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What will we learn today?

Motivation: Trends in HPC
Hardware architecture
Software environment
How to program on GPU using CUDA
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Motivation: Why running on GPUs?

Massively parallel
Thousands of cores
Many threads approach
Programmable: CUDA
Many softwares available:
▶ Machine Learning: Caffe, PyTorch, Tensorflow, Theano
▶ Molecular Dynamics: Lammps, Amber
▶ Weather prediction: Cosmo
▶ Dozens of general purpose libraries from NVIDIA
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Motivation: Why running on GPUs

Single-thread
performance
increased ∼ linearly
Number of logical
cores is increasing ∼
power law
Frequence ∼
constant
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Why GPU? Performance!

From Nvidia programming guide
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Nvidia V100 vs Intel processors
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Nvidia A100 vs Intel processors
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Nvidia H100 vs Intel processors
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GPU advantage: Performance

Quantum-ESPRESSO + SIRIUS
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GPU advantage: Performance - TOP 500 (November 2024)
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GPU advantage: Performance - TOP 500 (November 2024)

Not only NVIDIA . . .
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TAKE HOME MESSAGE

The reason behind the discrepancy in floating-point capability
between the CPU and the GPU is that the GPU is specialized for
compute-intensive, highly parallel computation - exactly what
graphics rendering is about - and therefore designed such that
more transistors are devoted to data processing rather than data
caching and flow control.

From NVidia programming guide:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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GPU disadvantages?

Architecture not as flexible as CPU (but easier to get performance).
Must rewrite algorithms and maintain software in GPU languages.
Discrete GPUs attached to CPU via relatively slow PCIe
▶ 128 GB/s bi-directional via PCIE (H100)
▶ 900 GB/s via NVlink (H100)

(Not so) limited memory: 80 GB (H100). Increasing.
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From CPU to GPU
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From CPU to GPU

Remove the components that
help single instruction stream
to run faster.
Maximize the chip area
dedicated to computation.
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From CPU to GPU

GPUs: many core devices.
Originally designed for gaming
industry: optimize the
execution throughput of
massive number of threads
(1000+).
Mask memory latency by
interleaving threads execution.
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From CPU to GPU

“CPUs are designed to minimize the
latency of instruction execution and
the GPUs are designed to maximize
the throughput of executing instruc-
tions”
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Streaming Multiprocessors Architecture simplified

In a single Streaming
Multiprocessor (SM):

Many memory regions
available, each with different
performance characteristics.
Must map the dataset to the
right memory type.
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Streaming Multiprocessors

Each GPU is comprised of one or more
Streaming Multiprocessors (SM)
(e.g., NVidia V100 has 80 SMs, H100 has
114 SMs).

Each SM has a multiples of 32 cores
(e.g., one V100’s SM has 64 single-precision
cores, and 32 for double-precision. I.e., they
have 5120/2560 single/double-precision
CUDA cores + 640 tensor cores).

Instructions are executed in multiples of 32
threads (warp).

Each SM has a collection of cores, registers,
memory.
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CUDA jargon

Host: The CPU and its memory (host memory).
Device: The GPU and its memory (device memory).
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Accelerated node: Overview
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Accelerated node: Overview

Separated memory space.
CPU and GPU have to
manage the memory
separately.
The CPU is responsible for
allocating the memory in both
the host and and the device.
Kernels must be launched
from the CPU.
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TAKE HOME MESSAGE

CPU and GPUs are independent from each other. As
such, it is the programmer’s responsibility to manage the
resources.
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How can you program on GPU?

Maximum flexibility
▶ CUDA

C/C++/Fortran/Python.

Simple programming directives:
▶ Simple compiler pragma.
▶ Compiler parallelization code.
▶ Target a variety of platforms.

