[| ™ ¥
; h] ’ g < P P
: A ” - '1‘ ' i |
i i ' | i
H i Bk | Z \
: 1 | B
: 3 } ‘ |3
. y o {4 |
! *‘. | ‘Al:n_ il |
! - 1R ; ‘ § |
f % 3 : T H
| J : !
x 34 : g H
| | B il |1 "
| | . L | L]
| SERE | | | R
. l i 2 |

MATH 454 Parallel a.nd ngh Performance Computmg

Lecture 2: Performance and single-core optimization

Pablo Antolin
Slides of N. Richart, E. Lanti, V. Keller’s lecture notes
March 6 2025

m SCITAS

B o s st LT i | e e
e R N B

,. . : i wﬁ : e ir&ﬁﬁﬂ,ﬂ-ﬂm ﬁm

1344

A% (RS
—i \ ﬁ \ .,/, ./,,%@
=) e i phom e ulfrrvH P‘MMFWMMIIID_

J,Eﬂ

2
E
o
7]
n

EPFL Goal of this section

m Key concepts to quantify performance

» Metrics
» Scalings, speedup, efficiency

m Roofline model

W SCITAS P. Antolin 3 /53

Performance metrics

m How can we quantify performance?
m We need to define a way of measuring it

m We will focus on the most common metrics for HPC

W SCITAS P. Antolin 4 /53

Performance metrics

m How can we quantify performance?

We need to define a way of measuring it

We will focus on the most common metrics for HPC

The first that comes in mind is time, e.g., time-to-solution

Derived metrics: speedup and efficiency

W SCITAS P. Antolin 4 /53

Performance metrics

m How can we quantify performance?

We need to define a way of measuring it

We will focus on the most common metrics for HPC

The first that comes in mind is time, e.g., time-to-solution

Derived metrics: speedup and efficiency

Scientific codes do computations on floating point numbers

A second metric is the number of floating-point operations per second (FLOP/s)

W SCITAS P. Antolin 4 /53

Performance metrics

m How can we quantify performance?
m We need to define a way of measuring it

m We will focus on the most common metrics for HPC

m The first that comes in mind is time, e.g., time-to-solution

m Derived metrics: speedup and efficiency

m Scientific codes do computations on floating point numbers

m A second metric is the number of floating-point operations per second (FLOP/s)

m Finally, the memory bandwidth indicates how much data does your code transfers
per unit of time

W SCITAS P. Antolin 4 /53

° MATH-454 Parallel and High Performance ComputinglLecture 2:
2 Performance and single-core optimization
L Performance measurement

Performance metrics

LPerformance metrics

2025-03

e My code is super fast, it runs in 2.5ns!
e |t seems fast, but is it? How fast your hardware is?

e To really understand how much your code exploits the hardware, we use the
FLOP/s and memory bandwidth (B/s)

e Your hardware has theoretical maximum values for those

e You can compare the values from your code to the max to see how well you use
the hardware

Speedup and efficiency

m Two important metrics are derived from timings

m Compare timings with p processes, T, against the reference timing, Ty

Speedup Efficiency
5! 5(p)

S(p) = — =

(p) T E(p) >

= We want S(p) as close to p and E(p) as close to 1 (100%) as possible

W SCITAS P. Antolin 5 /53

Strong scaling

m Scalings are a way to assess how well a program performs when adding
computational resources

m Strong scaling: add resources, keep total amount of work constant

S(p) = 12 E(p) = Ae) _ T

P pTp

m Strong scaling is an indication on how much profitable it is to add resources to

solve your problem
w w

W SCITAS P. Antolin

6 /53

Weak scaling

m Weak scaling: add resources and maintain amount of work per resource constant

S(p) =" E(p)ZSE)p)ZE

m Weak scalings are an indication on how well your code will perform on a bigger
machine (and with a bigger problem)
m These scalings are always required for project proposals

» For strong scalings the metric is speedup (how do | improve performance)
» For weak scalings the metric is efficiency (how well performance is kept)

WIIW| W||lW

W SCITAS P. Antolin 7 /53

EPFL Amdahl's Iaw

m Amdahl's law provides an upper bound to the achievable speedup for a fixed
problem size
m By definition it is a strong scaling analysis

W SCITAS P. Antolin 8 /53

EPFL Amdahl's Iaw

Amdahl’s law provides an upper bound to the achievable speedup for a fixed
problem size

