
MATH-454 Parallel and High Performance Computing
Lecture 3: Thread Level Parallelism with OpenMP

Pablo Antolin
Slides of N. Richart, E. Lanti, V. Keller’s lecture notes

March 13 2025

OpenMP

Goals of this section

Understand the context of shared memory.
Understand more in detail the architecture of a node.
Get familiar with the OpenMP execution and memory model.
Getting some speedup with Task Level Parallelism.

P. Antolin 3 / 41

Releases history, present, and future

October 1997: Fortran version 1.0
Late 1998: C/C++ version 1.0
June 2000: Fortran version 2.0
April 2002: C/C++ version 2.0
June 2005: Combined C/C++ and Fortran version 2.5
May 2008: Combined C/C++ and Fortran version 3.0
July 2011: Combined C/C++ and Fortran version 3.1
July 2013: Combined C/C++ and Fortran version 4.0
November 2015: Combined C/C++ and Fortran version 4.5
November 2018: Combined C/C++ and Fortran version 5.0
November 2020: Combined C/C++ and Fortran version 5.1
November 2021: Combined C/C++ and Fortran version 5.2
November 2024: Combined C/C++ and Fortran version 6.0

P. Antolin 4 / 41

Terminology
Selected extract of the specification

Specification:
▶ Full specification
▶ RefCard

Terms:
thread an execution entity with a stack

and a static memory (threadprivate memory)

OpenMP thread a thread managed by the OpenMP runtime

processor an hardware unit on which one or more OpenMP threads can execute
directive a base language mechanism to specify OpenMP program behavior

construct an OpenMP executable directive and the associated statement, loop
nest or structured block, if any, not including the code in any called
routines. That is, the lexical extent of an executable directive.

P. Antolin 5 / 41

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-6-0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-RefGuide-6.0-OMP60SC24-web.pdf

Memory Model
Shared memory

RAM RAM

GPU GPU GPU GPU

CPUCPU

Shared Memory

CPUCPU

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

P. Antolin 6 / 41

Memory Model
Shared memory

RAM RAM

GPU GPU GPU GPU

CPUCPU

Shared Memory

CPUCPU

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

P. Antolin 6 / 41

Memory Model
Shared memory

RAM RAM

GPU GPU GPU GPU

CPUCPU

Shared Memory

CPUCPU

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

P. Antolin 6 / 41

Execution Model
Fork/join

Parallel

Parallel

Sequential

Join

Fork

Sequential

Sequential

P. Antolin 7 / 41

Compiling an OpenMP code
pragmas and compilation

OpenMP directives are written as pragmas: #pragma omp

Use the conditional compilation flag #if defined (_OPENMP) for the
preprocessor

Compilation using the GNU compiler:

$> g++ -fopenmp ex1.c -o ex1

Compilation using the Intel compiler:

$> icpc -fopenmp ex1.c -o ex1

P. Antolin 8 / 41

Compiling an OpenMP code
pragmas and compilation

OpenMP directives are written as pragmas: #pragma omp

Use the conditional compilation flag #if defined (_OPENMP) for the
preprocessor

Compilation using the GNU compiler:

$> g++ -fopenmp ex1.c -o ex1

Compilation using the Intel compiler:

$> icpc -fopenmp ex1.c -o ex1

P. Antolin 8 / 41

Hello World in C++
Simple version

openmp/hello.cc

1 # include <iostream>
2 # include <omp.h>
3

4 int main() {
5

6 # pragma omp parallel
7 {
8 auto mysize = omp_get_num_threads();
9 auto myrank = omp_get_thread_num();

10 std::printf("Hello from thread %i out of %i\n", myrank, mysize);
11 }
12

13 return 0;
14 }

$ OMP_NUM_THREADS=4 ./openmp/hello
Hello from thread 2 out of 4
Hello from thread 1 out of 4
Hello from thread 0 out of 4
Hello from thread 3 out of 4

P. Antolin 9 / 41

Hello World in C++
Simple version

$ OMP_NUM_THREADS=4 ./openmp/hello
Hello from thread 2 out of 4
Hello from thread 1 out of 4
Hello from thread 0 out of 4
Hello from thread 3 out of 4

