
Thread 0 ‘mmw’m =
Thread 1
Thread 2 .
Thread 3 .--. e
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Shared Memory

m High performance memory

GPU Grid

m Read/write per block Block (0, 0) Block (1, 0)

= Memory is shared within a block

m Very fast !

Thread (0, 0)

uni.

Thread (1, 0)

Thread (0, 0)

i 244 i FYVy

Thread (1, 0)

» 2 orders of magnitude lower
latency than global memory

» Order of magnitude higher
bandwidth than global memory [PV

v

m |n V100, up to 128 KB per
multiprocessor, but a maximum of 48
KB per block
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Shared Memory

Shared memory has block scope (stays alive while the block lives)

Only visible to threads in the same block

Threads can share results, avoid redundant computations

Threads can share memory access (avoid redundant accesses to global memory)

Similar benefits as CPU cache, however, must be explicitly managed by the
programmer with the qualifier __shared__

W SCITAS P. Antolin 16 / 51



Shared Memory

m When a variable is declared in shared
memory the compiler creates a copy of
that variable for each block.

m Every thread within the blocks sees
this memory, can access and modify its
content. Threads from other blocks do
not see the same memory.

m This provides an excellent means by
which threads within a block can
communicate and collaborate on
computations.

m However, threads have to be

synchronized explicitly.
W SCITAS P. Antolin 17 / 51



Local Memory

GPU Grid

Block (0, 0) Block (1, 0)

m Part of the global memory private to a
thread.

m Read/write ?

= Slow

Thread (0, 0)

uni‘

Thread (1,0)  Thread (0,0) Thread (1, 0)

i Py i FYvy

vy

m Used for whatever does not fit into
registers (including arrays)

m http://developer.download. P
nvidia.com/CUDA/training/
register_spilling.pdf

W SCITAS P. Antolin 18 / 51
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Local Memory

m Variable declared within a kernel is allocated per thread
m |t is only accessible by the threads
m |t has the lifetime of a thread

1 __global__
» void kernel() {
5 // Each thread has tts own copy of idz and
o~ array
4 int idx = threadIdx.x + blockIdx.x * blockDim.x;
5 float array[16];
s}

W SCITAS P. Antolin 19 / 51



Local Memory

Device

Multiprocessar N

m Compilers control where these e
variables are stored in physical memory T
(programmer does not have control)

m Registers: fastest memory, on chip

m Local memory: when registers are not
available compilers put off chip

W SCITAS P. Antolin 20 / 51



Memory issues

m Each multiprocessor has limited amount of memory
m Limits amount of blocks we can have
m #blocks x mem used per block < total memory

m Either lots of blocks using little memory, or fewer blocks using lots of memory

W SCITA! 21 /51



Memory issues

Register memory is limited!

Shared memory in blocks is limited!

Can have many threads using fewer registers, or few threads using many registers

What does not fit into registers goes to local memory (slow).
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Memory issues

m Global accesses: slow!
m Can be sped up when memory is contiguous

» All threads in a warp execute the same instruction

» During a load the hardware detect whether all threads access to consecutive
memory locations.

» If thread 0 access location n, thread 1 to location n+1, thread 31 to location
n+31 the all accesses are coalesced: combined in a single memory access.

» Coalesced access are: contiguous, in-order, aligned

W SCITAS P. Antolin 23 / 51



= SCITAS

Memory Coalescing: Contiguous access

m Contiguous = memory is together
m Do not skip addresses

m Example of non-contiguous memory

» Left: Address 140 skipped

> Right: Lots of addresses skipped

P. Antolin
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p1papam

Address 176,
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Memory Coalescing: In-order access

m In-order access
m Access addresses in order in memory
m Examples of non-ordered accesses

» Thread 3 and 4 swapped accesses

W SCITAS P. Antolin 25 / 51



Memory Coalescing: Aligning access

Bad alignment
m Built-in types force alignment

float3(12B) takes up the same space as float4(16B)

float3 arrays are not aligned;

To align a struct use __align__(x) // x = 4, 8, 16

CudaMalloc aligns the start of each block automatically

= SCITAS

P. Antolin 26 / 51



Let's put it to the test - non contiguous memory access

1 template<typename T>

2 __global__

3 void stride(T *a, int s)

2 {

5 int i = (blockDim.x * blockIdx.x + threadldx.x) * s;
6 alil] = al[i] + 1;

7 }

W SCITAS P. Antolin 27 / 51



Let’s put it to the test - non contiguous memory access

Effective Bandwidth vs. Stride for Single Precision

100 : : : : : : :

X Tesla C2050 —>¢—

“‘ Tesla C1060 —o— |
Tesla C870 —a—

Effective Bandwidth (GB/s)

VN o o>
A RARARARARAT, Al

24 32

Stride (elements)
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A deeper dive into shared memory

It is on-chip memory — much faster

Latency can be ~100x lower than global memory access

Allocated per block. All the threads can access to it.

