
MATH-454 Parallel and High Performance Computing
Lecture 8: Advanced GPU computing

Pablo Antolin
Slides of N. Varini’s lecture notes

April 17 2025



Outline

Recap

Thread Cooperation in GPU Computing

GPU Memory Model
▶ Shared memory
▶ Constant memory
▶ Global memory

Test cases

P. Antolin 2 / 51



Data-Parallel Computing - Recap

Performs operations on a data set organized into a common structure (e.g., an
array)

A set of tasks work collectively and simultaneously on the same structure with
each task operating on its own part of the structure

Tasks perform identical operations on their parts of the structure. Operations on
each part must be data independent

CUDA provide built-in variables in order to access to different data: threadIdx,
blockIdx, blockDim, ...

P. Antolin 3 / 51



Data-Parallel Computing on the GPUs - Recap

GPUs are suited for number crunching problems

Identical operations executed on many data elements in parallel

Lots of transistors are dedicated to the computation

P. Antolin 4 / 51



The CUDA Programming Model

We know that GPUs are pieces of hardware that can run many threads
Threads are organized in grids of blocks
Threads are executed in warps (32 threads) in Streaming Multiprocessors (SM)
But, how well do we need to know the hardware in order to obtain good
performance?
GPUs has different memory levels

P. Antolin 5 / 51



CUDA Thread Hierarchy

Thread blocks and grids can be 1D,
2D or 3D
Dimensions set at launch time
Thread blocks and grids do not need
to have the same dimensionality, e.g.
1D grid of 2D blocks

P. Antolin 6 / 51



The CUDA Programming Model

Blocks from the grid are distributed
across the SM
The programmer has no control on
this distribution
A block will execute on one (and only
one) SM

P. Antolin 7 / 51



Blocks Must Be Independent!

Any possible distribution of blocks could be valid

▶ Can run in any order

▶ Can run sequentially or concurrently

Blocks might need to be synchronized once in a while (more later)

Independence requirements gives scalability

There are mechanisms for synchronization among blocks, but we don’t cover it in
this course, so we consider them as independent.

P. Antolin 8 / 51



The CUDA Programming Model

However, within a block, CUDA permits non data-parallel approaches
▶ Implemented via control-flows statements in a kernel
▶ Threads are free to execute unique paths through a kernel

Since all threads within a block are active at the same time they can communicate
between each other

P. Antolin 9 / 51



Memory Hierarchy

CUDA threads may access data
from multiple memory spaces
during their execution.

Each thread has its own registers
private local memory.

Each thread block has shared memory
visible to all threads of the block and
with the same lifetime as the block.

All threads have access to the same
global memory (and constant and
texture memories). P. Antolin 10 / 51



GPU Memory Overview

Transfer to/from CPU is very slow

Global memory is slow

Texture, Constant, and Shared
Memory are fast

Registers are very fast

P. Antolin 11 / 51



Global Memory

Visible by all threads

Read/write

Shared between blocks and grids

Stays alive during multiple kernel
executions

Slow access

Programmer explicitly manages
allocation and deallocation with cuda
API (cudaMallocManaged, cudaFree)

P. Antolin 12 / 51



Constant Memory

Special region of device memory

Read-only in device

Cached in multiprocessor

Fairly quick, cache can broadcast to all
active threads

It is small: 64KB in NVIDIA V100

To use when:
▶ All threads access to the same

location
▶ Data is constant

P. Antolin 13 / 51



Constant Memory

Read-only from kernel

Constants are declared at file scope
▶ __device__ __constant__

Constant values are set from host code

▶ cudaMemcpyToSymbol()

P. Antolin 13 / 51



Texture Memory

Texture caches are designed for graphics applications where memory access
patterns exhibit a great deal of spatial locality.