P. Antolin 9 / 41

Hello World in C++
With condition compilation

openmp/hello_cond.cc

6 int main() {
7 int mysize = 1;
8 int myrank = 0;
9

10 # pragma omp parallel
11 {
12 # if defined(_OPENMP)
13 mysize = omp_get_num_threads();
14 myrank = omp_get_thread_num();
15 # endif
16 std::printf("Hello from thread %i out of %i\n", myrank, mysize);
17 }
18 return 0;
19 }

P. Antolin 10 / 41

Number of concurrent threads

Default value is implementation dependent (usually max hardware threads)
At runtime in the code

1 omp_set_num_threads(nthreads);

With an environment variable

$> export OMP_NUM_THREADS=4

P. Antolin 11 / 41

Runtime routines

Subset of the routines in OpenMP
omp_get_num_threads(): number of threads in the current region
omp_get_thread_num(): id of the current thread
omp_get_max_threads(): upper bound to the number of threads that could be
used
omp_get_wtime(): wall clock time in seconds
omp_get_wtick(): seconds between successive clock ticks

For calling these functions you need to #include <omp.h> !!

P. Antolin 12 / 41

The parallel construct

This is the mother of all constructs in OpenMP. It starts a parallel execution.

Syntax

1 # pragma omp parallel [clause[[,] clause]...]
2 {
3 structured-block
4 }

where clause is one of the following:
if or num_threads : conditional clause
default(private | firstprivate | shared | none) : default data scoping
private(list), firstprivate(list), shared(list) or copyin(list) : data scoping
reduction(operator : list)

P. Antolin 13 / 41

Worksharing constructs

Work-sharing constructs are possible in three “flavours”:
sections construct
single construct
workshare construct (only in Fortran)

P. Antolin 14 / 41

Worksharing constructs
The sections construct

Syntax

1 # pragma omp [parallel] sections [clause]
2 {
3 # pragma omp section
4 {
5 code_block
6 }
7 }

where clause is one of the following:
private(list), firstprivate(list), lastprivate(list)
reduction(operator : list)
Each section within a sections construct is assigned to one and only one thread

P. Antolin 15 / 41

A sections construct
Example

openmp/sections.cc

6 # pragma omp parallel sections num_threads(4)
7 {
8 # pragma omp section
9 std::printf("Thread %i handling section 1\n", omp_get_thread_num());

10 # pragma omp section
11 std::printf("Thread %i handling section 2\n", omp_get_thread_num());
12 # pragma omp section
13 std::printf("Thread %i handling section 3\n", omp_get_thread_num());
14 }

$./openmp/sections
Thread 0 handling section 1
Thread 1 handling section 2
Thread 2 handling section 3

P. Antolin 16 / 41

A sections construct
Example

openmp/sections.cc

6 # pragma omp parallel sections num_threads(4)
7 {
8 # pragma omp section
9 std::printf("Thread %i handling section 1\n", omp_get_thread_num());

10 # pragma omp section
11 std::printf("Thread %i handling section 2\n", omp_get_thread_num());
12 # pragma omp section
13 std::printf("Thread %i handling section 3\n", omp_get_thread_num());
14 }

$./openmp/sections
Thread 0 handling section 1
Thread 1 handling section 2
Thread 2 handling section 3

P. Antolin 16 / 41

Worksharing constructs
The single construct

Only one thread (usualy the first entering thread) executes the single region.

Syntax

1 # pragma omp single [clause[[,] clause] ...]
2 {
3 structured-block
4 }

where clause is one of the following:
private(list), firstprivate(list)
nowait

P. Antolin 17 / 41

The master directive

Only the master thread executes the section. It can be used in any OpenMP construct

Syntax

1 # pragma omp master
2 {
3 structured-block
4 }

master directive was deprecated in OpenMP version 5. For modern compilers, use:

Syntax

1 # pragma omp masked filter(0)
2 {
3 structured-block
4 }

P. Antolin 18 / 41

The master directive

Only the master thread executes the section. It can be used in any OpenMP construct

Syntax

1 # pragma omp master
2 {
3 structured-block
4 }

master directive was deprecated in OpenMP version 5. For modern compilers, use:

Syntax

1 # pragma omp masked filter(0)
2 {
3 structured-block
4 }

P. Antolin 18 / 41

The Worksharing-loop construct
The for construct

Parallelization of the following loop

Syntax

1 # pragma omp for [clause[[,] clause] ...]
2 {
3 for-loop
4 }

where clause is one of the following:
schedule(kind[, chunk_size])
collapse(n)
ordered
private(list), firstprivate(list), lastprivate(list)

P. Antolin 19 / 41

Example of for construct

openmp/for.cc

6 # pragma omp parallel num_threads(2)
7 {
8 auto myrank = omp_get_thread_num();
9 # pragma omp for

10 for (int i = 0; i < 6; ++i) {
11 std::printf("Thread %i handling i=%i\n", myrank, i);
12 }
13 }

$./openmp/for
Thread 0 handling i=0
Thread 0 handling i=1
Thread 0 handling i=2
Thread 1 handling i=3
Thread 1 handling i=4
Thread 1 handling i=5

P. Antolin 20 / 41

Example of for construct

$./openmp/for
Thread 0 handling i=0
Thread 0 handling i=1
Thread 0 handling i=2
Thread 1 handling i=3
Thread 1 handling i=4
Thread 1 handling i=5

P. Antolin 20 / 41

The Synchronization constructs
The critical construct

Restricts execution of the associated structured block to a single thread at a time

Syntax

1 # pragma omp critical [(name) [[,] hint(hint-expression)]]
2 {
3 structured-block
4 }

name optional to identify the construct
hint-expression information on the expected execution
▶ omp_sync_hint_none
▶ omp_sync_hint_uncontended
▶ omp_sync_hint_contended
▶ omp_sync_hint_nonspeculative
▶ omp_sync_hint_speculative

P. Antolin 21 / 41

The Synchronization constructs
The barrier construct

Specifies an explicit barrier.

Syntax

1 # pragma omp barrier

I.e., all threads wait there until the last one reaches that directive.

P. Antolin 22 / 41

The Synchronization constructs
The barrier construct

openmp/barrier.c

10 # pragma omp parallel
11 {
12 const int myrank = omp_get_thread_num();
13

14 printf("[Thread %d] I print my first message.\n", myrank);
15

16 # pragma omp barrier
17

18 # pragma omp single
19 {
20 printf("The barrier is complete.\n");
21 }
22

23 printf("[Thread %d] I print my second message.\n", myrank);
24 }
25

26 return 0;
27 }

$ OMP_NUM_THREADS=3 ./openmp/barrier
[Thread 0] I print my first message.
[Thread 2] I print my first message.
[Thread 1] I print my first message.
The barrier is complete.
[Thread 0] I print my second message.
[Thread 1] I print my second message.
[Thread 2] I print my second message.

P. Antolin 23 / 41

The Synchronization constructs
The barrier construct

$ OMP_NUM_THREADS=3 ./openmp/barrier
[Thread 0] I print my first message.
[Thread 2] I print my first message.
[Thread 1] I print my first message.
The barrier is complete.
[Thread 0] I print my second message.
[Thread 1] I print my second message.
[Thread 2] I print my second message.

P. Antolin 23 / 41

The Synchronization constructs
The atomic construct

Ensures a specific storage location is accessed atomically.

Syntax

1 # pragma omp atomic [clause[[,] clause] ...]
2 statement

where clause is one of the following:
atomic-clauses read, write, update, capture
memory-order-clauses seq_cst, acq_rel, releases, acquire, relaxed

P. Antolin 24 / 41

Data sharing clauses
What are the variables values

Most common source of errors
Determine which variables are private to a thread, which are shared among all the
threads
If not defined, the variables will be shared
In case of a private variable the variable values can be defined using:
▶ firstprivate defines the value when entering the region
▶ lastprivate defines the value when exiting the region

default(private | firstprivate | shared | none) can be specified
default(none) means each variable should appear in a shared or private list

P. Antolin 25 / 41

Data sharing clauses
shared and private

These attributes determines the scope (visibility) of a single or list of variables

Syntax

1 shared(list1), private(list2)

The private clause: the data is private to each thread and non-initialized. Each
thread has its own copy. #pragma omp parallel private(i)

The shared clause: the data is shared among all the threads. It is accessible (and
non-protected) by all the threads simultaneously.
#pragma omp parallel shared(array)