If threads A and B load data from global memory and write in shared there could
be race conditions — explicit synchronization

W SCITAS P. Antolin 29 / 51



Static shared memory

__global_
{
__shared__ int shared_array[THREADS_PER_BLOCK]; //shared block memory
int idx = blockIdx.x * blockDim.x + threadldx.x;

void staticFunction(int *arr, int N)

Jun

// ... calculate results
shared_array[threadIldx.x] = results;

© 0 N O s W N

//synchronize the shared threads writing to the shared memory cache
__syncthreads() ;

=
o

11

12 // read the results of another thread in the current thread

13 int val = shared_array[(threadIdx.x + 1) 7 THREADS_PER_BLOCK] ;
14

15 arr[idx] = val; // write back the value to global memory

16 }

= SCITAS P. Antolin 30 / 51



https://stackoverflow.com/questions/15240432/does-syncthreads-synchronize-all-threads-in-the-grid
https://stackoverflow.com/questions/15240432/does-syncthreads-synchronize-all-threads-in-the-grid

Dynamic shared memory

1 __global__

2 void dynamicFunction(int *arr, int N)

s { m The amount of shared

4 extern __shared__ int local_arrayl[]; memory is not known till
5 runtime

6 ... m The amount of memory
7 } must be specified as 3rd
8 parameter when then

9 ... kernel is launched

10

11 dynamicFunction<<<1,N,N*sizeof (int)>>>(arr,N)
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Shared memory bank conflict

m To achieve high memory bandwidth for concurrent access, shared memory is
divided into banks that cannot be accessed simultaneously.

m |f multiple threads requested addresses map to the same memory bank, the
accesses are serialized.

m The hardware splits a conflicting memory request into as many separate
conflict-free requests as necessary, decreasing the effective bandwidth by a factor
equal to the number of colliding memory requests.

m To minimize bank conflicts, it is important to understand how memory addresses
map to memory banks.

m Shared memory banks are organized such that successive 32-bit words are assigned
to successive banks and the bandwidth is 32 bits per bank per clock cycle.

m For devices of compute capability 7.X, the warp size is 32 threads and the number
of banks is also 32.
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EPFL Bank conflicts

~
=

Bad: many threads trying to ac-
cess to the same bank

ol |l S|l ol w]| || =« | e

I‘ — 4
=]
(e
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EPFL Bank conflicts

Twest 0 b Do O Theeea 8 - Bah 0

Twesd 1 b B 1 Theeed 3 b Bavk 1

Theead 2 | Bankc 2 Thresd 2 -

Teesd 3 e Do 3 Threse 3 S

| Twesd & _— Thewed & Bk s

st s e o s Theea s e s

Twesd s b Baw s Theesd b pow Banh 4

Good: Few to no bank conflicts : ': : ::
| waets e Baw — S

p— L Sank 13 Thvesd 10 k. Bor 10

Thewed 13 L Bane 11 Theesd 11 b B 11

= =1 =1\

Threat 13 - Thaad 13 h,, Banc 13

: p—— L sk 14 : P— b, bor 30
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Bank Conflicts for shared memory

Banks service 32-bit words at a time at addresses mod 64
m Bank 0 manages 0x00, 0x40, 0x80, etc., bank 1 manages 0x04, 0x44, 0x84, etc.

m \Want to avoid multiple thread access to same bank

» Usually a problem if many threads access to the same bank
» Padding if necessary
» Last thing to worry about for performance
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Example: An efficient Matrix Transpose in CUDA

= SCITAS

This exercise is based on
https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/

The code we wish to optimize is a transpose of a matrix of single precision values
that operates out-of-place, i.e., the input and output are separate arrays in
memory.

Data is allocated by row. For simplicity , we consider square matrices with
number of rows multiple of 32.

All kernels in this study launch blocks of 32 x 8 threads (TILE_DIM=32,
BLOCK_ROWS=8 in the code), and each thread block transposes (or copies) a tile of
size 32 x 32.

Using a thread block with fewer threads than elements in a tile is advantageous for
the matrix transpose because each thread transposes four matrix elements, so
much of the index calculation cost is amartized over these elements. 36 / 51


https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/

Let’'s start with matrix copy

) N ) ) N / TILE.DIM )

- _ - -
= =
v i
= — = =
= = [

9 —

=]

N s — —
[ TILE_DIM TILEDIM
~
= Block of threads

sk s |
e —
L L TILEDIM
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Let’'s start with matrix copy

1 __global__

2 void copy(float *odata, const float *idata) {

3 int x = blockIdx.x * TILE_DIM + threadldx.x;

4 int y = blockIdx.y * TILE_DIM + threadIdx.y;

B int N = gridDim.x * TILE_DIM;

6

7 for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)

8 odatal(y + j) * N + x] = idatal(y + j) * N + x];
o }

m Each thread copies TILE_DIM/BLOCK_ROWS values
m TILE_DIM must be used to compute the indices x, y

m This implementation is used as a reference of bandwidth
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Naive matrix transpose
=P L

idata odata

Transpose

S
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Naive matrix transpose
=P L

