m SCITAS

I . m} i ¥ 7
\ o] i 1
¥ ' ‘ {
. 1R |
f |
SERFN| L
* 3 | i |
! e | Al:n_
" ! - I | 3 ‘ § : !
‘ + : :
= EIEY i
(1 *’r :
. | : : L] r |
EE AR
p : . I‘i St q N

MATH 454 Parallei and ngh Performance Computlng
Lecture 3: Thread Level Parallelism with OpenMP

Pablo Antolin
Slides of N. Richart, E. Lanti, V. Keller’s lecture notes
March 13 2025

Goals of this section

Understand the context of shared memory.

Understand more in detail the architecture of a node.

Get familiar with the OpenMP execution and memory model.

Getting some speedup with Task Level Parallelism.

W SCITAS P. Antolin 3 /41

Releases history, present, and future

October 1997: Fortran version 1.0
Late 1998: C/C++ version 1.0

June 2000: Fortran version 2.0 Open M P
April 2002: C/C++ version 2.0 -
June 2005: Combined C/C++ and Fortran version 2.5

May 2008: Combined C/C++ and Fortran version 3.0

m July 2011: Combined C/C++ and Fortran version 3.1

= July 2013: Combined C/C++ and Fortran version 4.0

November 2015: Combined C/C++ and Fortran version 4.5

November 2018: Combined C/C++ and Fortran version 5.0

November 2020: Combined C/C++ and Fortran version 5.1

November 2021: Combined C/C++ and Fortran version 5.2

November 2024: Combined C/C++ and Fortran version 6.0

W SCITAS P. Antolin 4 /41

=pe Terminology _
LI Selected extract of the specification

m Specification:
» Full specification
» RefCard
m Terms:
thread an execution entity with a stack
and a static memory (threadprivate memory) é

OpenMP thread a thread managed by the OpenMP runtime .

processor an hardware unit on which one or more OpenMP threads can execute

directive a base language mechanism to specify OpenMP program behavior

construct an OpenMP executable directive and the associated statement, loop
nest or structured block, if any, not including the code in any called
routines. That is, the lexical extent of an executable directive.

W SCITAS P. Antolin 5/ 41

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-6-0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-RefGuide-6.0-OMP60SC24-web.pdf

Memory Model
CcpC
=P

GPU || GPU GPU || GPU

| CPU e CPU |

RAM RAM

W SCITAS P. Antolin 6 /41

Memory Model
CcpC
=P

CPU CPU

]]
Shared Memory

W SCITAS P. Antolin 6 /41

Memory Model
CcpC
=P

Shared Memory

P. Antolin 6 /41

Execution Model
CopT
cPrL Fork/join

Sequential
Fork
Parallel ‘ ‘ ‘
Join
Sequential 5 0 5
Parallel o
Sequential 5 0 5

W SCITAS P. Antolin 7 /41

Compiling an OpenMP code
Ccpe
EPFL

m OpenMP directives are written as pragmas: #pragma omp

m Use the conditional compilation flag #7f defined (_OPENMP) for the
preprocessor

W SCITAS P. Antolin 8 /41

Compiling an OpenMP code
Ccpe
EPFL

m OpenMP directives are written as pragmas: #pragma omp

m Use the conditional compilation flag #7f defined (_OPENMP) for the
preprocessor

m Compilation using the GNU compiler:

‘$> g++ -fopenmp exl.c -o exl ’

m Compilation using the Intel compiler:

‘$> icpc -fopenmp exl.c -o exl ’

W SCITAS P. Antolin 8 /41

Hello World in C++
CopT
EPFL

openmp/hello.cc

1 #2nclude <7ostream>
#include <omp.h>

int main() {

{
auto mysize = omp_get_num_threads();
auto myrank = omp_get_thread_num();
10 std: :printf("Hello from thread %i out of %i\n", myrank, mysize);

11 T

2
3
4
5
6 #pragma omp parallel
7
8
9

13 return O;