By definition it is a strong scaling analysis
Assume a fraction « of your code is (perfectly) parallel and let be T7 the time with
lprocesss i =(1—a)Ti +aTy

Time for p processes would be T, = (1 —)Ty + %Tl = [(1 —a)+ %} Ty

l-a 1-«a

ap ap ap ap

= SCITAS P. Antolin g 8 /53

EPFL Amdahl's Iaw

Amdahl’s law provides an upper bound to the achievable speedup for a fixed
problem size

By definition it is a strong scaling analysis

Assume a fraction « of your code is (perfectly) parallel and let be T7 the time with
lprocesss i =(1—a)Ti +aTy

Time for p processes would be Tp = (1 —)Ty + $T1 = [(1 —a)+ %} T1

Speedup becomes

l-a 1-«a

ap ap ap ap

= SCITAS P. Antolin g 8 /53

EPFL Amdahl's Iaw

m Amdahl's law provides an upper bound to the achievable speedup for a fixed
problem size

m By definition it is a strong scaling analysis

m Assume a fraction « of your code is (perfectly) parallel and let be T; the time with
lprocesss i =(1—a)Ti +aTy

m Time for p processes would be T, = (1 — «a) Ty + %Tl = [(1 —a)+ %} Ty

m Speedup becomes
T1 1

R A Sy

l-a 1-«a

ap ap ap ap

= In the limit (with infinite computational resources)

lim S(p) = ! ’

p—o0 11—«

= SCITAS P. Antolin g 8 /53

Amdahl’s trap: are we doomed?

Initialization
Parallel solve Py Py - Pn
gather
42

W SCITAS P. Antolin 9 /53

Amdahl’s trap: are we doomed?

4096 -
1024 -

256 —
— 1%o

16 - ’ ideal speedup

speedup
R
|

’ | | | | |
1 4 16 64 256 10244096
cores

Even if initialization and gathering took up 1%o of the time, running on E/ Capitan
would be a pity

W SCITAS P. Antolin

9 /53

Amdahl’s trap: are we doomed?

Amdahl's law

1000
-~ Ideal scaling
— p=050
— p=075
— p=090
— p=035
— p=09
100
100
& 20
10
10
4
—— 2
1
T 100 1000

Number of processors.

m Limited by the seral part (very sensitive)!

m Does this mean we cannot exploit large HPC machines?

W SCITAS P. Antolin 10 / 53

https://en.wikipedia.org/wiki/Gustafson%27s_law

doomed?

Amdahl's law
1000

Speedup

1

10 100 1000
Number of processors.

m Limited by the seral part (very sensitive)!
m Does this mean we cannot exploit large HPC machines?

= No, in general with more resources, we simulate larger systems = weak scaling
(see Gustafson's law)

W SCITAS P. Antolin 10 / 53

https://en.wikipedia.org/wiki/Gustafson%27s_law

Amdahl’s trap: are we doomed?

Observation:
Amdahl’s law is an upper bound for a fixed problem of size N.

Problem:

If we increase the problem size, the relative sequential part can be made smaller and
smaller if it is of lower complexity than the parallel part of the problem, i.e.,
IimN_>oo a(N) =1.

Alternative:
Take the problem size N into account. This is Gustafson's law (or Gustafson's
complement to Amdahl’s law)

W SCITAS P. Antolin 11 / 53

Gustafson’s Law — weak or soft scaling

m Different perspective compared to Amdahl’s law

m Based on variable workload instead of fixed problem size
Given p the number of processors, (/) the fraction of parallelizable code, and N the
problem size, the speedup is:

S(N,p) =1+ (p—1)a(N)

W SCITAS P. Antolin 12 / 53

Gustafson’s Law — weak or soft scaling

m Different perspective compared to Amdahl’s law
m Based on variable workload instead of fixed problem size

Given p the number of processors, (/) the fraction of parallelizable code, and N the
problem size, the speedup is:

- S(N,p) =1+ (p—1)a(N)
Explanation:

The parallel execution time on p processors is
Tp=a(N)Tp + (1 —a(N)) Tp

On a sequential machine,
Ti=pa(N)Tp, + (1 —a(N)) Tp

W SCITAS P. Antolin 12 / 53

Gustafson’s Law — weak or soft scaling

m Different perspective compared to Amdahl’s law
m Based on variable workload instead of fixed problem size

