
MATH-454 Parallel and High Performance Computing
Lecture 7: Introduction to GPU computing

Pablo Antolin
Slides of N. Varini’s lecture notes

April 10 2025

What will we learn today?

Motivation: Trends in HPC
Hardware architecture
Software environment
How to program on GPU using CUDA

P. Antolin 2 / 57

Motivation: Why running on GPUs?

Massively parallel
Thousands of cores
Many threads approach
Programmable: CUDA
Many softwares available:
▶ Machine Learning: Caffe, PyTorch, Tensorflow, Theano
▶ Molecular Dynamics: Lammps, Amber
▶ Weather prediction: Cosmo
▶ Dozens of general purpose libraries from NVIDIA

P. Antolin 3 / 57

Motivation: Why running on GPUs

Single-thread
performance
increased ∼ linearly
Number of logical
cores is increasing ∼
power law
Frequence ∼
constant

P. Antolin 4 / 57

Why GPU? Performance!

From Nvidia programming guide
P. Antolin 5 / 57

Nvidia V100 vs Intel processors

P. Antolin 6 / 57

Nvidia A100 vs Intel processors

P. Antolin 7 / 57

Nvidia H100 vs Intel processors

P. Antolin 8 / 57

GPU advantage: Performance

Quantum-ESPRESSO + SIRIUS

P. Antolin 10 / 57

GPU advantage: Performance - TOP 500 (November 2024)

P. Antolin 11 / 57

GPU advantage: Performance - TOP 500 (November 2024)

Not only NVIDIA . . .

P. Antolin 11 / 57

P. Antolin 12 / 57

TAKE HOME MESSAGE

The reason behind the discrepancy in floating-point capability
between the CPU and the GPU is that the GPU is specialized for
compute-intensive, highly parallel computation - exactly what
graphics rendering is about - and therefore designed such that
more transistors are devoted to data processing rather than data
caching and flow control.

From NVidia programming guide:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

P. Antolin 13 / 57

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

GPU disadvantages?

Architecture not as flexible as CPU (but easier to get performance).
Must rewrite algorithms and maintain software in GPU languages.
Discrete GPUs attached to CPU via relatively slow PCIe
▶ 128 GB/s bi-directional via PCIE (H100)
▶ 900 GB/s via NVlink (H100)

(Not so) limited memory: 80 GB (H100). Increasing.

P. Antolin 14 / 57

From CPU to GPU

P. Antolin 15 / 57

From CPU to GPU

Remove the components that
help single instruction stream
to run faster.
Maximize the chip area
dedicated to computation.

P. Antolin 15 / 57

From CPU to GPU

GPUs: many core devices.
Originally designed for gaming
industry: optimize the
execution throughput of
massive number of threads
(1000+).
Mask memory latency by
interleaving threads execution.

P. Antolin 15 / 57

From CPU to GPU

“CPUs are designed to minimize the
latency of instruction execution and
the GPUs are designed to maximize
the throughput of executing instruc-
tions”

P. Antolin 15 / 57

Streaming Multiprocessors Architecture simplified

In a single Streaming
Multiprocessor (SM):

Many memory regions
available, each with different
performance characteristics.
Must map the dataset to the
right memory type.

P. Antolin 16 / 57

Streaming Multiprocessors

Each GPU is comprised of one or more
Streaming Multiprocessors (SM)
(e.g., NVidia V100 has 80 SMs, H100 has
114 SMs).

Each SM has a multiples of 32 cores
(e.g., one V100’s SM has 64 single-precision
cores, and 32 for double-precision. I.e., they
have 5120/2560 single/double-precision
CUDA cores + 640 tensor cores).

Instructions are executed in multiples of 32
threads (warp).

Each SM has a collection of cores, registers,
memory.

P. Antolin 17 / 57

CUDA jargon

Host: The CPU and its memory (host memory).
Device: The GPU and its memory (device memory).

P. Antolin 18 / 57

Accelerated node: Overview

P. Antolin 19 / 57

Accelerated node: Overview

Separated memory space.
CPU and GPU have to
manage the memory
separately.
The CPU is responsible for
allocating the memory in both
the host and and the device.
Kernels must be launched
from the CPU.

P. Antolin 20 / 57

TAKE HOME MESSAGE

CPU and GPUs are independent from each other. As
such, it is the programmer’s responsibility to manage the
resources.

P. Antolin 21 / 57

How can you program on GPU?

Maximum flexibility
▶ CUDA

C/C++/Fortran/Python.