W SCITAS P. Antolin 9 /41

Hello World in C++
opC
EPFL

OMP_NUM_THREADS=4 ./openmp/hello
Hello from thread 2 out of 4
Hello from thread 1 out of 4

Hello from thread O out of 4
Hello from thread 3 out of 4

= SCITAS

Hello World in C++
cpe
EPFL

openmp/hello_cond.cc

int main() {
int mysize

ig
0;

int myrank

© 0 9 O

10 #pragma omp parallel

11 {

12 #if defined(_OPENMP)

13 mysize = omp_get_num_threads();

14 myrank = omp_get_thread_num() ;

15 #endif

16 std: :printf("Hello from thread %i out of %i\n", myrank, mysize);
17

18 return O;

19 }

W SCITAS P. Antolin 10 / 41

Number of concurrent threads

m Default value is implementation dependent (usually max hardware threads)

m At runtime in the code

1 omp_set_num_threads(nthreads) ; ’

m With an environment variable

‘ $> export OMP_NUM_THREADS=4 ’

W SCITAS P. Antolin 11 / 41

Runtime routines

Subset of the routines in OpenMP
= omp_get_num_threads(): number of threads in the current region
m omp_get_thread_num(): id of the current thread

= omp_get_max_threads(): upper bound to the number of threads that could be
used

m omp_get_wtime(): wall clock time in seconds

m omp_get_wtick(): seconds between successive clock ticks

For calling these functions you need to #include <omp.h> !l

W SCITAS P. Antolin 12 / 41

The parallel construct
=P L [

This is the mother of all constructs in OpenMP. It starts a parallel execution.

1 #pragma omp parallel [clause[[,] clause]...]

2 A
3 structured-block
4}

where clause is one of the following:
= if or num _threads : conditional clause
m default(private | firstprivate | shared | none) : default data scoping
m private(list), firstprivate(list), shared(list) or copyin(list) : data scoping
= reduction(operator : list)

W SCITAS P. Antolin 13 / 41

Worksharing constructs

Work-sharing constructs are possible in three “flavours’
m sections construct
= single construct

m workshare construct (only in Fortran)

W SCITAS P. Antolin 14 / 41

=pEL Worksharing constructs
=i The sections construct

1 #pragma omp [parallel] sections [clause]
2 {

3 #pragma omp section

4 {

5 code_block

6 }

7}

where clause is one of the following:
= private(list), firstprivate(list), lastprivate(list)
= reduction(operator : list)
m Each section within a sections construct is assigned to one and only one thread

W SCITAS P. Antolin 15 / 41

A sections construct
=PrL

Example

openmp/sections.cc

#pragma omp parallel sections num_threads(4)

{
#pragma omp section

std: :printf ("Thread %i handling section 1\n", omp_get_thread_num());

10 #pragma omp section
11 std: :printf ("Thread %i handling section 2\n", omp_get_thread_num());
12 #pragma omp section
13 std: :printf("Thread %i handling section 3\n", omp_get_thread_num());
14}

© 0w 9 O

W SCITAS P. Antolin 16 / 41

A sections construct
=PrL

Example

openmp/sections.cc

#pragma omp parallel secttons num_threads(4)

{
#pragma omp section

std: :printf ("Thread %i handling section 1\n", omp_get_thread_num());

10 #pragma omp section
11 std: :printf ("Thread %i handling section 2\n", omp_get_thread_num());
12 #pragma omp section
13 std: :printf ("Thread %i handling section 3\n", omp_get_thread_num());
14}

© w0 N O

./openmp/sections
Thread 0 handling section 1

Thread 1 handling section 2
Thread 2 handling section 3

Worksharing constructs
CcpC
LP' L The single construct

Only one thread (usualy the first entering thread) executes the single region.

1 #pragma omp single [clause[[,] clause] ...]