Given p the number of processors, (/) the fraction of parallelizable code, and N the
problem size, the speedup is:

S(N,p) =1+ (p—1)a(N)
Explanation:
The parallel execution time on p processors is

Tp=a(N)T,+ (1 —a(N)) T,

On a sequential machine,
T1 = pa(N)Tp 4 (1 — a(N)) T

= S(N,p)=T1/Tp

W SCITAS P. Antolin 12 / 53

Gustafson’s Law — weak or soft scaling

m Different perspective compared to Amdahl’s law
m Based on variable workload instead of fixed problem size

Given p the number of processors, (/) the fraction of parallelizable code, and N the
problem size, the speedup is:

S(N,p) =1+ (p—1)a(N)
As N — oo, we expect a(N) — 1 and thus S(N, p) — p.

W SCITAS P. Antolin 12 / 53

Gustafson’s law limitations

Some problems just do not have large datasets

In some problems, communication overheads are not negligible

A combination of the above two: domain decomposition with a small domain

Sometimes execution time is not proportional to problem size: what if execution
time is O(n%)?

W SCITAS P. Antolin 13 / 53

Open questions for the audience

W SCITAS P. Antolin 14 / 53

Open questions for the audience

. and hints for a course project

W SCITAS P. Antolin 14 / 53

Open questions for the audience

. and hints for a course project

m What programs are unsuited for large parallel machines (and must thus be
immediately rethought)?

W SCITAS P. Antolin 14 / 53

Open questions for the audience

. and hints for a course project

m What programs are unsuited for large parallel machines (and must thus be
immediately rethought)?

= How soon do you see it?

W SCITAS P. Antolin 14 / 53

Open questions for the audience

. and hints for a course project

m What programs are unsuited for large parallel machines (and must thus be
immediately rethought)?

= How soon do you see it?

m What algorithms are suited for big machines?

W SCITAS P. Antolin 14 / 53

Open questions for the audience

. and hints for a course project

m What programs are unsuited for large parallel machines (and must thus be
immediately rethought)?

= How soon do you see it?
m What algorithms are suited for big machines?

m Gustafson's law is limited by how big our problem can be, while Amdahl’s law's
limits show up with a high number of processors. How can we maximize our
efficiency taking account of this?

W SCITAS P. Antolin 14 / 53

FLOP/s and memory bandwidth

m FLOPs are floating point operations, e.g., +, —, X, =+

m Can be evaluated by hand, dividing the number of operations by the running time

= Memory bandwidth measures the amount of data transferred by unit of time [B/s,
KiB/s, MiB/s, GiB/s, ...]

m Can be measured by hand dividing the amount of data transferred by the running
time

m |n both cases, generally use tools such as PAPI, Tau, likwid, Intel Amplxe,
STREAM, etc.

W SCITAS P. Antolin 15 / 53

Performance measurement

A simple DAXPY example

= Assume Intel Xeon Gold 6132 (Gacrux)

optimization /daxpy.cc

1 for (dnt i = 0; i < N; ++i) {
2 c[i] = a[i] + alpha * b[i];
3}

m My code runs in 174.25ms. It is amazingly fast!

W SCITAS P. Antolin 16 / 53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

Performance measurement

A simple DAXPY example

= Assume Intel Xeon Gold 6132 (Gacrux)

optimization /daxpy.cc

1 for (dnt i = 0; i < N; ++i) {
2 c[i] = a[i] + alpha * b[i];
3}

My code runs in 174.25 ms. It is amazingly fast!

Each iteration has 2 FLOP (1 add and 1 mul) and there are N = 1e8 iterations
Our code 2 - 108 FLOP/174.25 - 10~3s = 0.001 TFLOP/s...

Our hardware can achieve a theoretical peak performance of 1.16 TFLOP/s

W SCITAS P. Antolin 16 / 53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

Performance measurement

A simple DAXPY example

= Assume Intel Xeon Gold 6132 (Gacrux)

optimization /daxpy.cc

1 for (dnt i = 0; i < N; ++i) {
2 c[i] = a[i] + alpha * b[i];
3}

m My code runs in 174.25ms. It is amazingly fast!

m Each iteration has 2 FLOP (1 add and 1 mul) and there are N = 1e8 iterations
= Our code 2 - 108 FLOP/174.25 - 1073s = 0.001 TFLOP/s...

