
MATH-454 Parallel and High Performance Computing

Lecture 2: Performance and single-core optimization

Pablo Antolin
Slides of N. Richart, E. Lanti, V. Keller’s lecture notes

March 6 2025

Performance measurement

Goal of this section

Key concepts to quantify performance
▶ Metrics
▶ Scalings, speedup, efficiency

Roofline model

P. Antolin 3 / 53

Performance metrics

How can we quantify performance?
We need to define a way of measuring it
We will focus on the most common metrics for HPC

The first that comes in mind is time, e.g., time-to-solution
Derived metrics: speedup and efficiency

Scientific codes do computations on floating point numbers
A second metric is the number of floating-point operations per second (FLOP/s)

Finally, the memory bandwidth indicates how much data does your code transfers
per unit of time

P. Antolin 4 / 53

Performance metrics

How can we quantify performance?
We need to define a way of measuring it
We will focus on the most common metrics for HPC

The first that comes in mind is time, e.g., time-to-solution
Derived metrics: speedup and efficiency

Scientific codes do computations on floating point numbers
A second metric is the number of floating-point operations per second (FLOP/s)

Finally, the memory bandwidth indicates how much data does your code transfers
per unit of time

P. Antolin 4 / 53

Performance metrics

How can we quantify performance?
We need to define a way of measuring it
We will focus on the most common metrics for HPC

The first that comes in mind is time, e.g., time-to-solution
Derived metrics: speedup and efficiency

Scientific codes do computations on floating point numbers
A second metric is the number of floating-point operations per second (FLOP/s)

Finally, the memory bandwidth indicates how much data does your code transfers
per unit of time

P. Antolin 4 / 53

Performance metrics

How can we quantify performance?
We need to define a way of measuring it
We will focus on the most common metrics for HPC

The first that comes in mind is time, e.g., time-to-solution
Derived metrics: speedup and efficiency

Scientific codes do computations on floating point numbers
A second metric is the number of floating-point operations per second (FLOP/s)

Finally, the memory bandwidth indicates how much data does your code transfers
per unit of time

P. Antolin 4 / 53

Performance metrics

How can we quantify performance?
We need to define a way of measuring it
We will focus on the most common metrics for HPC

The first that comes in mind is time, e.g., time-to-solution
Derived metrics: speedup and efficiency

Scientific codes do computations on floating point numbers
A second metric is the number of floating-point operations per second (FLOP/s)

Finally, the memory bandwidth indicates how much data does your code transfers
per unit of time20

25
-0

3-
06

MATH-454 Parallel and High Performance ComputingLecture 2:
Performance and single-core optimization

Performance measurement
Performance metrics

Performance metrics

• My code is super fast, it runs in 2.5ns!
• It seems fast, but is it? How fast your hardware is?
• To really understand how much your code exploits the hardware, we use the

FLOP/s and memory bandwidth (B/s)
• Your hardware has theoretical maximum values for those
• You can compare the values from your code to the max to see how well you use

the hardware

Speedup and efficiency

Two important metrics are derived from timings
Compare timings with p processes, Tp, against the reference timing, T1

Speedup

S(p) =
T1

Tp

Efficiency

E (p) =
S(p)

p

We want S(p) as close to p and E (p) as close to 1 (100%) as possible

P. Antolin 5 / 53

Strong scaling

Scalings are a way to assess how well a program performs when adding
computational resources
Strong scaling: add resources, keep total amount of work constant

S(p) =
T1

Tp
, E (p) =

S(p)

p
=

T1

pTp

Strong scaling is an indication on how much profitable it is to add resources to
solve your problem

W

P1
P2

P3

P5

P1

P7

P6 P4

P8

W

P. Antolin 6 / 53

Weak scaling

Weak scaling: add resources and maintain amount of work per resource constant

S(p) =
pT1

Tp
, E (p) =

S(p)

p
=

T1

Tp

Weak scalings are an indication on how well your code will perform on a bigger
machine (and with a bigger problem)
These scalings are always required for project proposals
▶ For strong scalings the metric is speedup (how do I improve performance)
▶ For weak scalings the metric is efficiency (how well performance is kept)

P1

WW

P1 P2

W

P3

W

P4

W

P. Antolin 7 / 53

Amdahl’s law

Amdahl’s law provides an upper bound to the achievable speedup for a fixed
problem size
By definition it is a strong scaling analysis

Assume a fraction α of your code is (perfectly) parallel and let be T1 the time with
1 process: T1 = (1 − α)T1 + αT1

Time for p processes would be Tp = (1 − α)T1 +
α
pT1 =

[
(1 − α) + α

p

]
T1

Speedup becomes

S(p) =
T1

Tp
=

1
(1 − α) + α

p

In the limit (with infinite computational resources)

lim
p→∞

S(p) =
1

1 − α

1 - α

α

Tim
e

T1

Tp

1 - α

α/p α/pα/pα/p

P. Antolin 8 / 53

Amdahl’s law

Amdahl’s law provides an upper bound to the achievable speedup for a fixed
problem size
By definition it is a strong scaling analysis
Assume a fraction α of your code is (perfectly) parallel and let be T1 the time with
1 process: T1 = (1 − α)T1 + αT1

Time for p processes would be Tp = (1 − α)T1 +
α
pT1 =

[
(1 − α) + α

p

]
T1

Speedup becomes

S(p) =
T1

Tp
=

1
(1 − α) + α

p

In the limit (with infinite computational resources)

lim
p→∞

S(p) =
1

1 − α

1 - α

α

Tim
e

T1

Tp

1 - α

α/p α/pα/pα/p

P. Antolin 8 / 53

Amdahl’s law

Amdahl’s law provides an upper bound to the achievable speedup for a fixed
problem size
By definition it is a strong scaling analysis
Assume a fraction α of your code is (perfectly) parallel and let be T1 the time with
1 process: T1 = (1 − α)T1 + αT1

Time for p processes would be Tp = (1 − α)T1 +
α
pT1 =

[
(1 − α) + α

p

]
T1

Speedup becomes

S(p) =
T1

Tp
=

1
(1 − α) + α

p

In the limit (with infinite computational resources)

lim
p→∞

S(p) =
1

1 − α

1 - α

α

Tim
e

T1

Tp

1 - α

α/p α/pα/pα/p

P. Antolin 8 / 53

Amdahl’s law

Amdahl’s law provides an upper bound to the achievable speedup for a fixed
problem size
By definition it is a strong scaling analysis
Assume a fraction α of your code is (perfectly) parallel and let be T1 the time with
1 process: T1 = (1 − α)T1 + αT1

Time for p processes would be Tp = (1 − α)T1 +
α
pT1 =

[
(1 − α) + α

p

]
T1

Speedup becomes

S(p) =
T1

Tp
=

1
(1 − α) + α

p

In the limit (with infinite computational resources)

lim
p→∞

S(p) =
1

1 − α

1 - α

α

Tim
e

T1

Tp

1 - α

α/p α/pα/pα/p

P. Antolin 8 / 53

Amdahl’s trap: are we doomed?