A thread is likely to read from an address “near” to the address that nearby threads
area

P. Antolin 14 / 51



Shared Memory

High performance memory

Read/write per block

Memory is shared within a block

Very fast
▶ 2 orders of magnitude lower

latency than global memory
▶ Order of magnitude higher

bandwidth than global memory

In V100, up to 128 KB per
multiprocessor, but a maximum of 48
KB per block

P. Antolin 15 / 51



Shared Memory

Shared memory has block scope (stays alive while the block lives)

Only visible to threads in the same block

Threads can share results, avoid redundant computations

Threads can share memory access (avoid redundant accesses to global memory)

Similar benefits as CPU cache, however, must be explicitly managed by the
programmer with the qualifier __shared__

P. Antolin 16 / 51



Shared Memory

When a variable is declared in shared
memory the compiler creates a copy of
that variable for each block.

Every thread within the blocks sees
this memory, can access and modify its
content. Threads from other blocks do
not see the same memory.

This provides an excellent means by
which threads within a block can
communicate and collaborate on
computations.

However, threads have to be
synchronized explicitly.

P. Antolin 17 / 51



Local Memory

Part of the global memory private to a
thread.
Read/write
Slow
Used for whatever does not fit into
registers (including arrays)
http://developer.download.
nvidia.com/CUDA/training/
register_spilling.pdf

P. Antolin 18 / 51

http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf


Local Memory

Variable declared within a kernel is allocated per thread
It is only accessible by the threads
It has the lifetime of a thread

1 __global__
2 void kernel() {
3 // Each thread has its own copy of idx and

array↪→

4 int idx = threadIdx.x + blockIdx.x * blockDim.x;
5 float array[16];
6 }

P. Antolin 19 / 51



Local Memory

Compilers control where these
variables are stored in physical memory
(programmer does not have control)

Registers: fastest memory, on chip

Local memory: when registers are not
available compilers put off chip

P. Antolin 20 / 51



Memory issues

Each multiprocessor has limited amount of memory

Limits amount of blocks we can have

#blocks × mem_used_per_block ⇐ total memory

Either lots of blocks using little memory, or fewer blocks using lots of memory

P. Antolin 21 / 51



Memory issues

Register memory is limited!

Shared memory in blocks is limited!

Can have many threads using fewer registers, or few threads using many registers

What does not fit into registers goes to local memory (slow).

P. Antolin 22 / 51



Memory issues

Global accesses: slow!

Can be sped up when memory is contiguous

▶ All threads in a warp execute the same instruction

▶ During a load the hardware detect whether all threads access to consecutive
memory locations.

▶ If thread 0 access location n, thread 1 to location n+1, thread 31 to location
n+31 the all accesses are coalesced: combined in a single memory access.

▶ Coalesced access are: contiguous, in-order, aligned

P. Antolin 23 / 51



Memory Coalescing: Contiguous access

Contiguous = memory is together

Do not skip addresses

Example of non-contiguous memory

▶ Left: Address 140 skipped

▶ Right: Lots of addresses skipped

P. Antolin 24 / 51



Memory Coalescing: In-order access

In-order access

Access addresses in order in memory

Examples of non-ordered accesses

▶ Thread 3 and 4 swapped accesses

P. Antolin 25 / 51



Memory Coalescing: Aligning access

Bad alignment
Built-in types force alignment

float3(12B) takes up the same space as float4(16B)

float3 arrays are not aligned;

To align a struct use __align__(x) // x = 4, 8, 16

CudaMalloc aligns the start of each block automatically

P. Antolin 26 / 51



Let’s put it to the test - non contiguous memory access

1 template<typename T>
2 __global__
3 void stride(T *a, int s)
4 {
5 int i = (blockDim.x * blockIdx.x + threadIdx.x) * s;
6 a[i] = a[i] + 1;
7 }

P. Antolin 27 / 51



Let’s put it to the test - non contiguous memory access

P. Antolin 28 / 51



A deeper dive into shared memory

It is on-chip memory → much faster
Latency can be ∼100x lower than global memory access
Allocated per block. All the threads can access to it.
If threads A and B load data from global memory and write in shared there could
be race conditions → explicit synchronization

P. Antolin 29 / 51



Static shared memory

1 __global__ void staticFunction(int *arr, int N)
2 {
3 __shared__ int shared_array[THREADS_PER_BLOCK]; //shared block memory
4 int idx = blockIdx.x * blockDim.x + threadIdx.x;
5