= Our hardware can achieve a theoretical peak performance of 1.16 TFLOP/s

m Each iteration has 3 memory operations (2 loads and 1 store)

= Our code 2.23GiB/174.25 - 107 3s = 12.82GiB/s...

m Our hardware can achieve a theoretical memory bandwidth of 125 GiB/s

W SCITAS P. Antolin 16 / 53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

EPFL Roofline model

m How well am | exploiting the hardware resources?

m The roofline model is a performance model allowing to have an estimate to this
question

W SCITAS P. Antolin 17 / 53

EPFL Roofline model

m How well am | exploiting the hardware resources?

m The roofline model is a performance model allowing to have an estimate to this
question

m Key concept: the arithmetic intensity, A/, of an algorithm is # FLOP/B of data
transferred

m |t measures data reuse

0.1-1.0FLOP perbyte Typically < 2 FLOP per byte 0(10) FLOP per byte

ntensity

SpMV,
BLAS 1,2
FFTs, Particle
Stencils Spectral Methods Methods
(PDE)
BLAS 3

W SCITAS P. Antolin 17 / 53

= SCITAS

Roofline model

How to find arithmetic intensity

m For very simple algorithms, you can compute the Al
Let's take back the DAXPY example

optimization /daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 c[i] = al[i] + alpha * b[il;
3}

There are 2 operations (1 add and 1 mul)

Three 8 B memory operations (2 loads and 1 store)
The Al is then 2/24 FLOP/B = 0.083 FLOP/B

P. Antolin 18 / 53

PF L Roofline model

m Roofline model is plotted on log-log scale

» x-axis is the A/
» y-axis is FLOP/s

FLOP/s

—t—t—t—t—t———
wow w1 2w Al
P. Antolin 19 / 53

= SCITAS

EPFL Roofline model

m Roofline model is plotted on log-log scale

» x-axis is the Al
» y-axis is FLOP/s
m The hardware limits are defined by

P = min(Ppax, bs - Al)

b Al
> Pmax is the CPU peak FLOP/s, |
» Al is the intensity @
» b is the memory BW 2
: 5:4 Al
P. Antolin 19 / 53

= SCITAS

EPFL Roofline model

m Roofline model is plotted on log-log scale
> x-axis is the Al
» y-axis is FLOP/s

m The hardware limits are defined by

P = min(Ppax, bs - Al)

/,"b5~AI
> Pmax is the CPU peak FLOP/s, L S
» Al is the intensity 2 H
» b is the memory BW = éwmmmmm!
B
m SCITAS P. Antolin

19 / 53

Roofline model

m Refinements can be made to the Roofline model

m Adding a memory hierarchy with caches
m Adding different levels of DLP (Data-Level parallelism)
m They give you hint on what to optimize for

o
FLOP/s §

20 / 53

P. Antolin

= SCITAS

Roofline model
How to find the peak performance

m Theoretical peak performance
Pmax = Number of FP ports (ILP)
x flops/cycles (e.g., 2 for FMA)
x vector size (DLP) x frequency (in GHz)

/
e

s 7o) Stack
Engine
(SE)

e

x number of cores (TLP)

= Retrement [oo rore] [Zarooioan
Rerr uter 224 ennes)
o

e e e e e

Scheduler
Urifed Reservation Staton (RS)
(7 entres)

m Example: Intel Xeon Gold 6132)
Pmax = 2 (ports) x 2FLOP/c (2 for FMA) cEmmpss ==
512bit (AVX512) |
64 bit (double)
— 1.16 TFLOP/s

Aem-91 8I T
auyed 71

x 2.3 GHz x 14 cores

opA>/av9.

Memory Subsystem

W SCITAS P. Antolin

64B/cycle
L

21 /53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

—pr Roofline model
LP' L How to find the peak performance

Front End

L1 Instruction Cache
y

tion
32KiB 8Way [Tmtucten

m Theoretical peak performance
Pmax = Number of FP ports (ILP)
x flops/cycles (e.g., 2 for FMA)
x vector size (DLP) x frequency (in GHz)

x number of cores (TLP)

m Example: Intel Xeon Gold 6132
Pmax = 2 (ports) x 2FLOP/c (2 for FMA)

o12 bl.t (AVX512) x 2.3GHz x 14 cores &=
64 blt (dou ble) Execution Engine

= 1.16 TFLOP/s

=T =
e E3 L A A
o i et v
{ : i

64B/cycle
e oL

Aem-91 8I T
auyed 71

Memory Subsystem

m Or use a software that estimates it)
W SCITAS P. Antolin 21 /53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