1 __global__

2 void transposeNaive(float *odata, const float *idata) {
3 int x = blockIdx.x * TILE_DIM + threadldx.x;

4 int y = blockIdx.y * TILE_DIM + threadIdx.y;

5 int N = gridDim.x * TILE_DIM;

6

7 for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)

8 odatalx * N + (y + j)] = idatal(y + j) * N + x];

o 1}

m The only difference is that the indices for odata are swapped.

m The access to idata is coalesced while for odata is not.
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Naive matrix transpose
=P L

idata odata

Transpose

o
o

o
im mn 2n A

idata oaata
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Naive matrix transpose

Effective Bandwidth (GB/s, ECC enabled)

Routine Tesla M2050 Tesla K20c
copy 105.2 136.0
transposeNaive 18.8 55.3

m The transposeNaive bandwidth is a fraction of the copy.
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Coalesced transpose via shared memory - 1/2

1 __global__ void transposeCoalesced(float *odata, const float *idata) {
2

3 __shared__ float tile[TILE_DIM] [TILE_DIM];

4

5 int x = blockIdx.x * TILE_DIM + threadIdx.x;

6 int y = blockIdx.y * TILE_DIM + threadIdx.y;

7 int N = gridDim.x * TILE_DIM;

8

9 for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)

10 tile[threadIdx.y+j] [threadIdx.x] = idatal[(y+j) * N + x];
11

12 __syncthreads() ;

13

14 // ... continues in next slide

m In the first loop, a warp of threads reads contiguous data from idata into rows of
= SCITAS the Shared memory t||e P. Antolin 43 / 51



Coalesced transpose via shared memory - 2/2

syncthreads() ;

// ... continues from previous slide

// Transpose block offset
x = blockIdx.y * TILE_DIM + threadIdx.x;
y = blockIdx.x * TILE_DIM + threadldx.y;

© 0 N O s W N =

for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
odatal[(y+j) * N + x] = tile[threadIdx.x] [threadIdx.y+j];

=
(=}

H
=
—

m After recalculating the array indices, a column of the shared memory tile is written
to contiguous addresses in odata
m Because threads write in different data to odata than they read from idata, we

must use a block-wise barrier synchronization __syncthreads ()
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Coalesced transpose via shared memory

idata odata

————{read  tile

™

shared memork/ =

write
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Coalesced transpose via shared memory

Effective Bandwidth (GB/s, ECC enabled)

Routine Tesla M2050 Tesla K20c
copy 105.2 136.0
transposeNaive 18.8 55.3
transposeCoalesced 58 97.6

m The results improved a lot but they are still far from copy.

m Copy data to shared memory and synchronization might be responsible for slow
down.
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Simple copy in shared memory - 1/2

1 __global__ void copySharedMem(float *odata, const float *idata) {

3 __shared__ float tile[TILE_DIM * TILE_DIM];

4

5 int x = blockIdx.x * TILE_DIM + threadldx.x;

6 int y = blockIdx.y * TILE_DIM + threadldx.y;

7 int N = gridDim.x * TILE_DIM;

8

9 for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)

10 tile[(threadIdx.y+j) * TILE_DIM + threadId.x] = idatal(y+j)

— * N + x];
11
12 __syncthreads();
13 // ... continues in next slide
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Simple copy in shared memory - 2/2

1 __syncthreads();
2 // ... continues from previous slide

4 for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)

5 odatal[(y+j)*width + x] = tile[(threadIdx.y+j)+*TILE_DIM +
« threadlIdx.x];

6 }

m The __syncthreads is technically not needed (no race conditions)
= Included to mimic the behavior above
m The problem is not the barrier or the thread synchronization
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Copy in shared memory
=PrL

Effective Bandwidth (GB/s, ECC enabled)

Routine Tesla M2050 Tesla K20c
copy 105.2 136.0
copySharedMem 104.6 152.3
transposeNaive 18.8 55.3
transposeCoalesced 51.3 97.6

W SCITAS P. Antolin 49 / 51



Shared me bank conflicts

m For a shared memory tile of 32 x 32 elements, all elements in a column of data
map to the same shared memory bank.

m Worst case scenario: reading a column of data results in a 32-way bank conflict.

m the solution for this is simply to pad the width in the declaration of the shared
memory tile, making the tile 33 elements wide rather than 32.

1 __shared__ float tile[TILE_DIM] [TILE_DIM + 1];

Effective Bandwidth (GB/s, ECC enabled)

Routine Tesla M2050 Tesla K20c
copy 105.2 136.0
copySharedMem 104.6 152.3
transposeNaive 18.8 553
51.3 97.6

transposeCoalesced

transposeNoBankConflicts 9725] 1443
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Summary

Best memory management

Balances memory optimization with parallelism

Break problem up into a coalesced chucks

Process data in shared memory, then copy to global

Avoid bank conflicts!
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