2 o
3 structured-block
4}

where clause is one of the following:
= private(list), firstprivate(/ist)

= nowait

W SCITAS P. Antolin 17 / 41

The master directive

Only the master thread executes the section. It can be used in any OpenMP construct

1 #pragma omp master

=
3 structured-block
4}

W SCITAS P. Antolin 18 / 41

The master directive

Only the master thread executes the section. It can be used in any OpenMP construct

1 #pragma omp master

=
3 structured-block
4}

master directive was deprecated in OpenMP version 5. For modern compilers, use:

1 #pragma omp masked filter(0)

Bl {
3 structured-block
4}

W SCITAS P. Antolin 18 / 41

=pEL The Worksharing-loop construct
=01 The for construct

Parallelization of the following loop

1 #pragma omp for [clause[[,] clause] ...]
2 {

3 for-loop

a)

where clause is one of the following:
m schedule(kind[, chunk _size])
= collapse(n)
m ordered

= private(list), firstprivate(/ist), lastprivate(/ist)

W SCITAS P. Antolin 19 / 41

Example of for construct

openmp/for.cc

6 #pragma omp parallel num_threads(2)

m {

8 auto myrank = omp_get_thread_num();

9 #pragma omp for

10 for (int 1 = 0; i < 6; ++i) {

11 std: :printf ("Thread %i handling i=i\n", myrank, i);
12 }

13}

W SCITAS P. Antolin 20 / 41

Example of for construct

./openmp/for
Thread O handling i
Thread
Thread

handling i
handling i

Thread
Thread

handling i
handling i

0
0
Thread 1 handling i
1
1

= SCITAS

=pPEL The Synchronization constructs
=01 The critical construct

Restricts execution of the associated structured block to a single thread at a time

1 #pragma omp critical [(name) [[,] hint(hint-expression)]]

=
3 structured-block
4}

m name optional to identify the construct

= hint-expression information on the expected execution
» omp_sync_hint_none

omp_sync_hint_uncontended

omp_sync_hint_contended

omp_sync_hint_nonspeculative

omp_sync_hint_speculative

W SCITAS P. Antolin 21 / 41

vvyyvyy

=pPEL The Synchronization constructs
=01 The barrier construct

Specifies an explicit barrier.

1 #pragma omp barrier

|.e., all threads wait there until the last one reaches that directive.

W SCITAS P. Antolin 22 /41

=pEL The Synchronization constructs
=it The barrier construct

openmp/barrier.c

10 #pragma omp parallel

11 {

12 const int myrank = omp_get_thread_num();

13

14 printf (" [Thread %d] I print my first message.\n", myrank);

15

16 #pragma omp barrier

17

18 #pragma omp single

19 {

20 printf ("The barrier is complete.\n");

21 }

22

23 printf (" [Thread %d] I print my second message.\n", myrank);
= SCITAS 24 } P. Antolin 23 / 41

=pEL The Synchronization constructs
=it The barrier construct

OMP_NUM_THREADS=3 ./openmp/barrier
[Thread 0] I print my first message.
[Thread 2] I print my first message.
[Thread 1] I print my first message.
The barrier is complete.

[Thread 0] I print my second message.
[Thread 1] I print my second message.
[Thread 2] I print my second message.

= SCITAS

=pPEL The Synchronization constructs
=01 The atomic construct

Ensures a specific storage location is accessed atomically.

1 #pragma omp atomic [clause[[,] clause] ...]
2 statement

where clause is one of the following:
m atomic-clauses read, write, update, capture

m memory-order-clauses seq cst, acq rel, releases, acquire, relaxed

W SCITAS P. Antolin 24 / 41

=pEL Data sharing clauses
=i What are the variables values

m Most common source of errors

m Determine which variables are private to a thread, which are shared among all the
threads

m If not defined, the variables will be shared
m In case of a private variable the variable values can be defined using:

» firstprivate defines the value when entering the region
» lastprivate defines the value when exiting the region

m default(private | firstprivate | shared | none) can be specified
default(none) means each variable should appear in a shared or private list

W SCITAS P. Antolin 25 / 41

Data sharing clauses
CcpC

These attributes determines the scope (visibility) of a single or list of variables