—pr- Roofline model
LP' L How to find the memory bandwidth

m Theoretical memory bandwidth of the memory
BWmax = Number of transfers per second x Bus width x Number of channels

= We assume that RAM matches CPU bandwidth (found on the CPU spec. list)
m Example: Intel Xeon Gold 6132

BWmax = 2666 MT /s (DDR4 2666) x 8 B/T (64bit bus) x 6 (channels)

» 19.86 GiB/s for 1 channel

» Maximum of 119.18 GiB/s

» Ridge point: 1.16 TFLOP/s/119.16 GiB/s = 9.07 FLOP/B

» Ridge point 1 core: 82.9 GFLOP/s/19.86 GiB/s = 3.89 FLOP/B

W SCITAS P. Antolin 22 /53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

—pr- Roofline model
LP' L How to find the memory bandwidth

m Theoretical memory bandwidth of the memory
BWmax = Number of transfers per second x Bus width x Number of channels

= We assume that RAM matches CPU bandwidth (found on the CPU spec. list)
m Example: Intel Xeon Gold 6132

BWmax = 2666 MT /s (DDR4 2666) x 8 B/T (64bit bus) x 6 (channels)

» 19.86 GiB/s for 1 channel

» Maximum of 119.18 GiB/s

» Ridge point: 1.16 TFLOP/s/119.16 GiB/s = 9.07 FLOP/B

» Ridge point 1 core: 82.9 GFLOP/s/19.86 GiB/s = 3.89 FLOP/B
m Or use a software that estimates it

m A corollary for “theoretical” is that it is not achievable in practice!
W SCITAS P. Antolin 22 /53

https://en.wikichip.org/wiki/intel/xeon_gold/6132

= SCITAS

Roofline model

How to find arithmetic intensity

m For very simple algorithms, you can compute the Al
Let's take back the DAXPY example

optimization /daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 c[i] = al[i] + alpha * b[il;
3}

There are 2 operations (1 add and 1 mul)

Three 8 B memory operations (2 loads and 1 store)
The Al is then 3/24 FLOP/B = 0.083 FLOP/B

P. Antolin 23 / 53

= SCITAS

Roofline model

How to find arithmetic intensity

m For very simple algorithms, you can compute the Al
Let's take back the DAXPY example

optimization /daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 c[i] = al[i] + alpha * b[il;
3}

There are 2 operations (1 add and 1 mul)

Three 8 B memory operations (2 loads and 1 store)

The Al is then 3/24 FLOP/B = 0.083 FLOP/B
< 9.07 FLOP/B = memory bounded

P. Antolin 23 / 53

= SCITAS

Roofline model

How to find arithmetic intensity

For very simple algorithms, you can compute the Al
Let's take back the DAXPY example

optimization /daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 c[i] = al[i] + alpha * b[il;
3}

There are 2 operations (1 add and 1 mul)
Three 8 B memory operations (2 loads and 1 store)
The Al is then 3/24 FLOP/B = 0.083 FLOP/B

For more complex algorithms, use a tool, e.g., Intel Advisor

P. Antolin 23 / 53

EPFL Roofline model
How to measure the actual values

m Peak performance measurement

» Using a compute bound kernel 1 \/\

» Using dgemm:
1 core: 98.0 GFLOP/s
14 cores: 965.0 GFLOP/s

bandwidth [GiB/s]

= Bandwidth measurement » ==
» Using a memory bound kernel 0
» Using stream (triad): are e

1 core: 12.7GiB/s
6 core: 70.1GiB/s
9 core: 82.7GiB/s

W SCITAS P. Antolin 24 / 53

EPFL Roofline model
How to measure the actual values

m Peak performance measurement
L1 L2 L3

» Using a compute bound kernel \/\

» Using dgemm:
1 core: 98.0 GFLOP/s
14 cores: 965.0 GFLOP/s

bandwidth [GiB/s]
@
3

m Bandwidth measurement 2 0
» Using a memory bound kernel L N,
> Usmg stream (trlad): Event Latency Syca[iae]d Capacity
1 core: 12.7GiB/s
6 core: 70.1 GiB/S 1 CPU cycle 0.1ns 1ls -
9 core: 82.7 GiB/S L1 cache access 1ns 10s kB
L2 cache access Ins 10s MB
L3 cache access 10ns 1 min MB
RAM access 100 ns 10 min GB
Solid-state disk access 100 us 10 days B