Simple programming directives:
▶ Simple compiler pragma.
▶ Compiler parallelization code.
▶ Target a variety of platforms.

Drop-in Acceleration:
▶ Highly optimized by GPU

experts.
▶ FFT, BLAS, LAPACK, magma,

RNG.
▶ OpenCV, Pytorch, Tensorflow,

etc.

P. Antolin 22 / 57

NVIDIA CUDA-X accelerated libraries

P. Antolin 23 / 57

NVIDIA CUDA-X accelerated libraries

cuFFT - FFT transform
cuBLAS - Basic Linear Algebra
cuSPARSE - Sparse Matrix Routines
cuSOLVER - Dense and Sparse Direct
Solver
cuDNN - deep learning
cuML - machine learning

P. Antolin 23 / 57

OpenACC directives

P. Antolin 24 / 57

OpenMP directives

P. Antolin 25 / 57

CUDA overview

Parallel computing architecture developed by NVIDIA

CUDA programming interface consists of:
C++ language extensions to target parts of source code on the
compute device.
A runtime library split into:
▶ Host (CPU): component - executes on host, provides

functions to control and access one or more compute
devices.

▶ Device (GPU): component - executes on device, provides
device-specific functions.

▶ Common component - provide built-in vector types and
subset of C standard library supported both on host and
device.

P. Antolin 26 / 57

CUDA tools

Compilers
▶ Need to compile separately host code and

device code
• Host code: gcc, intel
• Device code: nvcc (module load cuda on

Izar):

Debugger
▶ CUDA-gdb: extension of gdb debugger

Nvprof
▶ CUDA profiler to help with cuda

optimization
https://developer.nvidia.com/cuda-zone

P. Antolin 27 / 57

https://developer.nvidia.com/cuda-zone

Compute capability: which GPU?

Specification and features of a compute device depends on its compute capability

P. Antolin 28 / 57

Compute capability: which GPU?

Specification and features of a compute device depends on its compute capability

P. Antolin 28 / 57

Data-Parallel Computing

Performs operations on a dataset organized into a common
structure (e.g., an array).
A set of tasks work collectively and simultaneously on the same
structure with each task operating on its own portion of the
structure.
Tasks perform identical operations on their parts of the structure.
Operations on each portion must be independent.

P. Antolin 29 / 57

Data Dependence

Data dependence occurs when a program statement refers to the data of a
preceeding statement.

These 3 statement are independent

1 a = 2 * x;
2 b = 2 * y;
3 c = 3 * x;

b depends on a, c depends on a and b

1 a = 2 * x;
2 b = 2 * a * a;
3 c = b * 9;

Data dependence limits the parallelism.

P. Antolin 30 / 57

Data-parallel computing example

Dataset consisting of arrays A, B and C .
Same operations performed on each element
Cx = Ax + Bx .
Two tasks operating on a subset of the arrays.
Tasks 0 and 1 are independent. Could have
more tasks.

P. Antolin 31 / 57

Data-Parallel Computing on GPUs

Data-parallel computing maps well to GPUs:
Identical operations executed on many data elements in parallel.
Simplified logic allows increased ratio of computation.

P. Antolin 32 / 57

The CUDA Programming Model

The GPU is a compute device that:
▶ Has its own RAM (device memory).
▶ Runs data-parallel parts of an application as kernels by using many threads.

Kernels are:
▶ C/C++ functions with some restrictions, and a few language extensions.
▶ Executed by many threads.

GPU vs CPU threads
▶ GPU threads are extremely lightweight.
▶ GPU needs 1000s of threads for full efficiency.
▶ A multi-core CPU needs only a few.

P. Antolin 33 / 57

Many-threads approach

The cores in the streaming multiprocessors are SIMT (Single Instruction Multiple
Threads).
All the cores execute the same instruction on different data (vector computing).
Minimum of 32 threads doing the same thing at the same time (warp).
Lots of active threads = the key to performance (occupancy).
Execution alternates between active warps which become inactive when they wait
for data.
Threads are organized in grids of blocks.

P. Antolin 34 / 57

CUDA Threads Hierarchy

CUDA is designed to execute 1000s of threads.
Threads are grouped together into thread blocks.
Threads blocks are grouped together into a grid.

P. Antolin 35 / 57

CUDA Threads Hierarchy

Thread blocks and Grids can be 1D, 2D, or 3D.
Dimensions set at launch time.
Thread blocks and grids do not need to have
the same dimensionality, e.g., 1D grid of 2D
blocks.
Thread blocks must execute independently.

P. Antolin 36 / 57

CUDA Programming Model

The host launches kernels.