P0 P1 . . . PN

gather

Initialization

Parallel solve

42

P. Antolin 9 / 53

Amdahl’s trap: are we doomed?

4
16
64

256
1024
4096

1 4 16 64 256 1024 4096
cores

sp
ee

du
p

1‰
ideal speedup

Even if initialization and gathering took up 1‰ of the time, running on El Capitan
would be a pity

P. Antolin 9 / 53

Amdahl’s trap: are we doomed?

Limited by the serial part (very sensitive)!
Does this mean we cannot exploit large HPC machines?

No, in general with more resources, we simulate larger systems ⇒ weak scaling
(see Gustafson’s law)

1 10 100 1000
Number of processors

1

10

100

1000

Sp
ee

du
p

2

4

10

20

100

Amdahl's law
Ideal scaling
p = 0.50
p = 0.75
p = 0.90
p = 0.95
p = 0.99

P. Antolin 10 / 53

https://en.wikipedia.org/wiki/Gustafson%27s_law

Amdahl’s trap: are we doomed?

Limited by the serial part (very sensitive)!
Does this mean we cannot exploit large HPC machines?
No, in general with more resources, we simulate larger systems ⇒ weak scaling
(see Gustafson’s law)

1 10 100 1000
Number of processors

1

10

100

1000

Sp
ee

du
p

2

4

10

20

100

Amdahl's law
Ideal scaling
p = 0.50
p = 0.75
p = 0.90
p = 0.95
p = 0.99

P. Antolin 10 / 53

https://en.wikipedia.org/wiki/Gustafson%27s_law

Amdahl’s trap: are we doomed?

Observation:
Amdahl’s law is an upper bound for a fixed problem of size N.

Problem:
If we increase the problem size, the relative sequential part can be made smaller and
smaller if it is of lower complexity than the parallel part of the problem, i.e.,
limN→∞ α(N) = 1.

Alternative:
Take the problem size N into account. This is Gustafson’s law (or Gustafson’s
complement to Amdahl’s law)

P. Antolin 11 / 53

Gustafson’s Law – weak or soft scaling

Different perspective compared to Amdahl’s law
Based on variable workload instead of fixed problem size

Given p the number of processors, α(N) the fraction of parallelizable code, and N the
problem size, the speedup is:

S(N, p) = 1 + (p − 1)α(N)

P. Antolin 12 / 53

Gustafson’s Law – weak or soft scaling

Different perspective compared to Amdahl’s law
Based on variable workload instead of fixed problem size

Given p the number of processors, α(N) the fraction of parallelizable code, and N the
problem size, the speedup is:

S(N, p) = 1 + (p − 1)α(N)
Explanation:
The parallel execution time on p processors is

Tp = α(N)Tp + (1 − α(N))Tp

On a sequential machine,
T1 = pα(N)Tp + (1 − α(N))Tp

P. Antolin 12 / 53

Gustafson’s Law – weak or soft scaling

Different perspective compared to Amdahl’s law
Based on variable workload instead of fixed problem size

Given p the number of processors, α(N) the fraction of parallelizable code, and N the
problem size, the speedup is:

S(N, p) = 1 + (p − 1)α(N)

Explanation:
The parallel execution time on p processors is

Tp = α(N)Tp + (1 − α(N))Tp

On a sequential machine,
T1 = pα(N)Tp + (1 − α(N))Tp

⇒ S(N, p) = T1/Tp

P. Antolin 12 / 53

Gustafson’s Law – weak or soft scaling

Different perspective compared to Amdahl’s law
Based on variable workload instead of fixed problem size

Given p the number of processors, α(N) the fraction of parallelizable code, and N the
problem size, the speedup is:

S(N, p) = 1 + (p − 1)α(N)

As N → ∞, we expect α(N) → 1 and thus S(N, p) → p.

P. Antolin 12 / 53

Gustafson’s law limitations

Some problems just do not have large datasets
In some problems, communication overheads are not negligible
A combination of the above two: domain decomposition with a small domain
Sometimes execution time is not proportional to problem size: what if execution
time is O(n3)?

P. Antolin 13 / 53

Open questions for the audience

What programs are unsuited for large parallel machines (and must thus be
immediately rethought)?
How soon do you see it?
What algorithms are suited for big machines?
Gustafson’s law is limited by how big our problem can be, while Amdahl’s law’s
limits show up with a high number of processors. How can we maximize our
efficiency taking account of this?

P. Antolin 14 / 53

Open questions for the audience

... and hints for a course project

What programs are unsuited for large parallel machines (and must thus be
immediately rethought)?
How soon do you see it?
What algorithms are suited for big machines?
Gustafson’s law is limited by how big our problem can be, while Amdahl’s law’s
limits show up with a high number of processors. How can we maximize our
efficiency taking account of this?

P. Antolin 14 / 53

Open questions for the audience

... and hints for a course project

What programs are unsuited for large parallel machines (and must thus be
immediately rethought)?

How soon do you see it?
What algorithms are suited for big machines?
Gustafson’s law is limited by how big our problem can be, while Amdahl’s law’s
limits show up with a high number of processors. How can we maximize our
efficiency taking account of this?

P. Antolin 14 / 53

Open questions for the audience

... and hints for a course project

What programs are unsuited for large parallel machines (and must thus be
immediately rethought)?
How soon do you see it?

What algorithms are suited for big machines?
Gustafson’s law is limited by how big our problem can be, while Amdahl’s law’s
limits show up with a high number of processors. How can we maximize our
efficiency taking account of this?

P. Antolin 14 / 53

Open questions for the audience

... and hints for a course project

What programs are unsuited for large parallel machines (and must thus be
immediately rethought)?
How soon do you see it?
What algorithms are suited for big machines?

Gustafson’s law is limited by how big our problem can be, while Amdahl’s law’s
limits show up with a high number of processors. How can we maximize our
efficiency taking account of this?

P. Antolin 14 / 53

Open questions for the audience

... and hints for a course project

What programs are unsuited for large parallel machines (and must thus be
immediately rethought)?
How soon do you see it?
What algorithms are suited for big machines?
Gustafson’s law is limited by how big our problem can be, while Amdahl’s law’s
limits show up with a high number of processors. How can we maximize our
efficiency taking account of this?