P. Antolin 26 / 41

Data sharing clauses
firstprivate and lastprivate

These clauses determines the attributes of the variables within a parallel region:

Syntax

1 firstprivate(list1), lastprivate(list2)

In the firstprivate super-set of private, variable is initialized to a copy of variable
before the region
In the lastprivate super-set of private the value of the last thread exiting the
region is copied

P. Antolin 27 / 41

Data sharing clauses
Example

openmp/private.cc

8 std::printf("Thread %i sees, a, b, c: %i, %i, %g (before)\n",
9 omp_get_thread_num(), a, b, c);

10

11 # pragma omp parallel num_threads(3), private(a), firstprivate(b)
12 {
13 std::printf("Thread %i sees, a, b, c: %i, %i, %g (inside)\n",
14 omp_get_thread_num(), a, b, c);
15 c = -1e-3;
16 }
17

18 std::printf("Thread %i sees, a, b, c: %i, %i, %g (after)\n",
19 omp_get_thread_num(), a, b, c);

$./openmp/private
Thread 0 sees, a, b, c: 1, 2, 3 (before)
Thread 0 sees, a, b, c: 1839769744, 2, 3 (inside)
Thread 1 sees, a, b, c: 12789424, 2, 3 (inside)
Thread 2 sees, a, b, c: 12801392, 2, -0.001 (inside)
Thread 0 sees, a, b, c: 1, 2, -0.001 (after)

P. Antolin 28 / 41

Data sharing clauses
Example

$./openmp/private
Thread 0 sees, a, b, c: 1, 2, 3 (before)
Thread 0 sees, a, b, c: 1839769744, 2, 3 (inside)
Thread 1 sees, a, b, c: 12789424, 2, 3 (inside)
Thread 2 sees, a, b, c: 12801392, 2, -0.001 (inside)
Thread 0 sees, a, b, c: 1, 2, -0.001 (after)

P. Antolin 28 / 41

Loop clauses
reduction clause

Syntax

1 reduction(reduction-identifier : list)

reduction-identifier: one of the operation +, –, *, &, |, ˆ, &&, ||
list item on which the reduction applies

openmp/reduction.c

17 global_sum = 0;
18

19 # pragma omp parallel for reduction(+:global_sum)
20 for (i = 0; i < size_vec; i++) {
21 global_sum += vec[i];
22 }
23

24 printf("sum = %i\n", global_sum);

P. Antolin 29 / 41

Loop clauses
reduction clause

Syntax

1 reduction(reduction-identifier : list)

reduction-identifier: one of the operation +, –, *, &, |, ˆ, &&, ||
list item on which the reduction applies

openmp/reduction.c

17 global_sum = 0;
18

19 # pragma omp parallel for reduction(+:global_sum)
20 for (i = 0; i < size_vec; i++) {
21 global_sum += vec[i];
22 }
23

24 printf("sum = %i\n", global_sum);
P. Antolin 29 / 41

Loop clauses
schedule clause

Syntax

1 schedule([modifier [, modifier] :] kind [, chunk_size])

kind
▶ static iterations divided in chunks sized chunk_size assigned to threads in a

round-robin fashion
▶ dynamic iterations divided in chunks sized chunk_size assigned to threads

when they request them until no chunk remains to be distributed
▶ guided iterations divided in chunks sized chunk_size assigned to threads

when they request them. Size of chunks is proportional to the remaining
unassigned chunks.

▶ auto The decisions is delegated to the compiler and/or the runtime system
▶ runtime The decisions is delegated to the runtime system based on ICV

P. Antolin 30 / 41

Loop clauses
collapse clause

Syntax

1 collapse(n)

Specifies how many loops are combined into a logical space

P. Antolin 31 / 41

Example dgemm
collapse(1)

openmp/dgemm.cc

34 # pragma omp parallel for collapse(1) schedule(static, N / nthreads)
35 for (int i = 0; i < N; ++i)
36 for (int j = 0; j < N; ++j)
37 for (int k = 0; k < N; ++k)
38 C[i * N + j] += A[i * N + k] * B[k * N + j];

$ OMP_NUM_THREADS=1 ../build/openmp/dgemm
DGEMM with 1 threads, collapse(1): 21.1209 GFLOP/s (verif 2)