6 // ... calculate results
7 shared_array[threadIdx.x] = results;
8

9 //synchronize the shared threads writing to the shared memory cache
10 __syncthreads();
11

12 // read the results of another thread in the current thread
13 int val = shared_array[(threadIdx.x + 1) % THREADS_PER_BLOCK];
14

15 arr[idx] = val; // write back the value to global memory
16 }

From https://stackoverflow.com/questions/15240432/
does-syncthreads-synchronize-all-threads-in-the-grid

P. Antolin 30 / 51

https://stackoverflow.com/questions/15240432/does-syncthreads-synchronize-all-threads-in-the-grid
https://stackoverflow.com/questions/15240432/does-syncthreads-synchronize-all-threads-in-the-grid


Dynamic shared memory

1 __global__
2 void dynamicFunction(int *arr, int N)
3 {
4 extern __shared__ int local_array[];
5

6 ...
7 }
8

9 ...
10

11 dynamicFunction<<<1,N,N*sizeof(int)>>>(arr,N)

The amount of shared
memory is not known till
runtime
The amount of memory
must be specified as 3rd
parameter when then
kernel is launched

P. Antolin 31 / 51



Shared memory bank conflict

To achieve high memory bandwidth for concurrent access, shared memory is
divided into banks that cannot be accessed simultaneously.
If multiple threads requested addresses map to the same memory bank, the
accesses are serialized.
The hardware splits a conflicting memory request into as many separate
conflict-free requests as necessary, decreasing the effective bandwidth by a factor
equal to the number of colliding memory requests.
To minimize bank conflicts, it is important to understand how memory addresses
map to memory banks.
Shared memory banks are organized such that successive 32-bit words are assigned
to successive banks and the bandwidth is 32 bits per bank per clock cycle.
For devices of compute capability 7.X, the warp size is 32 threads and the number
of banks is also 32.

P. Antolin 32 / 51



Bank conflicts

Bad: many threads trying to ac-
cess to the same bank

P. Antolin 33 / 51



Bank conflicts

Good: Few to no bank conflicts

P. Antolin 34 / 51



Bank Conflicts for shared memory

Banks service 32-bit words at a time at addresses mod 64
Bank 0 manages 0x00, 0x40, 0x80, etc., bank 1 manages 0x04, 0x44, 0x84, etc.

Want to avoid multiple thread access to same bank
▶ Usually a problem if many threads access to the same bank
▶ Padding if necessary
▶ Last thing to worry about for performance

P. Antolin 35 / 51



Example: An efficient Matrix Transpose in CUDA

This exercise is based on
https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/

The code we wish to optimize is a transpose of a matrix of single precision values
that operates out-of-place, i.e., the input and output are separate arrays in
memory.

Data is allocated by row. For simplicity , we consider square matrices with
number of rows multiple of 32.

All kernels in this study launch blocks of 32 × 8 threads (TILE_DIM=32,
BLOCK_ROWS=8 in the code), and each thread block transposes (or copies) a tile of
size 32 × 32.

Using a thread block with fewer threads than elements in a tile is advantageous for
the matrix transpose because each thread transposes four matrix elements, so
much of the index calculation cost is amortized over these elements.P. Antolin 36 / 51

https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/


Let’s start with matrix copy

P. Antolin 37 / 51



Let’s start with matrix copy

1 __global__
2 void copy(float *odata, const float *idata) {
3 int x = blockIdx.x * TILE_DIM + threadIdx.x;
4 int y = blockIdx.y * TILE_DIM + threadIdx.y;
5 int N = gridDim.x * TILE_DIM;
6

7 for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
8 odata[(y + j) * N + x] = idata[(y + j) * N + x];
9 }

Each thread copies TILE_DIM/BLOCK_ROWS values
TILE_DIM must be used to compute the indices x, y
This implementation is used as a reference of bandwidth

P. Antolin 38 / 51



Naïve matrix transpose

P. Antolin 39 / 51



Naïve matrix transpose

1 __global__
2 void transposeNaive(float *odata, const float *idata) {
3 int x = blockIdx.x * TILE_DIM + threadIdx.x;
4 int y = blockIdx.y * TILE_DIM + threadIdx.y;
5 int N = gridDim.x * TILE_DIM;
6

7 for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
8 odata[x * N + (y + j)] = idata[(y + j) * N + x];
9 }

The only difference is that the indices for odata are swapped.
The access to idata is coalesced while for odata is not.

