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What will we learn today?

Motivation: Trends in HPC

Hardware architecture

Software environment

How to program on GPU using CUDA

W SCITAS P. Antolin 2 /57



Motivation: Why running on GPUs?

Massively parallel

Thousands of cores

Many threads approach
Programmable: CUDA

Many softwares available:

» Machine Learning: Caffe, PyTorch, Tensorflow, Theano
» Molecular Dynamics: Lammps, Amber

» Weather prediction: Cosmo

» Dozens of general purpose libraries from NVIDIA

W SCITAS P. Antolin 3 /57



Motivation: running on GPUs

42 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, . Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp
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Why GPU? Performance!

Theoretical GFLOP/s
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Nvidia V100 vs Intel processors

EPFL

NVIDIA TESLA V100 SPECIFICATIONS

DOUBLE-PRECISION DOUBLE-PRECISION
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Nvidia A100 vs Intel processor

Peak Performance

Transistor Count

Die Size

FP64 CUDA Cores

FP32 CUDA Cores

Tensor Cores

Streaming Multiprocessors

FP64

FP64 Tensor Core

FP32

TF32 Tensor Core

BFLOAT16 Tensor Core

FP16 Tensor Core

INT8 Tensor Core

INT4 Tensor Core

GPU Memory

GPU Memory Bandwidth

Interconnect

Multi-Instance GPUs

Form Factor

Max Power

= SCITAS

54 billion
826 mm*
3,456
6,912
432
108
9.7 teraFLOPS
19.5 teraFLOPS
19.5 teraFLOPS
156 teraFLOPS | 312 teraFLOPS*
312 teraFLOPS | 624 teraFLOPS*
312 teraFLOPS | 624 teraFLOPS*
624 TOPS | 1,248 TOPS*
1,248 TOPS | 2,496 TOPS*
40 GB
1.6 TB/s

NVLink 600 GB/s
PCle Gen4 64 GB/s

Various Instance sizes with up to 7MIGs @5GB

4/8 SXM GPUs in HGX A100
400W (SXM)

Base 10 log of GFLOPS contribution
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Nvidia H100 vs Intel processors

FP64 34 teraFLOPS 26 teraFLOPS
FP64 Tensor Core. 67 teraFLOPS 51 teraFLOPS
FP32 67 teraFLOPS. 51 teraFLOPS
TF32 Tensor Core 989 teraFLOPS® 756teraFLOPS*
BFLOAT16 Tensor Core 1,979 teraFLOPS* 1,513 teraFLOPS*
FP16 Tensor Core 1,979 teraFLOPS" 1,513 teraFLOPS*
FP8 Tensor Core 3,958 teraFLOPS" 3,026 teraFLOPS*
INT8 Tensor Core 3,958 TOPS* 3,026 TOPS*
GPU memory 80GB 80GB
Intel Processor GFLOPS/Package Contributions over time
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NVIDIA.

s AL

GPUs are everywhere the Web goes.

Making full use of GPUs is essential for any modern computing platform.
But.. Traditionally the Web has not made effective use of GPUs.

That is changing...



GPU advantage: Performance
EPFL
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GPU advantage: Performance - TOP 500 (November 2024)

Rmax Rpeak  Power
Rank  System Cores (PFlop/s)  [PFlop/s) (kW)

1 ELCapitan - HPE Cray EX255a, AMD 4th 11,039,616 1,742.00  2746.38 29,581
Gen EPYC 24C 1.8GHz, AMD Instinct
MI300A, Slingshot-11, TOSS, HPE
DOE/NNSA/LLNL
United States.

2 Frontier - HPE Cray EX235a, AMD 9.066,176  1353.00  2,055.72 24,607
Optimized 3rd Generation EPYC 64C
2GHz, AMD Instinct MI250X, Slingshot
11, HPE Cray 05, HPE
DOE/SC/0ak Ridge National Laboratory
United States.

3 Aurora - HPE Cray EX - Intel Exascale 9,264,128 101200  1,980.01 38,698
Compute Blade, Xeon CPU Max 9470 52C
2.4GHz, Intel Data Center GPU Max,
Slingshot-11, Intel
DOE/SC/Argonne National Laboratory
United States

4 Eagle - Microsoft NDv, Xeon Platinum 2,073,600 561.20 846.84
8480C 48C 2GHz, NVIDIA H100, NVIDIA
Infiniband NDR, Microsoft Azure
Microsoft Azure
United States.