$ OMP_NUM_THREADS=2 ../build/openmp/dgemm
DGEMM with 2 threads, collapse(1): 40.2308 GFLOP/s (verif 2)
$ OMP_NUM_THREADS=4 ../build/openmp/dgemm

DGEMM with 4 threads, collapse(1): 72.7659 GFLOP/s (verif 2)

P. Antolin 32 / 41

Example dgemm
collapse(1)

openmp/dgemm.cc

34 # pragma omp parallel for collapse(1) schedule(static, N / nthreads)
35 for (int i = 0; i < N; ++i)
36 for (int j = 0; j < N; ++j)
37 for (int k = 0; k < N; ++k)
38 C[i * N + j] += A[i * N + k] * B[k * N + j];

$ OMP_NUM_THREADS=1 ../build/openmp/dgemm
DGEMM with 1 threads, collapse(1): 21.1209 GFLOP/s (verif 2)

$ OMP_NUM_THREADS=2 ../build/openmp/dgemm
DGEMM with 2 threads, collapse(1): 40.2308 GFLOP/s (verif 2)
$ OMP_NUM_THREADS=4 ../build/openmp/dgemm

DGEMM with 4 threads, collapse(1): 72.7659 GFLOP/s (verif 2)

P. Antolin 32 / 41

Example dgemm
collapse(2)

$ OMP_NUM_THREADS=1 ../build/openmp/dgemm
DGEMM with 1 threads, collapse(2): 20.358 GFLOP/s (verif 2)

$ OMP_NUM_THREADS=2 ../build/openmp/dgemm
DGEMM with 2 threads, collapse(2): 40.0818 GFLOP/s (verif 2)

$ OMP_NUM_THREADS=4 ../build/openmp/dgemm
DGEMM with 4 threads, collapse(2): 72.4462 GFLOP/s (verif 2)

P. Antolin 33 / 41

Advanced topics
Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

SKL
SP

SKL
SP

UPI

UPI

UPI

P. Antolin 34 / 41

Advanced topics
Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

SKL
SP

SKL
SP

UPI

UPI

UPI

P. Antolin 34 / 41

Advanced topics
Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore CoreSKL
SP

SKL
SP

UPI

UPI

UPI

P. Antolin 34 / 41

Advanced topics
Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore CoreSKL
SP

SKL
SP

UPI

UPI

UPI

P. Antolin 34 / 41

Implications of memory layout

SKL
SP

SKL
SP

UPI

UPI

UPI

One thread can only saturate 1 channel
On memory bound code bandwidth saturates when # of threads ∼ # of channels
If memory allocated on the other processor memory, data go through CPU
interconnect (UPI 3 × 10.4 GT/s)

How to mitigate this effects ?
▶ Loop schedule
▶ Memory first touch
▶ Thread placements

P. Antolin 35 / 41

Implications of memory layout

SKL
SP

SKL
SP

UPI

UPI

UPI

One thread can only saturate 1 channel
On memory bound code bandwidth saturates when # of threads ∼ # of channels
If memory allocated on the other processor memory, data go through CPU
interconnect (UPI 3 × 10.4 GT/s)
How to mitigate this effects ?
▶ Loop schedule
▶ Memory first touch
▶ Thread placements

P. Antolin 35 / 41

Thread Affinity
Thread Affinity Control

The variable OMP_PLACES describes these places in terms of the available hardware.
The variable OMP_PROC_BIND describes how threads are bound to OpenMP places
The variable OMP_DISPLAY_AFFINITY helps to debug the affinity

$ OMP_NUM_THREADS=4 OMP_DISPLAY_AFFINITY=true ./openmp/hello
OMP: pid 2115280 tid 2115280 thread 0 bound to OS proc set {0-35}
OMP: pid 2115280 tid 2115285 thread 3 bound to OS proc set {0-35}
OMP: pid 2115280 tid 2115284 thread 2 bound to OS proc set {0-35}
Hello from thread 0 out of 4
Hello from thread 3 out of 4
OMP: pid 2115280 tid 2115283 thread 1 bound to OS proc set {0-35}
Hello from thread 1 out of 4
Hello from thread 2 out of 4

P. Antolin 36 / 41

Thread Affinity
OMP_PLACES

Possible values for OMP_PLACES where each place corresponds to:
threads a single hardware thread on the device.

cores a single core (having one or more hardware threads) on the device.
ll_caches a set of cores that share the last level cache on the device.

numa_domains a set of cores for which their closest memory on the device is:
the same memory; and
at a similar distance from the cores.

sockets a single socket (consisting of one or more cores) on the device.