P. Antolin 40 / 51



Naïve matrix transpose

P. Antolin 41 / 51



Naïve matrix transpose

The transposeNaive bandwidth is a fraction of the copy.

P. Antolin 42 / 51



Coalesced transpose via shared memory - 1/2

1 __global__ void transposeCoalesced(float *odata, const float *idata) {
2

3 __shared__ float tile[TILE_DIM][TILE_DIM];
4

5 int x = blockIdx.x * TILE_DIM + threadIdx.x;
6 int y = blockIdx.y * TILE_DIM + threadIdx.y;
7 int N = gridDim.x * TILE_DIM;
8

9 for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
10 tile[threadIdx.y+j][threadIdx.x] = idata[(y+j) * N + x];
11

12 __syncthreads();
13

14 // ... continues in next slide

In the first loop, a warp of threads reads contiguous data from idata into rows of
the shared memory tile P. Antolin 43 / 51



Coalesced transpose via shared memory - 2/2

1 __syncthreads();
2

3 // ... continues from previous slide
4

5 // Transpose block offset
6 x = blockIdx.y * TILE_DIM + threadIdx.x;
7 y = blockIdx.x * TILE_DIM + threadIdx.y;
8

9 for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
10 odata[(y+j) * N + x] = tile[threadIdx.x][threadIdx.y+j];
11 }

After recalculating the array indices, a column of the shared memory tile is written
to contiguous addresses in odata
Because threads write in different data to odata than they read from idata, we
must use a block-wise barrier synchronization __syncthreads()

P. Antolin 44 / 51



Coalesced transpose via shared memory

shared memory

read

write

P. Antolin 45 / 51



Coalesced transpose via shared memory

The results improved a lot but they are still far from copy.
Copy data to shared memory and synchronization might be responsible for slow
down.

P. Antolin 46 / 51



Simple copy in shared memory - 1/2

1 __global__ void copySharedMem(float *odata, const float *idata) {
2

3 __shared__ float tile[TILE_DIM * TILE_DIM];
4

5 int x = blockIdx.x * TILE_DIM + threadIdx.x;
6 int y = blockIdx.y * TILE_DIM + threadIdx.y;
7 int N = gridDim.x * TILE_DIM;
8

9 for(int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
10 tile[(threadIdx.y+j) * TILE_DIM + threadId.x] = idata[(y+j)

* N + x];↪→

11

12 __syncthreads();
13 // ... continues in next slide

P. Antolin 47 / 51



Simple copy in shared memory - 2/2

1 __syncthreads();
2 // ... continues from previous slide
3

4 for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
5 odata[(y+j)*width + x] = tile[(threadIdx.y+j)*TILE_DIM +

threadIdx.x];↪→

6 }

The __syncthreads is technically not needed (no race conditions)
Included to mimic the behavior above
The problem is not the barrier or the thread synchronization

P. Antolin 48 / 51



Copy in shared memory

P. Antolin 49 / 51



Shared memory bank conflicts

For a shared memory tile of 32 × 32 elements, all elements in a column of data
map to the same shared memory bank.
Worst case scenario: reading a column of data results in a 32-way bank conflict.
the solution for this is simply to pad the width in the declaration of the shared
memory tile, making the tile 33 elements wide rather than 32.

1 __shared__ float tile[TILE_DIM][TILE_DIM + 1];

P. Antolin 50 / 51



Summary

Best memory management

Balances memory optimization with parallelism

Break problem up into a coalesced chucks

Process data in shared memory, then copy to global

Avoid bank conflicts!

P. Antolin 51 / 51


	Advanced GPU computing
	Outline and recap