5 HPC6 - HPE Cray EX235a, AMD 3143520  477.90 60697 8461
Optimized 3rd Generation EPYC 64C
26Hz, AMD Instinct MI250X, Slingshot-
11, RHEL 8.9, HPE
Eni S.p.A.
Italy
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GPU advantage: Performance - TOP 500 (November 2024)

Not only NVIDIA ...

New Disclosure

Intel® Data Center GPU Max1100

dout:
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EPFL
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TAKE HOME MESSAGE

The reason behind the discrepancy in floating-point capability
between the CPU and the GPU is that the GPU is specialized for
compute-intensive, highly parallel computation - exactly what
graphics rendering is about - and therefore designed such that
more transistors are devoted to data processing rather than data
caching and flow control.

From NVidia programming guide:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

W SCITAS P. Antolin 13 / 57


https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

GPU disadvantages?

Architecture not as flexible as CPU (but easier to get performance).

Must rewrite algorithms and maintain software in GPU languages.
Discrete GPUs attached to CPU via relatively slow PCle

» 128 GB/s bi-directional via PCIE (H100)
> 900 GB/s via NVlink (H100)

(Not so) limited memory: 80 GB (H100). Increasing.

W SCITAS P. Antolin 14 / 57



F
EPFL rom CPU to GPU

fetch /decode control logic
ALU branch predictor
Execution Mem pre-fetcher
Context
Cache
[ — 1
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From CPU to GPU

fetch /decode control logic
ALU br\aqch predigtor

m Remove the components that

help single instruction stream Execution Mem }){e/(Etcher

to run faster. Context
m Maximize the chip area

dedicated to computation. Cache

.-l-i
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From CPU to GPU
EPFL i

m GPUs: many core devices.

izcbicccicad | || I| |l I| | |

[ ALY 1] ALY I | ALU 1| [ Aw |
Execution Execution Execution Execution
Context Context Context Context

fech/decode ] | | [ Il | I| |1 |

m Originally designed for gaming | | | \

[ aw ] ALY
industry: Optimize the Context Context Context Context
execution throughput of ==l L I J | O J

massive number of threads oot || ] e 1 (i J

[ A ] a1 (I

[ aw ] AU
( 1000+ ) : iy e sl e
m Mask memory latency by | |

interleaving threads execution. e i ) i ‘

[ av ] [ av J} |

[ Aw | ALU ]
Execution Execution Execution Execution
Context Context Context. Context.
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From CPU to GPU

Wen-mei W. Hwu
David B. Kirk
lzzat El Hajj

"CPUs are designed to minimize the
latency of instruction execution and
the GPUs are designed to maximize

. [ - FOURTH EDITION e - '\
the throughput of executing instruc Programming Massively &
tiOnS” Parallel Processors

A Hands-on Appréach

VIK
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Streaming Multiprocessors Architecture simplified

Device

Multiprocessor N

| Multiprocessor 2

In a single Streaming
Multiprocessor (SM):
= Many memory regions
available, each with different
performance characteristics.

Multiprocessor 1

k ‘\ A
. }

14ttt H14

I T i =+

¥ ¥ ¥

m Must map the dataset to the
right memory type.
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Streaming Multiprocessors

m Each GPU is comprised of one or more
Streaming Multiprocessors (SM)
(e.g., NVidia V100 has 80 SMs, H100 has
114 SMs).

m Each SM has a multiples of 32 cores
(e.g., one V100's SM has 64 single-precision
cores, and 32 for double-precision. l.e., they
have 5120/2560 single/double-precision
CUDA cores + 640 tensor cores).

m [nstructions are executed in multiples of 32
threads (warp).

m Each SM has a collection of cores, registers,
memory.

W SCITAS P. Antolin 17 / 57



CUDA jargon

m Host: The CPU and its memory (host memory).

= Device: The GPU and its memory (device memory).