P. Antolin 37 / 41

Thread Affinity
OMP_PROC_BIND

Possible values for OMP_PROC_BIND:
false threads not bonded
true threads are bonded (implementation dependant)

master collocate threads with the master thread
close place threads close to the master in the places list

spread spread out threads as much as possible

P. Antolin 38 / 41

First touch

Memory is organized in pages
When allocating data “nothing” happens
Pages are allocated on the memory associated to the first thread initializing it

To mitigate the problem, initialize the arrays in same order they are accessed

P. Antolin 39 / 41

First touch

Memory is organized in pages
When allocating data “nothing” happens
Pages are allocated on the memory associated to the first thread initializing it

To mitigate the problem, initialize the arrays in same order they are accessed

P. Antolin 39 / 41

First touch
Example

openmp/firsttouch.cc

32 std::vector<int> data(N);
33

34 // Serial initialisation (page allocation by master thread)
35 for (std::size_t i = 0; i < N; ++i)
36 {
37 data[i] = i % 10;
38 }
39

40 # pragma omp parallel num_threads(2) for reduction(+ : sum)
41 for (std::size_t i = 0; i < data.size(); ++i)
42 {
43 if (data[i] < 4)
44 sum += data[i];
45 }

P. Antolin 40 / 41

First touch
Example

SKL
SP

SKL
SP

UPI

UPI

UPI
data[0]

data[N-1]

...

P. Antolin 40 / 41

First touch
Example

openmp/firsttouch.cc

10 std::vector<int> data(N);
11

12 // Parallel initialisation (pages allocation)
13 # pragma omp parallel for num_threads(2)
14 for (std::size_t i = 0; i < N; ++i)
15 {
16 data[i] = i % 10;
17 }
18

19 # pragma omp parallel for num_threads(2) reduction(+ : sum)
20 for (std::size_t i = 0; i < data.size(); ++i)
21 {
22 if (data[i] < 4)
23 sum += data[i];
24 }

P. Antolin 40 / 41

First touch
Example

data[0]

data[N/2-1]

...

data[N/2]

data[N-1]

...SKL
SP

SKL
SP

UPI

UPI

UPI

P. Antolin 40 / 41

First touch
Example

openmp/firsttouch.cc

53 // Serial initialisation (by master thread) occurs here.
54 std::vector<int> data(N, 0);
55

56 // Pages are already allocated (too late)
57 # pragma omp parallel for num_threads(2)
58 for (std::size_t i = 0; i < N; ++i)
59 {
60 data[i] = i % 10;
61 }
62

63 # pragma omp parallel for num_threads(2) reduction(+ : sum)
64 for (std::size_t i = 0; i < data.size(); ++i)
65 {
66 if (data[i] < 4)
67 sum += data[i];
68 }

P. Antolin 40 / 41

First touch
Example

SKL
SP

SKL
SP

UPI

UPI

UPI
data[0]

data[N-1]

...

P. Antolin 40 / 41

Data race, false-sharing

Data race:
▶ Data accessed by multiple threads without protection
▶ Lead to undetermined results

False sharing
▶ Data smaller than cache-line size
▶ Multiple threads accessing data in the same cache line will poison each other

caches

P. Antolin 41 / 41

Data race, false-sharing

Data race:
▶ Data accessed by multiple threads without protection
▶ Lead to undetermined results

False sharing
▶ Data smaller than cache-line size
▶ Multiple threads accessing data in the same cache line will poison each other

caches

P. Antolin 41 / 41

Data race, false-sharing

P. Antolin 41 / 41

	OpenMP
	Task parallelism
	Introduction
	Runtime routines
	The parallel construct
	worksharing constructs ("subsubsections", "single", "workshare")
	The Worksharing-loop construct
	The Synchronization constructs
	Data sharing clauses
	Loop clauses
	Advanced topics