Drop-in Acceleration:
▶ Highly optimized by GPU

experts.
▶ FFT, BLAS, LAPACK, magma,

RNG.
▶ OpenCV, Pytorch, Tensorflow,

etc.
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NVIDIA CUDA-X accelerated libraries

P. Antolin 23 / 57



NVIDIA CUDA-X accelerated libraries

cuFFT - FFT transform
cuBLAS - Basic Linear Algebra
cuSPARSE - Sparse Matrix Routines
cuSOLVER - Dense and Sparse Direct
Solver
cuDNN - deep learning
cuML - machine learning
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OpenACC directives
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OpenMP directives
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CUDA overview

Parallel computing architecture developed by NVIDIA

CUDA programming interface consists of:
C++ language extensions to target parts of source code on the
compute device.
A runtime library split into:
▶ Host (CPU): component - executes on host, provides

functions to control and access one or more compute
devices.

▶ Device (GPU): component - executes on device, provides
device-specific functions.

▶ Common component - provide built-in vector types and
subset of C standard library supported both on host and
device.
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CUDA tools

Compilers
▶ Need to compile separately host code and

device code
• Host code: gcc, intel
• Device code: nvcc (module load cuda on

Izar):

Debugger
▶ CUDA-gdb: extension of gdb debugger

Nvprof
▶ CUDA profiler to help with cuda

optimization
https://developer.nvidia.com/cuda-zone
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Compute capability: which GPU?

Specification and features of a compute device depends on its compute capability
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Compute capability: which GPU?

Specification and features of a compute device depends on its compute capability
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Data-Parallel Computing

Performs operations on a dataset organized into a common
structure (e.g., an array).
A set of tasks work collectively and simultaneously on the same
structure with each task operating on its own portion of the
structure.
Tasks perform identical operations on their parts of the structure.
Operations on each portion must be independent.
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Data Dependence

Data dependence occurs when a program statement refers to the data of a
preceeding statement.

These 3 statement are independent

1 a = 2 * x;
2 b = 2 * y;
3 c = 3 * x;

b depends on a, c depends on a and b

1 a = 2 * x;
2 b = 2 * a * a;
3 c = b * 9;

Data dependence limits the parallelism.
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Data-parallel computing example

Dataset consisting of arrays A, B and C .
Same operations performed on each element
Cx = Ax + Bx .
Two tasks operating on a subset of the arrays.
Tasks 0 and 1 are independent. Could have
more tasks.
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Data-Parallel Computing on GPUs

Data-parallel computing maps well to GPUs:
Identical operations executed on many data elements in parallel.
Simplified logic allows increased ratio of computation.
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The CUDA Programming Model

The GPU is a compute device that:
▶ Has its own RAM (device memory).
▶ Runs data-parallel parts of an application as kernels by using many threads.

Kernels are:
▶ C/C++ functions with some restrictions, and a few language extensions.
▶ Executed by many threads.

GPU vs CPU threads
▶ GPU threads are extremely lightweight.
▶ GPU needs 1000s of threads for full efficiency.
▶ A multi-core CPU needs only a few.
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Many-threads approach

The cores in the streaming multiprocessors are SIMT (Single Instruction Multiple
Threads).
All the cores execute the same instruction on different data (vector computing).
Minimum of 32 threads doing the same thing at the same time (warp).
Lots of active threads = the key to performance (occupancy).
Execution alternates between active warps which become inactive when they wait
for data.
Threads are organized in grids of blocks.
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CUDA Threads Hierarchy

CUDA is designed to execute 1000s of threads.
Threads are grouped together into thread blocks.
Threads blocks are grouped together into a grid.
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CUDA Threads Hierarchy

Thread blocks and Grids can be 1D, 2D, or 3D.
Dimensions set at launch time.
Thread blocks and grids do not need to have
the same dimensionality, e.g., 1D grid of 2D
blocks.
Thread blocks must execute independently.
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CUDA Programming Model

The host launches kernels.