“*ﬁ‘*%

i{0) ‘\f“\
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Accelerated node: Overview

GPU 0 GPU 1

[Cache]

T TITTTTTT]

DRAM
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Accelerated node: Overview

CPU

m Separated memory space. Main Memory (111
m CPU and GPU have to I ¥ |
1: Copy data 1
manage the memory H 2: Launch Kernel
separately. l = | (g
. . GPU each core

m The CPU is responsible for B

allocating the memory in both F

the host and and the device. Device Memory

m Kernels must be launched
from the CPU.

YWY
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TAKE HOME MESSAGE

CPU and GPUs are independent from each other. As
such, it is the programmer’s responsibility to manage the
resources.

W SCITAS P. Antolin 21 / 57



How can you program on GPU?

m Maximum flexibility

» CUDA
C/C++/Fortran/Python.

m Simple programming directives:
» Simple compiler pragma.

A e —
Programming languages
» Compiler parallelization code.
i » Target a variety of platforms.
OpenACC/OpenCL directives

m Drop-in Acceleration:
» Highly optimized by GPU

I experts.

RNG.
= scimas P. Antolin » OpenCV, Pvtorch. Tensorflow, 22757

Effort




NVIDIA CUDA-X accelerated libraries

CUDA-X Accelerates Industries




NVIDIA CUDA-X accelerated libraries

m -
cuFFT - FFT transform cuFFT: up to 700 GFLOPS

m cuB LAS - Basic Linear A | ge bra Used in Audio Proc:?sﬁ:r::dle:s, = Foundation for 20 and 30 FFTs

. . Single Precision Double Precision
m cuSPARSE - Sparse Matrix Routines B ’ o

250

m cuSOLVER - Dense and Sparse Direct g

§wo §15°
Solver B0 B i
200
. 50
m cuDNN - deep learning - ;
1367 9111315617 192123 26 ‘135791|1J15|1192|2325
. . log2(transform_size) log2(transform_size)
m cuML - machine learning
3500
cuRAND: Up to 75x Faster vs. Intel MKL .
2500 - R TSR
16
¥ 2000
14 3
> sl I V V I | Fr—
iﬁm 1000 s BB
é L = CURAND 500 l I I I I .
g 6 uMKL o l I
4 s 2 = 2 2 B 2 =
. sEf1g P I i
g 4 g 8 g 3
¢ Sobol32 MRG32k3a Sobol32 MRG32k3a Sobol32 MRG32k3a single Single Complex Double

Uniform Distribution Normal Distribution Log-Normal Distribution
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OpenACC directives

OpenACC Directives

g:?:ge/Vi{lpragma acc data copyin(a,b) copyout(c) e Incremental

Movement * Single source

#pragma acc parallel

intiate " { * Interoperable

#pragma acc loop gang vector
Parallel Prag : R _Bang :
for (i = @; 1 < n; ++1) {

Execution e ¢ Performance portable
- v * CPU, GPU, MIC

Optimize }

Loop

Mappings } T Opgnﬁgp
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OpenMP directives

OpenMP: GPU Offloading

* A productive, high-level, directive based API to parallelize an application
+ Portable across multiple architectures and platforms

template <class T> void OMP45Stream<T>::triad()

{
unsigned int len = this->array size;
T *a = this=->a; T *b this->b; T *c = this->c;

#pragma omp get teams d it = parallel for\
map (tofrom: a[:len]) map(to: bl:len], cl:len])
for (int i = 0; i < array_size; i++)
F a[i] = b[i] + startScalar * c[i];
1 )
}
- GPU offloading with single line!

T e | 57



CUDA overview

Parallel computing architecture developed by NVIDIA

CUDA programming interface consists of:
m C++ language extensions to target parts of source code on the

compute device.
m A runtime library split into:

» Host (CPU): component - executes on host, provides
functions to control and access one or more compute
devices.

» Device (GPU): component - executes on device, provides
device-specific functions.