P. Antolin 14 / 53

FLOP/s and memory bandwidth

FLOPs are floating point operations, e.g., +,−,×,÷
Can be evaluated by hand, dividing the number of operations by the running time

Memory bandwidth measures the amount of data transferred by unit of time [B/s,
KiB/s, MiB/s, GiB/s, ...]
Can be measured by hand dividing the amount of data transferred by the running
time

In both cases, generally use tools such as PAPI, Tau, likwid, Intel Amplxe,
STREAM, etc.

P. Antolin 15 / 53

Performance measurement
A simple DAXPY example

Assume Intel Xeon Gold 6132 (Gacrux)

optimization/daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 c[i] = a[i] + alpha * b[i];
3 }

My code runs in 174.25 ms. It is amazingly fast!

Each iteration has 2 FLOP (1 add and 1 mul) and there are N = 1e8 iterations
Our code 2 · 108 FLOP/174.25 · 10−3 s = 0.001 TFLOP/s...
Our hardware can achieve a theoretical peak performance of 1.16 TFLOP/s
Each iteration has 3 memory operations (2 loads and 1 store)
Our code 2.23 GiB/174.25 · 10−3 s = 12.82 GiB/s...
Our hardware can achieve a theoretical memory bandwidth of 125 GiB/s

P. Antolin 16 / 53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

Performance measurement
A simple DAXPY example

Assume Intel Xeon Gold 6132 (Gacrux)

optimization/daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 c[i] = a[i] + alpha * b[i];
3 }

My code runs in 174.25 ms. It is amazingly fast!
Each iteration has 2 FLOP (1 add and 1 mul) and there are N = 1e8 iterations
Our code 2 · 108 FLOP/174.25 · 10−3 s = 0.001 TFLOP/s...
Our hardware can achieve a theoretical peak performance of 1.16 TFLOP/s

Each iteration has 3 memory operations (2 loads and 1 store)
Our code 2.23 GiB/174.25 · 10−3 s = 12.82 GiB/s...
Our hardware can achieve a theoretical memory bandwidth of 125 GiB/s

P. Antolin 16 / 53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

Performance measurement
A simple DAXPY example

Assume Intel Xeon Gold 6132 (Gacrux)

optimization/daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 c[i] = a[i] + alpha * b[i];
3 }

My code runs in 174.25 ms. It is amazingly fast!
Each iteration has 2 FLOP (1 add and 1 mul) and there are N = 1e8 iterations
Our code 2 · 108 FLOP/174.25 · 10−3 s = 0.001 TFLOP/s...
Our hardware can achieve a theoretical peak performance of 1.16 TFLOP/s
Each iteration has 3 memory operations (2 loads and 1 store)
Our code 2.23 GiB/174.25 · 10−3 s = 12.82 GiB/s...
Our hardware can achieve a theoretical memory bandwidth of 125 GiB/s

P. Antolin 16 / 53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

Roofline model

How well am I exploiting the hardware resources?
The roofline model is a performance model allowing to have an estimate to this
question

Key concept: the arithmetic intensity, AI , of an algorithm is # FLOP/B of data
transferred
It measures data reuse

Arithmetic intensity

SpMV,
BLAS 1,2

Stencils
(PDE)

Lattice
Boltzmann

FFTs,
Spectral Methods

BLAS 3

Particle
Methods

O(10) FLOP per byteTypically < 2 FLOP per byte0.1 - 1.0 FLOP per byte

P. Antolin 17 / 53

Roofline model

How well am I exploiting the hardware resources?
The roofline model is a performance model allowing to have an estimate to this
question

Key concept: the arithmetic intensity, AI , of an algorithm is # FLOP/B of data
transferred
It measures data reuse

Arithmetic intensity

SpMV,
BLAS 1,2

Stencils
(PDE)

Lattice
Boltzmann

FFTs,
Spectral Methods

BLAS 3

Particle
Methods

O(10) FLOP per byteTypically < 2 FLOP per byte0.1 - 1.0 FLOP per byte

P. Antolin 17 / 53

Roofline model
How to find arithmetic intensity

For very simple algorithms, you can compute the AI
Let’s take back the DAXPY example

optimization/daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 c[i] = a[i] + alpha * b[i];
3 }

There are 2 operations (1 add and 1 mul)
Three 8 B memory operations (2 loads and 1 store)
The AI is then 2/24 FLOP/B = 0.083 FLOP/B

P. Antolin 18 / 53

Roofline model

Roofline model is plotted on log-log scale
▶ x-axis is the AI
▶ y-axis is FLOP/s

The hardware limits are defined by

P = min(Pmax, bs · AI)

▶ Pmax is the CPU peak FLOP/s
▶ AI is the intensity
▶ bs is the memory BW

1/8 1/4 1/2 1 2 4 8 16 32 64 AI

FL
O
P
/s

1/8 1/4 1/2 1 2 4 8 16 32 64 AI

FL
O
P
/s

Pmax

bs AI

Lot of potential improvement!

Ridge point

Memory bound Compute bound

1/8 1/4 1/2 1 2 4 8 16 32 64 AI

FL
O

P
/s

Pmax

bs AI

P. Antolin 19 / 53

Roofline model

Roofline model is plotted on log-log scale
▶ x-axis is the AI
▶ y-axis is FLOP/s

The hardware limits are defined by

P = min(Pmax, bs · AI)

▶ Pmax is the CPU peak FLOP/s
▶ AI is the intensity
▶ bs is the memory BW

1/8 1/4 1/2 1 2 4 8 16 32 64 AI

FL
O
P
/s

1/8 1/4 1/2 1 2 4 8 16 32 64 AI

FL
O
P
/s

Pmax

bs AI

Lot of potential improvement!

Ridge point

Memory bound Compute bound

1/8 1/4 1/2 1 2 4 8 16 32 64 AI

FL
O

P
/s

Pmax

bs AI

P. Antolin 19 / 53

Roofline model

Roofline model is plotted on log-log scale
▶ x-axis is the AI
▶ y-axis is FLOP/s

The hardware limits are defined by

P = min(Pmax, bs · AI)

▶ Pmax is the CPU peak FLOP/s
▶ AI is the intensity
▶ bs is the memory BW

1/8 1/4 1/2 1 2 4 8 16 32 64 AI

FL
O
P
/s

1/8 1/4 1/2 1 2 4 8 16 32 64 AI

FL
O
P
/s

Pmax

bs AI

Lot of potential improvement!