1 shared(1listl), private(list2)

m The private clause: the data is private to each thread and non-initialized. Each
thread has its own copy. #pragma omp parallel private(z)

m The shared clause: the data is shared among all the threads. It is accessible (and
non-protected) by all the threads simultaneously.
#pragma omp parallel shared(array)

W SCITAS P. Antolin 26 / 41

=pEL I?ata_ sharing clau.ses
LI firstprivate and lastprivate

These clauses determines the attributes of the variables within a parallel region:

1 firstprivate(listl), lastprivate(list2)

m In the firstprivate super-set of private, variable is initialized to a copy of variable
before the region

m In the lastprivate super-set of private the value of the last thread exiting the
region is copied

W SCITAS P. Antolin 27 / 41

Data sharing clauses
CcpC
EPFL

openmp/private.cc

8 std: :printf ("Thread %i sees, a, b, c: %i, %i, %g (before)\n",
9 omp_get_thread_num(), a, b, c);

11 #pragma omp parallel num_threads(3), private(a), firstprivate(b)

12 o

13 std: :printf("Thread %i sees, a, b, c: %i, %i, %g (inside)\n",
14 omp_get_thread_num(), a, b, c);

15 c = -1le-3;

16 }

18 std: :printf ("Thread %i sees, a, b, c: %i, %i, %g (after)\n",
19 omp_get_thread_num(), a, b, c);

W SCITAS P. Antolin 28 / 41

=pEL Data sharing clauses
=i 1 Example

= SCITAS

./openmp/private

Thread 0O
Thread 0O
Thread 1
Thread 2
Thread 0

sees,
sees,
sees,
sees,
sees,

a,
H
H

>

a
a
a
a

H

1, 2, 3 (before)

1839769744, 2, 3 (inside)
12789424, 2, 3 (inside)
12801392, 2, -0.001 (inside)
1, 2, -0.001 (after)

=pEL Loop clauses
=i reduction clause

1 reduction(reduction-identifier : list)

m reduction-identifier. one of the operation +, —, *, &, |, ~, &&, ||
m /ist item on which the reduction applies

W SCITAS P. Antolin 29 / 41

=pEL Loop clauses
=i reduction clause

1 reduction(reduction-identifier : list)

m reduction-identifier. one of the operation +, —, *, &, |, ~, &&, ||
m /ist item on which the reduction applies

openmp/reduction.c

17 global_sum = O;

19 #pragma omp parallel for reduction(+:global_sum)
20 for (i = 0; i < size_vec; i++) {
21 global_sum += vec[i];

22 T

24 printf("sum = %i\n", global_sum);
= SCITAS P. Antolin 29 / 41

Loop clauses
Ccpe=
LP' L schedule clause

1 schedule([modifier [, modifier] :] kind [, chunk_size])

m kind

» static iterations divided in chunks sized chunk _size assigned to threads in a
round-robin fashion

» dynamic iterations divided in chunks sized chunk _size assigned to threads
when they request them until no chunk remains to be distributed

» guided iterations divided in chunks sized chunk _size assigned to threads
when they request them. Size of chunks is proportional to the remaining
unassigned chunks.

» auto The decisions is delegated to the compiler and/or the runtime system

» runtime The decisions is delegated to the runtime system based on ICV

W SCITAS P. Antolin 30 / 41

Loop clauses
L= = =
LP' L collapse clause

1 collapse(n)

Specifies how many loops are combined into a logical space

W SCITAS P. Antolin 31 /41

Example dgemm
cp=
cPrL collapse(1)

openmp/dgemm.cc

34 #pragma omp parallel for collapse(l) schedule(static, N / nthreads)
35 for (int i = 0; i < N; ++i)

36 for (int j = 0; j < N; ++j)
37 for (int k = 0; k < N; ++k)
38 C[i * N + j] += A[i * N + k] * B[k * N + jl;

W SCITAS P. Antolin 32 /41

Example dgemm
CcpC
cPrL collapse(1)

openmp/dgemm.cc

34 #pragma omp parallel for collapse(l) schedule(static, N / nthreads)
35 for (int i = 0; i < N; ++i)