» Common component - provide built-in vector types and
subset of C standard library supported both on host and

device.
W SCITAS P. Antolin 26 / 57
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= SCITAS

L=

CUDA tools
L

Compilers

» Need to compile separately host code and
device code

e Host code: gcc, intel
e Device code: nvcc (module load cuda on
Izar):

Debugger
» CUDA-gdb: extension of gdb debugger

Nvprof

» CUDA profiler to help with cuda
optimization

https://developer.nvidia.com/cuda-zone

P. Antolin

Home > - cuDAZone
CUDA Zone
CUDA® is a paraltel computing platfo ted by NVIDIA. It enables
aramatic ncreases in computing performance by harnessing the pawer ofthe graphics processing unit
(BPU). With millions of date ientists and

using tfor

CUDA Toolkit Training

abow arallel Q s for getting started in parallel
Tools & Ecosystem More Accelerated
Downloads Resources
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Compute capability: which GPU?

=PrL

Specification and features of a compute device depends on its compute capability

Table 14. Feature Support per Compute C

Feature Support Compute Capability

(Unlisted features are supported for all compute capabilities) 3.5,3.7, 5.0, 5.2 \ 5.3 6.x \ 7.x 8.x
Atomic functions operating on 32-bit integer values in global memory (Atomic Functions) Yes

Atomic functions operating on 32-bit integer values in shared memory (Atomic Functions) Yes

Atomic functions operating on 64-bit integer values in global memory (Atomic Functions) Yes

Atomic functions operating on 64-bit integer values in shared memory (Atomic Functions) Yes

Atomic addition operating on 32-bit floating point values in global and shared memory (atomicAdd() Yes

Atomic addition operating on 64-bit floating point values in global memory and shared memory No Yes

(atomicAdd())

Warp vote functions (Warp Vote Functic

Memory fence functions (Memory Fence Functions)

Synchronization functions (Synchronization Functions)

Surface functions (Surface Functions) Yes

Unified Memory Programming (Unified Memory Programming)

Dynamic Parallelism (CUDA Dynamic Parallelism)

Half-precision floating-point operations: addition, subtraction, multiplication, comparison, warp No Yes

shuffle functions, conversion

Bfloat16-precision floating-point operations: addition, subtraction, multiplication, comparison, warp No Yes
shuffle functions, conversion

Tensor Cores No Yes

Mixed Precision Warp-Matrix Functions (Warp matrix functions) No ‘ Yes
Hardware-accelerated memcpy_async (Asynchronous Data Copies) No Yes
Hardware-accelerated Split Arrive/Wait Barrier (Asynchronous Barrier) No Yes
L2 Cache Residency (Device Memory L2 Access Management) No Yes
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Compute capability: which GPU?

Specification and features of a compute device depends on its compute capability

Table 14. Feature Support per Compute Capability

Feature Support Compute Capability V100

(Unlisted features are supported for all compute capabilities) 3.5,3.7, 5.0, 5.2 \ 5.3 \ 6.x 7.x 8.x
Atomic functions operating on 32-bit integer values in global memory (Afomic Functio Yes

Atomic functions operating on 32-bit integer values in shared memory ons) Yes

Atomic functions operating on 64-bit integer values in global memory (Afomic Functions) Yes

Atomic functions operating on 64-bit integer values in shared memory (Atomic Functions) Yes

Atomic addition operating on 32-bit floating point values in global and shared memory (atomicAdd()) Yes

Atomic addition operating on 64-bit floating point values in global memory and shared memory No Yes

(atomicAdd())

Warp vote functions (Warp Vote Functions)

Memory fence functions (Memory

Synchronization functions (Synchronization Functions) Jes

Surface functions (Surface Functions)

Unified Memory Programming (Unified Memory Programming)

Dynamic Parallelism (CUDA Dynamic Parallelism)

Half-precision floating-point operations: addition, subtraction, multiplication, comparison, warp No as

shuffle functions, conversion

Bfloat16-precision floating-point operations: addition, subtraction, multiplication, comparison, warp No Yes
shuffle functions, conversion

Tensor Cores No Yés

Mixed Precision Warp-Matrix Functions (Warp matrix functions) No Yds
Hardware-accelerated memepy_async (Asynchronous Data Copies) No Yes
Hardware-accelerated Split Arrive/Wait Barrier (Asynchronous Barrier) No Yes
L2 Cache Residency Management (Device Memory L2 Access Management) No Yes
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Data-Parallel Computing

m Performs operations on a dataset organized into a common
structure (e.g., an array).

m A set of tasks work collectively and simultaneously on the same
structure with each task operating on its own portion of the
structure.

m Tasks perform identical operations on their parts of the structure.
Operations on each portion must be independent.
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Data Dependence

m Data dependence occurs when a program statement refers to the data of a
preceeding statement.