The host is responsible for:
▶ Managing the allocated memory on host

and device.
▶ Data exchange between host and device.
▶ Error handling.

P. Antolin 37 / 57

CUDA APIs

Can use CUDA through CUDA C++ Runtime API or Driver API.
This course will focus on CUDA C++.
Driver API is lower level and has a much more verbose syntax.
Don’t confuse the two when referring to CUDA Documentation:
▶ cuFunctionName → Driver API
▶ cudaFunctionName() → Runtime API (the one we will use)

P. Antolin 38 / 57

What the programmer expresses in CUDA

Computation partitioning (where does the computation occur?)
▶ Declarations on functions __host__, __global__, __device__
▶ Mapping of thread programs to device: compute<<<gs,bs>>>(<args>)

Data partitioning (where does data reside, who may access it and how?)
▶ Declaration on data __shared__, __device__, __constant__

Data management and orchestration
▶ Copying to/from host:

• e.g., cudaMemcpy(h_obj,d_obj, size, cudaMemcpyDevicetoHost) or Unified
memory!

Concurrency management
▶ e.g., __synchthreads()

P. Antolin 39 / 57

Unified memory

Unified memory is a single memory address space accessible from the GPU and the
CPU.
▶ Allocating memory in the unified memory means replacing all malloc() or

new() by cudaMallocManaged()
▶ A free() is replaced by a cudaFree()

Warning: memory must be synchronized if either CPU or GPU tries to access it
before/after completion.
Use cudaDeviceSynchronize() to synchronize host and device.
The allocated memory must fit entirely within the GPU’s memory!

P. Antolin 40 / 57

CUDA Kernel Launch Syntax

CUDA Kernels are launched by the host using a modified C function call syntax
myKernel<<<dim3 dGrid, dim3 dBlock>>>(...)
dim3 is vector type x, y, and z components (dG.x)

P. Antolin 41 / 57

CUDA Kernels

Denoted by __global__ function qualifier
▶ __global__ void mykernel(float *a)

Called from host, executed on device (on the SM).

Some restrictions:
▶ Must return void.
▶ No static variables.
▶ No access to host functions.

P. Antolin 42 / 57

CUDA Syntax - Kernels

Kernels can take arguments just like any C++ function
Pointer
Parameters passed by value

1 __global__ void SimpleKernel(float *a, float b) {
2 a[0] = b
3 }

P. Antolin 43 / 57

CUDA Syntax - Kernels

Kernels must be declared in the source/header files before they are called

1 // Kernel forward declaration
2 __global__ void kernel(float *a);
3

4 int main() {
5 dim3 gridSize, blockSize;
6 float *a;
7 }
8

9 __global__ void kernel(float* a) {
10 // Kernel implementation
11 }

P. Antolin 44 / 57

CUDA Syntax - Kernels

Kernels have read-only built-in variables:
gridDim: dimensions of the grid.
blockIdx: unique index of a block within a grid.
blockDim: dimensions of the block.
threadIdx: unique index of the thread within a block.
Cannot vary the size of the blocks or grids during kernel call.
The code inside the kernel is written from single thread point of view.

P. Antolin 45 / 57

CUDA Kernels - Syntax

All C operators are supported:
▶ eg, +,*,/,ˆ,>,>>

Many functions from the C/C++ standard math library:
▶ e.g., sin, cos, sqrt, ceil, exp
▶ See this link for a complete list of supported functions.

Control flow statements too:
▶ eg, if(), while(), for()

P. Antolin 46 / 57

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#mathematical-functions-appendix

Hello, World!

1 int main(void) {
2 printf("Hello, World!\n");
3 return 0;
4 }

To compile: nvcc -oo hello_world hello_world.cu

To execute: ./hello_world
This basic program is just standard C/C++ that runs on the host.
NVIDIA’s compiler (nvcc) will not complain about CUDA programs with no device
code.

P. Antolin 47 / 57

Hello, World! with Device Code

1 __global__
2 void kernel(void) {}

CUDA C++ keyword __global__ indicates that a function:
▶ Runs on the device
▶ Called from host code

nvcc splits source file into host and device components:
▶ NVIDIA’s compiler handles device functions like kernel()
▶ Standard host compiler handles host functions like main()

• gcc, icc, . . .
• Microsoft Visual Studio C

P. Antolin 48 / 57

Hello, World! with Device Code

1 int main(void) {
2 kernel<<< 1, 1 >>>();
3 printf("Hello, World!\n");
4 return 0;
5 }

Triple angle brackets mark a call from host code to device code:
▶ A “kernel launch” in CUDA jargon.
▶ We’ll discuss the parameters inside the angle brackets later.