Ridge point

Memory bound Compute bound

1/8 1/4 1/2 1 2 4 8 16 32 64 AI

FL
O

P
/s

Pmax

bs AI

P. Antolin 19 / 53

Roofline model

Refinements can be made to the Roofline model
Adding a memory hierarchy with caches
Adding different levels of DLP (Data-Level parallelism)
They give you hint on what to optimize for

Pmax

L3
 c

ac
he

L2
 c

ac
he

L1
 c

ac
he

RA
M

No FMA

FMA

AVX

1/8 1/4 1/2 1 2 4 8 16 32 64 AI

FL
O

P
/s

P. Antolin 20 / 53

Roofline model
How to find the peak performance

Theoretical peak performance

Pmax = ×Number of FP ports (ILP)
× flops/cycles (e.g., 2 for FMA)
× vector size (DLP) × frequency (in GHz)
× number of cores (TLP)

Example: Intel Xeon Gold 6132

Pmax = ×2 (ports) × 2 FLOP/c (2 for FMA)

× 512 bit (AVX512)
64 bit (double)

× 2.3 GHz × 14 cores

= 1.16 TFLOP/s

Front End Instruction
Cache Tag

µOP Cache
Tag

L1 Instruction Cache
32KiB 8-Way Instruction

TLB

Instruction Fetch & PreDecode
(16 B window)

Instruction Queue

MOP

MicroCode
Sequencer

ROM
(MS ROM)

Decoded Stream Buffer (DSB)
(µOP Cache)

(1.5k µOPs; 8-Way)
(64 B window)

Branch
Predictor

(BPU)

Allocation Queue (IDQ) (128, 2x64 µOPs)

U
n
ifie

d
 S

T
LB

To L3

Execution Engine

Memory Subsystem

L1 Data Cache
32KiB 8-Way

Data TLB

Scheduler
Unified Reservation Station (RS)

(97 entries)

Integer Physical Register File
(180 Registers)

Vector Physical Register File
(168 Registers)

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

INT ALU
INT DIV

AES
Vect String

FP DIV

INT ALU
INT MUL

Bit Scan

INT ALU
LEA

INT ALU
Branch

AGU
Load Data

AGU
Load Data

AGU

(56 entries)
Store Buffer & Forwarding

6
4
B

/c
y
c
le

(50, 2x25 entries)

16 Bytes/cycle

µOPµOPµOPµOPµOPµOP

Macro-Fusion

MOP MOP MOP MOP

MOPMOP MOP MOP MOP MOP

Micro-Fusion

6
4
B

/c
y
c
le

6
4
B

/c
y
c
le

Stack
Engine

(SE)

Adder Adder Adder

1-4 µOPs µOP µOPµOPµOP

Complex
Decoder

5-Way Decode

Simple
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

4 µOPs

MUX

5 µOPs

 Loop Stream
Detector (LSD)

Register Alias Table (RAT)
2x4 µOP

Branch Order Buffer
(BOB) (48-entry)

µOPµOPµOPµOPµOPµOPµOPµOP

Rename / Allocate / Retirement
ReOrder Buffer (224 entries)

Zeroing IdiomsMove Elimination Ones Idioms

Line Fill Buffers (LFB)
(10 entries)

Store Data

6
4
B

/c
y
c
le

64B/cycle

512bit/cycle

Load Buffer
(72 entries)

6 µOPs

EUs

µOPµOPµOPµOPµOPµOPµOPµOP

C
o
m

m
o
n

 D
a
ta

 B
u

s
e
s
 (C

D
B

s
)

Int

In
t V

e
c
t

FP

Load

Store

Branch

L2
 C

a
ch

e
1

 M
iB

 1
6

-W
a
y

INT Vect ALU
INT Vect MUL

FP FMA

INT Vect ALU
INT Vect MUL

FP FMA

INT Vect ALU
INT Vect MUL

FP FMA

INT Vect ALU
INT Vect MUL

FP FMA

512b (zmm only)
(optional)

512b fused

64B/cycle

Or use a software that estimates it

P. Antolin 21 / 53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

Roofline model
How to find the peak performance

Theoretical peak performance

Pmax = ×Number of FP ports (ILP)
× flops/cycles (e.g., 2 for FMA)
× vector size (DLP) × frequency (in GHz)
× number of cores (TLP)

Example: Intel Xeon Gold 6132

Pmax = ×2 (ports) × 2 FLOP/c (2 for FMA)

× 512 bit (AVX512)
64 bit (double)

× 2.3 GHz × 14 cores

= 1.16 TFLOP/s

Front End Instruction
Cache Tag

µOP Cache
Tag

L1 Instruction Cache
32KiB 8-Way Instruction

TLB

Instruction Fetch & PreDecode
(16 B window)

Instruction Queue

MOP

MicroCode
Sequencer

ROM
(MS ROM)

Decoded Stream Buffer (DSB)
(µOP Cache)

(1.5k µOPs; 8-Way)
(64 B window)

Branch
Predictor

(BPU)

Allocation Queue (IDQ) (128, 2x64 µOPs)

U
n
ifie

d
 S

T
LB

To L3

Execution Engine

Memory Subsystem

L1 Data Cache
32KiB 8-Way

Data TLB

Scheduler
Unified Reservation Station (RS)

(97 entries)

Integer Physical Register File
(180 Registers)

Vector Physical Register File
(168 Registers)

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

INT ALU
INT DIV

AES
Vect String

FP DIV

INT ALU
INT MUL

Bit Scan

INT ALU
LEA

INT ALU
Branch

AGU
Load Data

AGU
Load Data

AGU

(56 entries)
Store Buffer & Forwarding

6
4
B

/c
y
c
le

(50, 2x25 entries)

16 Bytes/cycle

µOPµOPµOPµOPµOPµOP

Macro-Fusion

MOP MOP MOP MOP

MOPMOP MOP MOP MOP MOP

Micro-Fusion

6
4
B

/c
y
c
le

6
4
B

/c
y
c
le

Stack
Engine

(SE)

Adder Adder Adder

1-4 µOPs µOP µOPµOPµOP

Complex
Decoder

5-Way Decode

Simple
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

4 µOPs

MUX

5 µOPs

 Loop Stream
Detector (LSD)

Register Alias Table (RAT)
2x4 µOP

Branch Order Buffer
(BOB) (48-entry)

µOPµOPµOPµOPµOPµOPµOPµOP

Rename / Allocate / Retirement
ReOrder Buffer (224 entries)

Zeroing IdiomsMove Elimination Ones Idioms

Line Fill Buffers (LFB)
(10 entries)

Store Data

6
4
B

/c
y
c
le

64B/cycle

512bit/cycle

Load Buffer
(72 entries)