These 3 statement are independent b depends on a, ¢ depends on a and b
1a =2 % x; 1a =2 % X;

2 b=2x*y; 2 b =2 % ax a;

3 ¢ =3 % Xx; 3¢cC=Dbx*x9;

m Data dependence limits the parallelism.

W SCITAS P. Antolin 30 / 57



Data-parallel computing example

-~ ~ - ~
m Dataset consisting of arrays A, B and C.
m Same operations performed on each element
Cy = A, + Bx.
. A 7 = Two tasks operating on a subset of the arrays.
Task 0 Task1 Tasks 0 and 1 are independent. Could have
more tasks.
CX = AX+ BX

W SCITAS P. Antolin 31 /57



Data-Parallel Computing on GPUs

Data-parallel computing maps well to GPUs:
m |dentical operations executed on many data elements in parallel.

m Simplified logic allows increased ratio of computation.

CPU GPU

|
I
[
EI}
I
[
|

=
EI
—]
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The CUDA Programming Model

m The GPU is a compute device that:

» Has its own RAM (device memory).

» Runs data-parallel parts of an application as kernels by using many threads.
m Kernels are:

» C/C++ functions with some restrictions, and a few language extensions.
» Executed by many threads.

m GPU vs CPU threads

» GPU threads are extremely lightweight.
» GPU needs 1000s of threads for full efficiency.
» A multi-core CPU needs only a few.

W SCITAS P. Antolin 33 /57



Many-threads approach

m The cores in the streaming multiprocessors are SIMT (Single Instruction Multiple
Threads).

m All the cores execute the same instruction on different data (vector computing).
= Minimum of 32 threads doing the same thing at the same time (warp).
m Lots of active threads = the key to performance (occupancy).

m Execution alternates between active warps which become inactive when they wait
for data.

m Threads are organized in grids of blocks.

W SCITAS P. Antolin 34 / 57



CUDA Threads Hierarchy

m CUDA is designed to execute 1000s of threads.
m Threads are grouped together into thread blocks.
m Threads blocks are grouped together into a grid.

W SCITAS P. Antolin 35 / 57



CUDA Threads Hierarchy

Grid

Block (@ 0) | Blodk (1, 0) Block (2 0)

m Thread blocks and Grids can be 1D, 2D, or 3D. Block (@ 1) Blod (1, 1) ﬁ(zn

m Dimensions set at launch time. = = ki : ~

m Thread blocks and grids do not need to have /”” ',.:"" \\\
the same dimensionality, e.g., 1D grid of 2D
blocks.

m Thread blocks must execute independently.
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CUDA Programming Model

C Program
Sequential
Execution
Serial code Host f
Parallel kernel Device
m The host launches kernels. e Yo s
. . Block (0, 1)  Block (1,1)  Block (2, 1)
m The host is responsible for:
» Managing the allocated memory on host I Host
and device. i
» Data exchange between host and device. s e |
. Kernell<<<>>> O Grid1
» Error handling. ....gu, mgx.w)
Block (0, 1) Block (1, 1)
Block (0, 2) W
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CUDA APIs

Can use CUDA through CUDA C++ Runtime API or Driver API.
= This course will focus on CUDA C++.
m Driver APl is lower level and has a much more verbose syntax.
m Don't confuse the two when referring to CUDA Documentation:

» cuFunctionName — Driver API
» cudaFunctionName() — Runtime API (the one we will use)
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What the programmer expresses in CUDA

Computation partitioning (where does the computation occur?)

» Declarations on functions __host__, __global__, __device__
» Mapping of thread programs to device: compute<<<gs,bs>>>(<args>)

E—)

Data partitioning (where does data reside, who may access it and how?)

» Declaration on data __shared__, __device constant__

Data management and orchestration
» Copying to/from host:

e e.g., cudaMemcpy (h_obj,d_obj, size, cudaMemcpyDevicetoHost) or Unified
memory!