The host is responsible for:
▶ Managing the allocated memory on host

and device.
▶ Data exchange between host and device.
▶ Error handling.
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CUDA APIs

Can use CUDA through CUDA C++ Runtime API or Driver API.
This course will focus on CUDA C++.
Driver API is lower level and has a much more verbose syntax.
Don’t confuse the two when referring to CUDA Documentation:
▶ cuFunctionName → Driver API
▶ cudaFunctionName() → Runtime API (the one we will use)
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What the programmer expresses in CUDA

Computation partitioning (where does the computation occur?)
▶ Declarations on functions __host__, __global__, __device__
▶ Mapping of thread programs to device: compute<<<gs,bs>>>(<args>)

Data partitioning (where does data reside, who may access it and how?)
▶ Declaration on data __shared__, __device__, __constant__

Data management and orchestration
▶ Copying to/from host:

• e.g., cudaMemcpy(h_obj,d_obj, size, cudaMemcpyDevicetoHost) or Unified
memory!

Concurrency management
▶ e.g., __synchthreads()
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Unified memory

Unified memory is a single memory address space accessible from the GPU and the
CPU.
▶ Allocating memory in the unified memory means replacing all malloc() or

new() by cudaMallocManaged()
▶ A free() is replaced by a cudaFree()

Warning: memory must be synchronized if either CPU or GPU tries to access it
before/after completion.
Use cudaDeviceSynchronize() to synchronize host and device.
The allocated memory must fit entirely within the GPU’s memory!
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CUDA Kernel Launch Syntax

CUDA Kernels are launched by the host using a modified C function call syntax
myKernel<<<dim3 dGrid, dim3 dBlock>>>(...)
dim3 is vector type x, y, and z components (dG.x)
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CUDA Kernels

Denoted by __global__ function qualifier
▶ __global__ void mykernel(float *a)

Called from host, executed on device (on the SM).

Some restrictions:
▶ Must return void.
▶ No static variables.
▶ No access to host functions.
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CUDA Syntax - Kernels

Kernels can take arguments just like any C++ function
Pointer
Parameters passed by value

1 __global__ void SimpleKernel(float *a, float b) {
2 a[0] = b
3 }
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CUDA Syntax - Kernels

Kernels must be declared in the source/header files before they are called

1 // Kernel forward declaration
2 __global__ void kernel(float *a);
3

4 int main() {
5 dim3 gridSize, blockSize;
6 float *a;
7 }
8

9 __global__ void kernel(float* a) {
10 // Kernel implementation
11 }
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CUDA Syntax - Kernels

Kernels have read-only built-in variables:
gridDim: dimensions of the grid.
blockIdx: unique index of a block within a grid.
blockDim: dimensions of the block.
threadIdx: unique index of the thread within a block.
Cannot vary the size of the blocks or grids during kernel call.
The code inside the kernel is written from single thread point of view.
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CUDA Kernels - Syntax

All C operators are supported:
▶ eg, +,*,/,ˆ,>,>>

Many functions from the C/C++ standard math library:
▶ e.g., sin, cos, sqrt, ceil, exp
▶ See this link for a complete list of supported functions.

Control flow statements too:
▶ eg, if(), while(), for()
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Hello, World!

1 int main( void ) {
2 printf( "Hello, World!\n" );
3 return 0;
4 }

To compile: nvcc -oo hello_world hello_world.cu

To execute: ./hello_world
This basic program is just standard C/C++ that runs on the host.
NVIDIA’s compiler (nvcc) will not complain about CUDA programs with no device
code.
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Hello, World! with Device Code

1 __global__
2 void kernel( void ) {}

CUDA C++ keyword __global__ indicates that a function:
▶ Runs on the device
▶ Called from host code

nvcc splits source file into host and device components:
▶ NVIDIA’s compiler handles device functions like kernel()
▶ Standard host compiler handles host functions like main()

• gcc, icc, . . .
• Microsoft Visual Studio C
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Hello, World! with Device Code

1 int main( void ) {
2 kernel<<< 1, 1 >>>();
3 printf( "Hello, World!\n" );
4 return 0;
5 }

Triple angle brackets mark a call from host code to device code:
▶ A “kernel launch” in CUDA jargon.
▶ We’ll discuss the parameters inside the angle brackets later.