36 for (int j = 0; j < N; ++j)
37 for (int k = 0; k < N; ++k)
38 Cli * N + j] += A[i * N + k] * B[k * N + jl;

OMP_NUM_THREADS=1 ../build/openmp/dgemm
DGEMM with 1 threads, collapse(l): 21.1209 GFLOP/s (verif 2)
OMP_NUM_THREADS=2 ../build/openmp/dgemm

DGEMM with 2 threads, collapse(1l): 40.2308 GFLOP/s (verif 2)
OMP_NUM_THREADS=4 ../build/openmp/dgemm
DGEMM with 4 threads, collapse(1l): 72.7659 GFLOP/s (verif 2)

= SCITAS

Example dgemm

E PF L collapse(2)

OMP_NUM_THREADS=1 ../build/openmp/dgemm
DGEMM with 1 threads, collapse(2): 20.358 GFLOP/s (verif 2)

OMP_NUM_THREADS=2 ../build/openmp/dgemm

DGEMM with 2 threads, collapse(2): 40.0818 GFLOP/s (verif 2)

OMP_NUM_THREADS=4 . ./build/openmp/dgemm
DGEMM with 4 threads, collapse(2): 72.4462 GFLOP/s (verif 2)

= SCITAS

Advanced topics
=PrL

Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

Shared Memory

W SCITAS P. Antolin 34 /41

=pEL Adv_anced topics _ _
=11 Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

W SCITAS P. Antolin 34 /41

=pEL Advanced topics
b Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

2x UPl 10.4GT x20 1x On-Pkg PCle (MCP) 8GT x16 1x PCle 8GT x16
2x PLIe 8GT x18 + DM x4 1x UPI 10,4GT x20
A
e = Wi 7N 7 1 A h]
f wcest| adpl[e M2 || .~
uPl Pt | o McP uel S| el Y]
— ——T b AT —
T e T e [] G <3 4
Ea et eSS g eSS g (E5)
| J
—= T T] ==
" e S T P T S
MC > core core core core Mc
7] N e Sl=al=
[uc k&> e e ue pe> uc [iic
h? = core core core core
= 3 7T T I e 8
e = ue e ut uc fe uc
core core ’_5. core core P core core
= T 7T —
m -3 .
core |I core \ core q core 5‘ core core ¥
V v V

W SCITAS P. Antolin 34 /41

=pEL Adv_anced topics _ _
=11 Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

W SCITAS P. Antolin 34 /41

Implications of memory layout

m One thread can only saturate 1 channel
= On memory bound code bandwidth saturates when # of threads ~ # of channels

m |f memory allocated on the other processor memory, data go through CPU
interconnect (UPI 3 x 10.4GT/s)

W SCITAS P. Antolin 35 /41

Implications of memory layout

One thread can only saturate 1 channel

= On memory bound code bandwidth saturates when # of threads ~ # of channels

If memory allocated on the other processor memory, data go through CPU
interconnect (UPI 3 x 10.4GT/s)

How to mitigate this effects 7

» Loop schedule
» Memory first touch
» Thread placements

W SCITAS P. Antolin 35 /41

Thread Affinity
Thread Affinity Control

m The variable describes these places in terms of the available hardware.

m The variable describes how threads are bound to OpenMP places

m The variable helps to debug the affinity

$ OMP_NUM_THREADS=4 OMP_DISPLAY_AFFINITY=true ./openmp/hello

OMP: pid 2115280 tid 2115280 thread O bound to 0S proc set {0-35}
OMP: pid 2115280 tid 2115285 thread 3 bound to 0S proc set {0-35}
OMP: pid 2115280 tid 2115284 thread 2 bound to 0S proc set {0-35}
Hello from thread O out of 4

Hello from thread 3 out of 4

OMP: pid 2115280 tid 2115283 thread 1 bound to 0S proc set {0-35}
Hello from thread 1 out of 4

Hello from thread 2 out of 4

= SCITAS

Thread Affinity

Possible values for 0MP_PLACES where each place corresponds to:
threads a single hardware thread on the device.
cores a single core (having one or more hardware threads) on the device.
Il caches a set of cores that share the last level cache on the device.
numa_domains a set of cores for which their closest memory on the device is:

m the same memory; and
m at a similar distance from the cores.

sockets a single socket (consisting of one or more cores) on the device.