6 µOPs

EUs

µOPµOPµOPµOPµOPµOPµOPµOP

C
o
m

m
o
n

 D
a
ta

 B
u

s
e
s
 (C

D
B

s
)

Int

In
t V

e
c
t

FP

Load

Store

Branch

L2
 C

a
ch

e
1

 M
iB

 1
6

-W
a
y

INT Vect ALU
INT Vect MUL

FP FMA

INT Vect ALU
INT Vect MUL

FP FMA

INT Vect ALU
INT Vect MUL

FP FMA

INT Vect ALU
INT Vect MUL

FP FMA

512b (zmm only)
(optional)

512b fused

64B/cycle

Or use a software that estimates it
P. Antolin 21 / 53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

Roofline model
How to find the memory bandwidth

Theoretical memory bandwidth of the memory

BWmax =×Number of transfers per second × Bus width × Number of channels

We assume that RAM matches CPU bandwidth (found on the CPU spec. list)
Example: Intel Xeon Gold 6132

BWmax =×2666 MT/s (DDR4 2666) × 8 B/T (64bit bus) × 6 (channels)

▶ 19.86 GiB/s for 1 channel
▶ Maximum of 119.18 GiB/s
▶ Ridge point: 1.16 TFLOP/s/119.16 GiB/s = 9.07 FLOP/B
▶ Ridge point 1 core: 82.9 GFLOP/s/19.86 GiB/s = 3.89 FLOP/B

Or use a software that estimates it
A corollary for “theoretical” is that it is not achievable in practice!

P. Antolin 22 / 53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

Roofline model
How to find the memory bandwidth

Theoretical memory bandwidth of the memory

BWmax =×Number of transfers per second × Bus width × Number of channels

We assume that RAM matches CPU bandwidth (found on the CPU spec. list)
Example: Intel Xeon Gold 6132

BWmax =×2666 MT/s (DDR4 2666) × 8 B/T (64bit bus) × 6 (channels)

▶ 19.86 GiB/s for 1 channel
▶ Maximum of 119.18 GiB/s
▶ Ridge point: 1.16 TFLOP/s/119.16 GiB/s = 9.07 FLOP/B
▶ Ridge point 1 core: 82.9 GFLOP/s/19.86 GiB/s = 3.89 FLOP/B

Or use a software that estimates it
A corollary for “theoretical” is that it is not achievable in practice!

P. Antolin 22 / 53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

Roofline model
How to find arithmetic intensity

For very simple algorithms, you can compute the AI
Let’s take back the DAXPY example

optimization/daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 c[i] = a[i] + alpha * b[i];
3 }

There are 2 operations (1 add and 1 mul)
Three 8 B memory operations (2 loads and 1 store)
The AI is then 3/24 FLOP/B = 0.083 FLOP/B

≪ 9.07 FLOP/B ⇒ memory bounded
For more complex algorithms, use a tool, e.g., Intel Advisor

P. Antolin 23 / 53

Roofline model
How to find arithmetic intensity

For very simple algorithms, you can compute the AI
Let’s take back the DAXPY example

optimization/daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 c[i] = a[i] + alpha * b[i];
3 }

There are 2 operations (1 add and 1 mul)
Three 8 B memory operations (2 loads and 1 store)
The AI is then 3/24 FLOP/B = 0.083 FLOP/B

≪ 9.07 FLOP/B ⇒ memory bounded

For more complex algorithms, use a tool, e.g., Intel Advisor

P. Antolin 23 / 53

Roofline model
How to find arithmetic intensity

For very simple algorithms, you can compute the AI
Let’s take back the DAXPY example

optimization/daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 c[i] = a[i] + alpha * b[i];
3 }

There are 2 operations (1 add and 1 mul)
Three 8 B memory operations (2 loads and 1 store)
The AI is then 3/24 FLOP/B = 0.083 FLOP/B

≪ 9.07 FLOP/B ⇒ memory bounded

For more complex algorithms, use a tool, e.g., Intel Advisor

P. Antolin 23 / 53

Roofline model
How to measure the actual values

Peak performance measurement
▶ Using a compute bound kernel
▶ Using dgemm:

1 core: 98.0 GFLOP/s
14 cores: 965.0 GFLOP/s

Bandwidth measurement
▶ Using a memory bound kernel
▶ Using stream (triad):

1 core: 12.7 GiB/s
6 core: 70.1 GiB/s
9 core: 82.7 GiB/s

Event Latency Scaled Capacity

1 CPU cycle 0.1 ns 1 s –

L1 cache access 1 ns 10 s kB

L2 cache access 1 ns 10 s MB

L3 cache access 10 ns 1min MB

RAM access 100 ns 10 min GB

Solid-state disk access 100µs 10 days TB

Hard-disk drive access 1–10ms 1–12 months TB

P. Antolin 24 / 53

Roofline model
How to measure the actual values

Peak performance measurement
▶ Using a compute bound kernel
▶ Using dgemm:

1 core: 98.0 GFLOP/s
14 cores: 965.0 GFLOP/s

Bandwidth measurement
▶ Using a memory bound kernel
▶ Using stream (triad):

1 core: 12.7 GiB/s
6 core: 70.1 GiB/s
9 core: 82.7 GiB/s

Event Latency Scaled Capacity

1 CPU cycle 0.1 ns 1 s –

L1 cache access 1 ns 10 s kB

L2 cache access 1 ns 10 s MB

L3 cache access 10 ns 1min MB

RAM access 100 ns 10 min GB

Solid-state disk access 100µs 10 days TB

Hard-disk drive access 1–10ms 1–12 months TB
P. Antolin 24 / 53

Roofline model
Intel Amplifier

P. Antolin 25 / 53

Profiling
A precious ally for optimization

Where is my application spending most of the time?
▶ (bad) measure time “by hand” using timings and prints
▶ (good) use a tool made for this, e.g., Intel VTune Profiler, Score-P, gprof

In addition to timings, profilers give you a lot more information on
▶ Memory usage
▶ Hardware counters
▶ CPU activity
▶ MPI communications
▶ etc.

P. Antolin 26 / 53

Profiling
Some tips and tricks

Profile a code without bugs!
Choose the right problem size (representative of your simulations)
Focus first on the functions taking most of the time
If the profile is not explicit, try refactoring into smaller functions
▶ Some profilers, e.g., ScoreP, let you define custom regions

P. Antolin 27 / 53

Pareto principle
The 80/20 rule

General principle that states that 80% of the effect comes from 20% of causes
Applies in many domains and, in particular, in optimization
80% of the time is spent in 20% of your code
Concentrate on that 20% and don’t optimize arbitrarily

P. Antolin 28 / 53

Profiling
Interactive demonstration

For the purpose of this exercise, we will use MiniFE
▶ 3D implicit finite-elements on an unstructured mesh
▶ C++ mini application
▶ https://github.com/Mantevo/miniFE
▶ You don’t need to understand what the code does!