= Concurrency management
» e.g., __synchthreads()
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Unified memory

Unified memory is a single memory address space accessible from the GPU and the
CPU.

» Allocating memory in the unified memory means replacing all malloc() or
new() by cudaMallocManaged ()
» A free() is replaced by a cudaFree()

Warning: memory must be synchronized if either CPU or GPU tries to access it
before/after completion.

Use cudaDeviceSynchronize () to synchronize host and device.

The allocated memory must fit entirely within the GPU’s memory!

W SCITAS P. Antolin 40 / 57



CUDA Kernel Launch Syntax

m CUDA Kernels are launched by the host using a modified C function call syntax
myKernel<<<dim3 dGrid, dim3 dBlock>>>(...)
dim3 is vector type x, y, and z components (dG.x)

Table 15. Technical ications per Compute Capability
Compute Capability
Technical Specifications 35 | 37 [ s0 | 52 | 53 | 60 | 61 | 62 | 10 | 12 | 15 8.0 8.6
?éfzmulx:vumber of resident grids per device (Concurrent 2 ‘ 16 ‘ 2 ‘ 2 ‘ 16 ‘ 18 ‘ 16 ‘ 128
Maximum dimensionality of grid of thread blocks 3
Maximum x-dimension of a grid of thread blocks 211
Maximum y- or z-dimension of a grid of thread blocks 65535
Maximum dimensionality of a thread block 3
Maximum x- or y-dimension of a block 1024
Maximum z-dimension of a block 64
Maximum number of threads per block 1024
Warp size 32
Maximum number of resident blocks per SM 16 32 16 32 16
Maximum number of resident warps per S 64 2 64 I
Maximum number of resident threads per SM 2048 1024 2048 1536
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CUDA Kernels

m Denoted by __global__ function qualifier
» __global__ void mykernel(float *a)

= Called from host, executed on device (on the SM).

m Some restrictions:

» Must return void.
» No static variables.
» No access to host functions.
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CUDA Syntax - Kernels

Kernels can take arguments just like any C++ function
m Pointer

m Parameters passed by value

1 __global__ void SimpleKernel(float *a, float b) {
2 a[O] =D
s }
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CUDA Syntax - Kernels

Kernels must be declared in the source/header files before they are called

1 // Kernel forward declaration

> __global__ void kernel(float *a);
3

4 int main() {

5 dim3 gridSize, blockSize;

6 float *a;

7 }

8

9 __global__ void kernel(float* a) {
10 // Kernel implementation

u

W SCITAS P. Antolin 44 / 57



CUDA Syntax - Kernels

Kernels have read-only built-in variables:
m gridDim: dimensions of the grid.
m blockIdx: unique index of a block within a grid.
m blockDim: dimensions of the block.
m threadIdx: unique index of the thread within a block.
m Cannot vary the size of the blocks or grids during kernel call.

m The code inside the kernel is written from single thread point of view.
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CUDA Kernels - Syntax

m All C operators are supported:
> eg, +,%,/,7,>,>>

= Many functions from the C/C++ standard math library:
» e.g., sin, cos, sqrt, ceil, exp

» See this link for a complete list of supported functions.

m Control flow statements too:
» eg, if (), while(), for()
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/#mathematical-functions-appendix

Hello, World!

, int main( void ) {
2 printf( "Hello, World!\n" );
3 return O;

s X

m To compile: nvcc -oo hello_world hello_world.cu
m To execute: ./hello_world
m This basic program is just standard C/C++ that runs on the host.

= NVIDIA’s compiler (nvee) will not complain about CUDA programs with no device
code.
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Hello, World! with Device Code

1 __global__
» void kernel( void ) {}

m CUDA C++ keyword __global__ indicates that a function:

» Runs on the device
» Called from host code

m nvcc splits source file into host and device components:

» NVIDIA’s compiler handles device functions like kernel ()
» Standard host compiler handles host functions like main ()
e gcc, icc, ...
e Microsoft Visual Studio C
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Hello, World! with Device Code

, int main( void ) {

2 kernel<<< 1, 1 >>>();
3 printf( "Hello, World!\n" );
4 return O;

s F

m Triple angle brackets mark a call from host code to device code:

» A “kernel launch” in CUDA jargon.
» We'll discuss the parameters inside the angle brackets later.

m This is all that's required to execute a function on the GPU!
m The function kernel () does nothing, so let us run something a bit more useful.