W SCITAS P. Antolin 37 / 41

Thread Affinity

Possible values for 0MP_PROC_BIND:
false threads not bonded
true threads are bonded (implementation dependant)
master collocate threads with the master thread
close place threads close to the master in the places list

spread spread out threads as much as possible

W SCITAS P. Antolin 38 / 41

m Memory is organized in pages
m When allocating data “nothing” happens

m Pages are allocated on the memory associated to the first thread initializing it

W SCITAS P. Antolin 39 /41

m Memory is organized in pages

m When allocating data “nothing” happens

m Pages are allocated on the memory associated to the first thread initializing it
m To mitigate the problem, initialize the arrays in same order they are accessed

W SCITAS P. Antolin 39 /41

E PFL First tOUCh

Example

openmp/firsttouch.cc

32 std: :vector<int> data(N);

3¢ // Serial initialisation (page allocation by master thread)
35 for (std::size_t i = 0; i < N; ++i)

36 {
37 datal[i] = i % 10;
38 }

10 #pragma omp parallel num_threads(2) for reduction(+ : sum)
41 for (std::size_t i = 0; i < data.size(); ++i)

42 {
43 if (datali] < 4)
44 sum += datali];
45 }

W SCITAS P. Antolin 40 / 41

First touch

Example

data[0]

data[N-1]

W SCITAS P. Antolin 40 / 41

First touch
CopT
EPFL

openmp/firsttouch.cc

10 std: :vector<int> data(N);

12 // Parallel initialisation (pages allocation)
13 #pragma omp parallel for num_threads(2)
14 for (std::size_t i = 0; i < N; ++i)

15 o
16 datal[i] = i % 10;
17}

19 #pragma omp parallel for num_threads(2) reduction(+ : sum)
20 for (std::size_t i = 0; i < data.size(); ++i)

21 {
22 if (datali] < 4)
23 sum += datali];
4

2
= SCITAS P. Antolin 40 / 41

First touch

Example

data[0] data[N/2]

data[N/2-1] data[N-1]

W SCITAS P. Antolin 40 / 41

E PFL First tOUCh

Example

openmp/firsttouch.cc

53 // Serial initialisation (by master thread) occurs here.
54 std: :vector<int> data(N, 0);

s6 // Pages are already allocated (too late)
57 #pragma omp parallel for num_threads(2)
58 for (std::size_t i = 0; i < N; ++i)

50 o{
60 datal[i] = i % 10;
61 }

63 #pragma omp parallel for num_threads(2) reduction(+ : sum)
64 for (std::size t i = 0; i < data.size(); ++i)

65 1
66 if (datali] < 4)
67 sum += datal[il; .
= SCITAS P. Antolin 40 / 41

First touch

Example

data[0]

data[N-1]

W SCITAS P. Antolin 40 / 41

Data race, false-sharing

m Data race:

» Data accessed by multiple threads without protection
» Lead to undetermined results

W SCITAS P. Antolin 41 / 41

Data race, false-sharing

m Data race:

» Data accessed by multiple threads without protection
» Lead to undetermined results

m False sharing

» Data smaller than cache-line size
» Multiple threads accessing data in the same cache line will poison each other
caches

W SCITAS P. Antolin 41 / 41

Data race, false-sharing

Thread 0 Thread 1

CPUO CPU1

Cache Line

Cache Line

h 4

. Cache
N

Memory

W SCITAS P. Antolin 41 / 41

	OpenMP
	Task parallelism
	Introduction
	Runtime routines
	The parallel construct
	worksharing constructs ("subsubsections", "single", "workshare")
	The Worksharing-loop construct
	The Synchronization constructs
	Data sharing clauses
	Loop clauses
	Advanced topics