We will use Intel VTune Profiler, part of the oneAPI Base toolkit (free)
Connect to helvetios with X display options (macOS users may need to install
XQuartz, and Windows users may need to install Xming)

$> ssh -X user@helvetios.hpc.epfl.ch

Download miniFE
Compile the basic version found in ref/src
Profile the code using the hotspot analysis
Open Intel VTune Profiler and select your timings
Play around and find the 5 most time-consuming functionsP. Antolin 29 / 53

https://github.com/Mantevo/miniFE
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

Profiling
Compile MiniFE

Download miniFE

$> git clone https://github.com/Mantevo/miniFE.git
$> cd miniFE

Compile the basic version found in ref/src
▶ You will need to load a compiler and an MPI library

$> module load intel intel-openapi-mpi intel-openapi-vtune

▶ Change the Makefile to set CXX=mpiicpc and CC=mpiicc and compile

$> make

▶ Make sure to compile your code with -g -O3

P. Antolin 30 / 53

Profiling
Profile MiniFE

Profile the code using

$> srun -n 1 vtune -collect hotspots -r prof_results --
./miniFE.x -nx 128 -ny 128 -nz 128↪→

This will profile for the “hotspots” and store the timings in prof_results
You can have more info on the types of analysis with

$> vtune -h collect

Open an interactive session in helvetios

$> Sinteract

Open Intel VTune and select your timings

$> vtune-gui prof_results/prof_results.vtune

Play around and find the 5 most time-consuming functions

P. Antolin 31 / 53

Profiling
What do we learn?

50.0% of the time spent in matrix/vector multiplications
12.5% of time spent imposing boundary conditions
etc.
Does the problem size influence the timings?

P. Antolin 32 / 53

Profiling
Smaller problem

This time, we profile a problem of size (16, 16, 16)
13.6% of the time is spent opening libraries
13.6% of the time is spent initializing MPI
etc.
Depending on the problem size, different parts of the code will dominate

P. Antolin 33 / 53

Optimization

We now have a pretty good idea of which part of the code to optimize
Different options are possible (by order of complexity)

1. Compiler and linker flags
2. Optimized external libraries
3. Handmade optimization (loop reordering, better data access, etc.)
4. Algorithmic changes

P. Antolin 34 / 53

Optimization

We now have a pretty good idea of which part of the code to optimize
Different options are possible (by order of complexity)

1. Compiler and linker flags
2. Optimized external libraries
3. Handmade optimization (loop reordering, better data access, etc.)
4. Algorithmic changes

P. Antolin 34 / 53

Optimization
Compiler flags

Compilers have a set of optimizations they can do (if possible)
You can find a list of options for GNU compilers on their doc

Common options are:
▶ -O0, -O1, -O2, -O3: from almost no optimizations to most optimizations
▶ -Ofast: activate more aggressive options, e.g., -ffast-math (but can

produce wrong results in some particular cases)
Test your program with different options (-O3 does not necessarily leads to faster
programs)
Note that the more optimization the longer the compilation time

P. Antolin 35 / 53

https://gcc.gnu.org/onlinedocs/gcc/gcc-command-options/options-that-control-optimization.html

Optimization
Compiler flags

Compilers have a set of optimizations they can do (if possible)
You can find a list of options for GNU compilers on their doc
Common options are:
▶ -O0, -O1, -O2, -O3: from almost no optimizations to most optimizations

▶ -Ofast: activate more aggressive options, e.g., -ffast-math (but can
produce wrong results in some particular cases)

Test your program with different options (-O3 does not necessarily leads to faster
programs)
Note that the more optimization the longer the compilation time

P. Antolin 35 / 53

https://gcc.gnu.org/onlinedocs/gcc/gcc-command-options/options-that-control-optimization.html

Optimization
Compiler flags

Compilers have a set of optimizations they can do (if possible)
You can find a list of options for GNU compilers on their doc
Common options are:
▶ -O0, -O1, -O2, -O3: from almost no optimizations to most optimizations
▶ -Ofast: activate more aggressive options, e.g., -ffast-math (but can

produce wrong results in some particular cases)

Test your program with different options (-O3 does not necessarily leads to faster
programs)
Note that the more optimization the longer the compilation time

P. Antolin 35 / 53

https://gcc.gnu.org/onlinedocs/gcc/gcc-command-options/options-that-control-optimization.html

Optimization
Compiler flags

Compilers have a set of optimizations they can do (if possible)
You can find a list of options for GNU compilers on their doc
Common options are:
▶ -O0, -O1, -O2, -O3: from almost no optimizations to most optimizations
▶ -Ofast: activate more aggressive options, e.g., -ffast-math (but can

produce wrong results in some particular cases)
Test your program with different options (-O3 does not necessarily leads to faster
programs)
Note that the more optimization the longer the compilation time

P. Antolin 35 / 53

https://gcc.gnu.org/onlinedocs/gcc/gcc-command-options/options-that-control-optimization.html

Optimization
Optimized libraries

Do not re-invent the wheel!
A lot of optimized libraries exist with different purposes (solvers, data structures,
I/O, etc.). A few examples:
▶ Solvers: PETSc, MUMPS, LAPACK, scaLAPACK, PARDISO, etc.
▶ I/O: HDF5, ADIOS, etc.
▶ Math libraries: FFTW, BLAS, etc.

P. Antolin 36 / 53

Optimization
Handmade optimizations

Sometimes, we cannot rely on compiler options or libraries and we must optimize
“by hand”
Usually, the goal is to rewrite the code in such a way that the compiler can
optimize it
Start by having a correct program before trying to optimize
“Premature optimization is the root of all evil”, D. Knuth

P. Antolin 37 / 53

Optimization
Algorithmic optimizations

Example of matrix/matrix multiplication. Graph shows complexity (O(nω)) for
different algorithms

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

o
m

e
g

a

Year

St

ra
ss

en

Pa

n

B
in

i,
C
ap

ov
an

i,
Ro

m
an

i,
Lo

tt
i

Ro

m
an

i

C
op

pe
rs

m
ith

, W
in

og
ra

d

St

ra
ss

en

C
op

pe
rs

m
ith

, W
in

og
ra

d

St

ot
he

rs

W
ill

ia
m

s

Le

 G
al

l

A
lm

an
, W

ill
ia

m
s

na
iv

e

Sc
hö

nh
ag

e

P. Antolin 38 / 53

Optimization
Algorithmic optimizations

Example of matrix/matrix multiplication. Graph shows complexity (O(nω)) for
different algorithms

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

o
m

e
g

a

Year

St

ra
ss

en

Pa

n

B
in

i,
C
ap

ov
an

i,
Ro

m
an

i,
Lo

tt
i

Ro

m
an

i

C
op

pe
rs

m
ith

, W
in

og
ra

d

St

ra
ss

en

C
op

pe
rs

m
ith

, W
in

og
ra

d

St

ot
he

rs

W
ill

ia
m

s

Le

 G
al

l

A
lm

an
, W

ill
ia

m
s

na
iv

e

Sc
hö

nh
ag

e

P. Antolin 38 / 53

Parallelization
When to parallelize

Only when your code has no bugs and is optimized
Are your ready to parallelize?