W SCITAS P. Antolin 49 / 57



CUDA Kernels - Syntax

m Through built-in variables is possible to index your arrays.
m Map local thread ID to a global array index.

1 // create 2D 5z3 thread bloks
2 dim3 block_size;

3 block_size.x = 5; |
4 block_size.y = 3; &ﬁ/ﬁ ol e
5 // configure 2D grid as well : ‘
6 dim3 grid_size;

7 grid_size.x = 3;

8 grid_size.y = 2;

Block Block Block
(0, 0) {1,0) (2,0)

't}
Block (1, 1)

10 // grid_size & block_size are passed as
— arguments to <<< >>>
11 kernel<<<grid_size,block_size>>>(dev_arr
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CUDA Syntax - Inside the kernel

1 __global__ void kernel(int *arr) {
2 // Map the two 2D block indices to a single linear, 1D block
< index
3 int id_in_block = threadIdx.y * blockDim.x + threadldx.x;
4
5 // Number of blocks before the current one.
6 int offset = blockIdx.y * gridDim.x + blockIdx.x;
7
8 // 1D index
9 const int block_size = blockDim.x * blockDim.y;
10 const int id = offset * block_size + id_in_block;
11
12 // Write out the result
13 arr[id] = id_in_block;
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CUDA Syntax - Index & Size calculation

m Global index calculation in 1D
» Idx = blockIdx.x * blockDimx * x + threadldx.x

m Grid size calculation
GridSize = ( Size + BlkDim - 1) / BlkDim

(integer division: round down)

» Size: Total size of the array.
» BlkDim: Size of the block (max 1024).
» GridSize: Number of blocks in the grid.
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CUDA Syntax - Thread ldentifiers

Result for each kernel launched with MyKernel<<<3,4>>>(a);

1 __global__ void Mykernel (int* a) {
2 int idx = blockIdx.x*blockDim.x + threadIdx.x; a=555555

3 alidx] = 5; - 555555
4}

5

6 __global__ void Mykernel(int* a) {

7 int idx = blockIdx.x*blockDim.x + threadIldx.x; |[|la = 0 0 0 0 1 1

8 alidx] = blockIdx.x; - 112222
o

10

11 __global__ void Mykermel(int* a) {

12 int idx = blockIdx.x*blockDim.x + threadldx.x; |la = 0 1 2 3 0 1
13 a[idx] = threadldx.x; - 230123
14 }
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EPFL User-defined device functions

= Can write/call your own device functions

» __device__ float myDeviceFunctions()
» Device functions cannot be called by the host.

1 __device__ float myDeviceFunction() {
- A
s }

5 __global__ void myKernel(float* a) {
6 int idx = blockIdx.x*blockDim.x + threadIldx.x;
7 alidx] = myDeviceFunction(idx);

s }
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CUDA Syntax - Synchronization

Kernel's launches are asynchronous.

They return to CPU immediately.

Kernel starts executing once all outstanding CUDA calls are complete.

cudaDeviceSynchronize() blocks until all outstanding CUDA calls are completed.
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CUDA Syntax - Error Management

m Host code manages errors.

m Most CUDA functions return cudaError_t:
» Enumeration type:
e cudaSuccess (value 0) indicates no error.
e Use cudaGetErrorString()
m char* cudaGetErrorString(cudaError_t err)

» Return a string describing the error condition.

1 cudakError_t err;

» e = cudaMemcpy(...);

s if(e) {

" printf ("Error: %s\n", cudaGetErrorString(err));

st
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CUDA Syntax - Error Management

m Kernels' launches have no return valuel!

m cudaError_t cudaGetLastError()
» Return error code for last CUDA runtime function (including kernel launches).

e At exit, clears global error state; subsequent calls will return “success”

» In case of multiple errors, only the last one is reported.
» If asynchronous cudaDeviceSynchronize() is needed,
cudaGetLastError () must be called before.
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