This is all that’s required to execute a function on the GPU!
The function kernel() does nothing, so let us run something a bit more useful.
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CUDA Kernels - Syntax

Through built-in variables is possible to index your arrays.
Map local thread ID to a global array index.

1 // create 2D 5x3 thread bloks
2 dim3 block_size;
3 block_size.x = 5;
4 block_size.y = 3;
5 // configure 2D grid as well
6 dim3 grid_size;
7 grid_size.x = 3;
8 grid_size.y = 2;
9

10 // grid_size & block_size are passed as
arguments to <<< >>>↪→

11 kernel<<<grid_size,block_size>>>(dev_arr);
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CUDA Syntax - Inside the kernel

1 __global__ void kernel(int *arr) {
2 // Map the two 2D block indices to a single linear, 1D block

index↪→

3 int id_in_block = threadIdx.y * blockDim.x + threadIdx.x;
4

5 // Number of blocks before the current one.
6 int offset = blockIdx.y * gridDim.x + blockIdx.x;
7

8 // 1D index
9 const int block_size = blockDim.x * blockDim.y;

10 const int id = offset * block_size + id_in_block;
11

12 // Write out the result
13 arr[id] = id_in_block;
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CUDA Syntax - Index & Size calculation

Global index calculation in 1D
▶ Idx = blockIdx.x * blockDimx * x + threadIdx.x

Grid size calculation

GridSize = ( Size + BlkDim - 1) / BlkDim
(integer division: round down)

▶ Size: Total size of the array.
▶ BlkDim: Size of the block (max 1024).
▶ GridSize: Number of blocks in the grid.
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CUDA Syntax - Thread Identifiers

Result for each kernel launched with MyKernel<<<3,4>>>(a);

1 __global__ void Mykernel(int* a) {
2 int idx = blockIdx.x*blockDim.x + threadIdx.x;
3 a[idx] = 5;
4 }
5

6 __global__ void Mykernel(int* a) {
7 int idx = blockIdx.x*blockDim.x + threadIdx.x;
8 a[idx] = blockIdx.x;
9 }

10

11 __global__ void Mykernel(int* a) {
12 int idx = blockIdx.x*blockDim.x + threadIdx.x;
13 a[idx] = threadIdx.x;
14 }

a = 5 5 5 5 5 5
5 5 5 5 5 5↪→

a = 0 0 0 0 1 1
1 1 2 2 2 2↪→

a = 0 1 2 3 0 1
2 3 0 1 2 3↪→
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User-defined device functions

Can write/call your own device functions
▶ __device__ float myDeviceFunctions()
▶ Device functions cannot be called by the host.

1 __device__ float myDeviceFunction() {
2 // .....
3 }
4

5 __global__ void myKernel(float* a) {
6 int idx = blockIdx.x*blockDim.x + threadIdx.x;
7 a[idx] = myDeviceFunction(idx);
8 }
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CUDA Syntax - Synchronization

Kernel’s launches are asynchronous.
They return to CPU immediately.
Kernel starts executing once all outstanding CUDA calls are complete.
cudaDeviceSynchronize() blocks until all outstanding CUDA calls are completed.
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CUDA Syntax - Error Management

Host code manages errors.
Most CUDA functions return cudaError_t:
▶ Enumeration type:

• cudaSuccess (value 0) indicates no error.
• Use cudaGetErrorString()

char* cudaGetErrorString(cudaError_t err)
▶ Return a string describing the error condition.

1 cudaError_t err;
2 e = cudaMemcpy(...);
3 if(e) {
4 printf("Error: %s\n", cudaGetErrorString(err));
5 }
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CUDA Syntax - Error Management

Kernels’ launches have no return value!

cudaError_t cudaGetLastError()
▶ Return error code for last CUDA runtime function (including kernel launches).

• At exit, clears global error state; subsequent calls will return “success”

▶ In case of multiple errors, only the last one is reported.
▶ If asynchronous cudaDeviceSynchronize() is needed,

cudaGetLastError() must be called before.
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