This is all that’s required to execute a function on the GPU!
The function kernel() does nothing, so let us run something a bit more useful.

P. Antolin 49 / 57

CUDA Kernels - Syntax

Through built-in variables is possible to index your arrays.
Map local thread ID to a global array index.

1 // create 2D 5x3 thread bloks
2 dim3 block_size;
3 block_size.x = 5;
4 block_size.y = 3;
5 // configure 2D grid as well
6 dim3 grid_size;
7 grid_size.x = 3;
8 grid_size.y = 2;
9

10 // grid_size & block_size are passed as
arguments to <<< >>>↪→

11 kernel<<<grid_size,block_size>>>(dev_arr);
P. Antolin 50 / 57

CUDA Syntax - Inside the kernel

1 __global__ void kernel(int *arr) {
2 // Map the two 2D block indices to a single linear, 1D block

index↪→

3 int id_in_block = threadIdx.y * blockDim.x + threadIdx.x;
4

5 // Number of blocks before the current one.
6 int offset = blockIdx.y * gridDim.x + blockIdx.x;
7

8 // 1D index
9 const int block_size = blockDim.x * blockDim.y;

10 const int id = offset * block_size + id_in_block;
11

12 // Write out the result
13 arr[id] = id_in_block;
14 } P. Antolin 51 / 57

CUDA Syntax - Index & Size calculation

Global index calculation in 1D
▶ Idx = blockIdx.x * blockDimx * x + threadIdx.x

Grid size calculation

GridSize = (Size + BlkDim - 1) / BlkDim
(integer division: round down)

▶ Size: Total size of the array.
▶ BlkDim: Size of the block (max 1024).
▶ GridSize: Number of blocks in the grid.

P. Antolin 52 / 57

CUDA Syntax - Thread Identifiers

Result for each kernel launched with MyKernel<<<3,4>>>(a);

1 __global__ void Mykernel(int* a) {
2 int idx = blockIdx.x*blockDim.x + threadIdx.x;
3 a[idx] = 5;
4 }
5

6 __global__ void Mykernel(int* a) {
7 int idx = blockIdx.x*blockDim.x + threadIdx.x;
8 a[idx] = blockIdx.x;
9 }

10

11 __global__ void Mykernel(int* a) {
12 int idx = blockIdx.x*blockDim.x + threadIdx.x;
13 a[idx] = threadIdx.x;
14 }

a = 5 5 5 5 5 5
5 5 5 5 5 5↪→

a = 0 0 0 0 1 1
1 1 2 2 2 2↪→

a = 0 1 2 3 0 1
2 3 0 1 2 3↪→

P. Antolin 53 / 57

User-defined device functions

Can write/call your own device functions
▶ __device__ float myDeviceFunctions()
▶ Device functions cannot be called by the host.

1 __device__ float myDeviceFunction() {
2 //
3 }
4

5 __global__ void myKernel(float* a) {
6 int idx = blockIdx.x*blockDim.x + threadIdx.x;
7 a[idx] = myDeviceFunction(idx);
8 }

P. Antolin 54 / 57

CUDA Syntax - Synchronization

Kernel’s launches are asynchronous.
They return to CPU immediately.
Kernel starts executing once all outstanding CUDA calls are complete.
cudaDeviceSynchronize() blocks until all outstanding CUDA calls are completed.

P. Antolin 55 / 57

CUDA Syntax - Error Management

Host code manages errors.
Most CUDA functions return cudaError_t:
▶ Enumeration type:

• cudaSuccess (value 0) indicates no error.
• Use cudaGetErrorString()

char* cudaGetErrorString(cudaError_t err)
▶ Return a string describing the error condition.

1 cudaError_t err;
2 e = cudaMemcpy(...);
3 if(e) {
4 printf("Error: %s\n", cudaGetErrorString(err));
5 }

P. Antolin 56 / 57

CUDA Syntax - Error Management

Kernels’ launches have no return value!

cudaError_t cudaGetLastError()
▶ Return error code for last CUDA runtime function (including kernel launches).

• At exit, clears global error state; subsequent calls will return “success”

▶ In case of multiple errors, only the last one is reported.
▶ If asynchronous cudaDeviceSynchronize() is needed,

cudaGetLastError() must be called before.

P. Antolin 57 / 57

	Introducing to GPU computing
	What will we learn today?
	Motivation: Trends in HPC
	Hardware architecture