1. Is it worth to parallelize my code? Does my algorithm scale?
2. Performance prediction?
3. Profiling?
4. Bottlenecks?
5. Which parallel paradigm should I use? What is the target architecture (SMP,

cluster, GPU, hybrid, etc)?

P. Antolin 39 / 53

Parallelization
When to parallelize

In 1991, David H. Bailey published a famous paper: Twelve ways to fool the masses
when giving performance results on parallel computers

6: Compare your results against scalar, unoptimized code on Crays.

P. Antolin 40 / 53

https://www.davidhbailey.com/dhbpapers/twelve-ways.pdf
https://www.davidhbailey.com/dhbpapers/twelve-ways.pdf

Single-core optimization

Single-core optimization
Goal of this section

Better grasp how programming can influence performance
We first review some basic optimization principles to keep in mind
Deeper understanding of the working principles of the CPU
▶ How data transfers are handled
▶ Concept of vectorization

P. Antolin 42 / 53

Single-core optimization
Basic optimization techniques

Often, very simple changes to the code lead to significant performance
improvements
The following may seem trivial, but you would be surprised how often they could
be used in scientific codes
The main problem is that we often make a one-to-one mapping between the
equations and the algorithm

Do less work

1 for (int i = 0; i < N; ++i) {
2 a[i] = (alpha + sin(x)) *

b[i];↪→

3 }

1 double tmp = alpha + sin(x);
2 for (int i = 0; i < N; ++i) {
3 a[i] = tmp * b[i];
4 }

Constant term is re-computed at every iteration of the loop
Can be taken out of the loop and computed once

P. Antolin 43 / 53

Single-core optimization
Basic optimization techniques

Often, very simple changes to the code lead to significant performance
improvements
The following may seem trivial, but you would be surprised how often they could
be used in scientific codes
The main problem is that we often make a one-to-one mapping between the
equations and the algorithm

Do less work

1 for (int i = 0; i < N; ++i) {
2 a[i] = (alpha + sin(x)) *

b[i];↪→

3 }

1 double tmp = alpha + sin(x);
2 for (int i = 0; i < N; ++i) {
3 a[i] = tmp * b[i];
4 }

Constant term is re-computed at every iteration of the loop
Can be taken out of the loop and computed once

20
25

-0
3-

06
MATH-454 Parallel and High Performance ComputingLecture 2:
Performance and single-core optimization

Single-core optimization
Basic optimization concepts

Single-core optimization

• In very simple cases like here, the compiler is smart enough to do it for you
• The main point is that the compiler will do most of the optimization job. Our goal

is to write code that expresses our intention in a clear way so that the compiler can
optimize it.

Single-core optimization
Basic optimization techniques

Avoid branches

1 for (i = 0; i < N; ++i) {
2 for (j = 0; j < N; ++j) {
3 if (j >= i) {
4 sign = 1.0;
5 } else {
6 sign = -1.0;
7 }
8 b[j] = sign * a[i][j];
9 }

10 }

1 for (i = 0; i < N; ++i) {
2 for (j = i; j < N; ++j) {
3 b[j] = a[i][j];
4 }
5 for (j = 0; j < i; ++j) {
6 b[j] = -a[i][j];
7 }
8 }

Avoid conditional branches in loops
They can often be written differently or taken out of the loop

P. Antolin 44 / 53

Single-core optimization
Tale of a smart librarian

To better understand the concepts behind caching, let’s take the example of a
librarian
The first customer enters and asks for a book. The librarian goes into the huge
storeroom and returns with the book when he finds it
After some time, the client returns the book and the librarian puts it back into the
storeroom
A second customer enters and asks for the same book...
This workflow can take a lot of time depending on how much customers want to
read the same book

P. Antolin 45 / 53

Single-core optimization
Tale of a smart librarian

Our librarian is a bit lazy, but clever. Since a lot of customers ask for the same
book, he decides to put a small shelf behind his desk to temporarily store the
books he retrieves.
This way he can quickly grab the book instead of going to the storeroom.
When a customer asks for a book, he will first look on his shelf. If he finds the
book, it’s a cache hit and he returns it to the customer. If not, it’s a cache miss
and he must go back in the storeroom.
This is a very clever system, especially if there is temporal locality, i.e., if the
customers often ask for the same books.
Can he do better?

P. Antolin 46 / 53

Single-core optimization
Tale of a smart librarian

Oftentimes, our librarian see that people taking one book will go back and ask for
the sequels of the book
He decides to change a bit his workflow. Now, when he goes into the storeroom to
retrieve a book, he comes back with a few of them, all on the same shelf
This way, when the customer brings back a book and asks for the sequel, it is
already present on the librarian shelf
This workflow works well when there is spatial locality, i.e., when you ask for a
book there is a significant chance that you will read the sequel

P. Antolin 47 / 53

Single-core optimization
Data loading

Now, what is the link between our librarian and the
CPU? They work in a similar fashion!
When a load instruction is issued the L1 cache logic
checks if data is already present. If yes, this is a cache
hit and data can be retrieved very quickly. If no, this is
a cache miss and the next memory levels are checked.
If the data is nowhere to be found, then it is loaded
from the main memory
As for our librarian, not only the required data is loaded
for each cache miss, but a whole cache line

Core

L1

L2

L3

RAM

0.1 ns (1 s)

1 ns (10 s)

1 ns (10 s)

10 ns (1 min)

100 ns (10 min)

P. Antolin 48 / 53

Single-core optimization
Example: vector multiplication with a scalar

Simple vector/scalar multiplication
Focus on data loading (b[i])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
2 a[i] = alpha * b[i];
3 }

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[1]:
Cache hit
Fetch from L1

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[2] b[3]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

P. Antolin 49 / 53

Single-core optimization
Example: vector multiplication with a scalar

Simple vector/scalar multiplication
Focus on data loading (b[i])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
2 a[i] = alpha * b[i];
3 }

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[1]:
Cache hit
Fetch from L1

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[2] b[3]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

P. Antolin 49 / 53

Single-core optimization
Example: vector multiplication with a scalar

Simple vector/scalar multiplication
Focus on data loading (b[i])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
2 a[i] = alpha * b[i];
3 }

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[1]:
Cache hit
Fetch from L1

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[2] b[3]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

P. Antolin 49 / 53

Single-core optimization
Example: vector multiplication with a scalar

Simple vector/scalar multiplication
Focus on data loading (b[i])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
2 a[i] = alpha * b[i];
3 }

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[1]:
Cache hit
Fetch from L1

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[2] b[3]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

P. Antolin 49 / 53

Single-core optimization
Example: vector multiplication with a scalar

Simple vector/scalar multiplication
Focus on data loading (b[i])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
2 a[i] = alpha * b[i];
3 }

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[1]:
Cache hit
Fetch from L1

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[2] b[3]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

P. Antolin 49 / 53

Single-core optimization
Example: vector multiplication with a scalar

Simple vector/scalar multiplication
Focus on data loading (b[i])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
2 a[i] = alpha * b[i];
3 }

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[1]:
Cache hit
Fetch from L1

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[2] b[3]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

P. Antolin 49 / 53

Single-core optimization
Memory layout and data access

How do we store ND arrays into memory?
Memory is a linear storage. Arrays are stored contiguously, one element after the
other.
We have to choose a convention. Row major (C/C++) or column major (Fortran).
Row major means that elements are stored contiguously according to the last index
of the array. In column-major order, they are stored according to the first index.

a00 a01 a02

a10 a11 a12

a20 a21 a22

Memory

a00 a01 a02 a10 a11 a12 a20 a21 a22

a00 a01 a02

a10 a11 a12

a20 a21 a22

Memory

a00 a01 a02 a10 a11 a12 a20 a21 a22

P. Antolin 50 / 53

Single-core optimization
Memory layout and data access

How do we store ND arrays into memory?
Memory is a linear storage. Arrays are stored contiguously, one element after the
other.
We have to choose a convention. Row major (C/C++) or column major (Fortran).
Row major means that elements are stored contiguously according to the last index
of the array. In column-major order, they are stored according to the first index.

a00 a01 a02

a10 a11 a12

a20 a21 a22

Memory

a00 a01 a02 a10 a11 a12 a20 a21 a22

a00 a01 a02

a10 a11 a12

a20 a21 a22

Memory

a00 a01 a02 a10 a11 a12 a20 a21 a22

P. Antolin 50 / 53

Single-core optimization
Example: matrix/vector multiplication

Focus on data loading (a[i][j])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 c[i] += a[i][j] * b[j];
4 }
5 }

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a20 a21

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Non contiguous data accesses are detrimental for performance!

P. Antolin 51 / 53

Single-core optimization
Example: matrix/vector multiplication

Focus on data loading (a[i][j])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 c[i] += a[i][j] * b[j];
4 }
5 }

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a20 a21

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Non contiguous data accesses are detrimental for performance!

P. Antolin 51 / 53

Single-core optimization
Example: matrix/vector multiplication

Focus on data loading (a[i][j])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 c[i] += a[i][j] * b[j];
4 }
5 }

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a20 a21

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Non contiguous data accesses are detrimental for performance!

P. Antolin 51 / 53

Single-core optimization
Example: matrix/vector multiplication

Focus on data loading (a[i][j])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 c[i] += a[i][j] * b[j];
4 }
5 }

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a20 a21

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Non contiguous data accesses are detrimental for performance!

P. Antolin 51 / 53

Single-core optimization
Example: matrix/vector multiplication

Focus on data loading (a[i][j])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 c[i] += a[i][j] * b[j];
4 }
5 }

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a20 a21

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Non contiguous data accesses are detrimental for performance!

P. Antolin 51 / 53

Single-core optimization
Example: matrix/vector multiplication

Focus on data loading (a[i][j])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 c[i] += a[i][j] * b[j];
4 }
5 }

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a20 a21

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Non contiguous data accesses are detrimental for performance!

P. Antolin 51 / 53

Single-core optimization
Example: matrix/vector multiplication

Focus on data loading (a[i][j])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 c[i] += a[i][j] * b[j];
4 }
5 }

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[1][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a02 a10

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[2][0]:
Cache miss
Fetch cache line from RAM

a00 a01

a20 a21

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Non contiguous data accesses are detrimental for performance!

P. Antolin 51 / 53

Single-core optimization
Early conclusions

Caches are small, but very fast memories
Their purpose is to alleviate long latency and limited bandwidth of the RAM
Data is fetched by group, called cache line, and stored into the different levels of
cache
In order to fully exploit caches, data in caches must be re-used as much as possible
(temporal locality)

Avoid random memory accesses that case many cache misses and prefer
contiguous access (spatial locality)
Be careful of the data types you use and how they are mapped onto memory

P. Antolin 52 / 53

Single-core optimization
Single Instruction Multiple Data

Modern CPUs can apply the same operation to multiple data
Special registers xmm, ymm and zmm holding 2, 4 or 8 doubles

for (int i = 0; i < N; ++i) {
 c[i] = a[i] + b[i]
}

+

=

a[0]

b[0]

c[0]

for (int i = 0; i < N; ++i) {
 c[i] = a[i] + b[i]
}

+

=

a[0]

b[0]

c[0]

a[1]

b[1]

c[1]

a[2]

b[2]

c[2]

a[3]

b[3]

c[3]

P. Antolin 53 / 53

Single-core optimization
Single Instruction Multiple Data

Modern CPUs can apply the same operation to multiple data
Special registers xmm, ymm and zmm holding 2, 4 or 8 doubles

for (int i = 0; i < N; ++i) {
 c[i] = a[i] + b[i]
}

+

=

a[0]

b[0]

c[0]

for (int i = 0; i < N; ++i) {
 c[i] = a[i] + b[i]
}

+

=

a[0]

b[0]

c[0]

a[1]

b[1]

c[1]

a[2]

b[2]

c[2]

a[3]

b[3]

c[3]

P. Antolin 53 / 53

	Performance measurement
	Performance metrics
	Scalings, speedup and efficiency
	Amdahl's law
	Roofline model
	Profiling

	Single-core optimization
	Basic optimization concepts
	Memory hierarchy
	Single Instruction Multiple Data