Hard-disk drive access 1-10ms 1-12 months TB

m SCITAS P_Antalin 24 / 53

Roofline model
CopT

W SCITAS P. Antolin 25 / 53

=pEL Proﬁ_lmg e
LI A precious ally for optimization

m Where is my application spending most of the time?
» (bad) measure time “by hand” using timings and prints
» (good) use a tool made for this, e.g., Intel VTune Profiler, Score-P, gprof

= |n addition to timings, profilers give you a lot more information on
» Memory usage
» Hardware counters
» CPU activity
» MPI| communications
» etc.

W SCITAS P. Antolin 26 / 53

Profiling
Ccpe
EPFL

Profile a code without bugs!

Choose the right problem size (representative of your simulations)

Focus first on the functions taking most of the time

If the profile is not explicit, try refactoring into smaller functions
» Some profilers, e.g., ScoreP, let you define custom regions

W SCITAS P. Antolin 27 / 53

Pareto principle
Ccpe
EPFL

General principle that states that 80% of the effect comes from 20% of causes

Applies in many domains and, in particular, in optimization

80% of the time is spent in 20% of your code

Concentrate on that 20% and don't optimize arbitrarily

W SCITAS P. Antolin 28 / 53

Profiling
L=
e PF L Interactive demonstration

m For the purpose of this exercise, we will use MiniFE
» 3D implicit finite-elements on an unstructured mesh
» C++ mini application
» https://github.com/Mantevo/miniFE
» You don't need to understand what the code does!
m We will use Intel VTune Profiler, part of the oneAPI Base toolkit (free)
m Connect to helvetios with X display options (macOS users may need to install
XQuartz, and Windows users may need to install Xming)

$> ssh -X user@helvetios.hpc.epfl.ch

m Download miniFE

m Compile the basic version found in ref/src

m Profile the code using the hotspot analysis

m Open Intel VTune Profiler and select your timings

m Play around and find the 5 most time.consuming functions 20 / 53

= SCITAS

https://github.com/Mantevo/miniFE
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

Profiling
L=
EPFL

m Download miniFE

$> git clone https://github.com/Mantevo/miniFE.git
$> cd miniFE

m Compile the basic version found in ref/src
» You will need to load a compiler and an MPI library

‘$> module load intel intel-openapi-mpi intel-openapi-vtune ’

» Change the Makefile to set CXX=mpiicpc and CC=mpiicc and compile

‘ $> make ’

» Make sure to compile your code with -g -03

W SCITAS P. Antolin 30 /53

Profiling
CcpC
EPFL

m Profile the code using

$> srun -n 1 vtune -collect hotspots -r prof_results --
< ./miniFE.x -nx 128 -ny 128 -nz 128

This will profile for the “hotspots” and store the timings in prof_results
You can have more info on the types of analysis with

$> vtune -h collect

m Open an interactive session in helvetios

$> Sinteract

m Open Intel VTune and select your timings

$> vtune-gui prof_re sults/prpo{n_tglﬁsults .vtune

W SCITAS 31 /53

Profiling
L=
EPFL

50.0% of the time spent in matrix/vector multiplications

m 12.5% of time spent imposing boundary conditions
m etc.
m Does the problem size influence the timings?

W SCITAS P. Antolin 32 /53

Profiling
EPFL

This time, we profile a problem of size (16,16, 16)

13.6% of the time is spent opening libraries

m 13.6% of the time is spent initializing MPI
= etc.
m Depending on the problem size, different parts of the code will dominate

W SCITAS P. Antolin 33 /53

Optimization

m We now have a pretty good idea of which part of the code to optimize
m Different options are possible (by order of complexity)

1. Compiler and linker flags

2. Optimized external libraries

3. Handmade optimization (loop reordering, better data access, etc.)
4. Algorithmic changes

W SCITAS P. Antolin 34 /53

Optimization

m We now have a pretty good idea of which part of the code to optimize
m Different options are possible (by order of complexity)

1. Compiler and linker flags

2. Optimized external libraries

3. Handmade optimization (loop reordering, better data access, etc.)
4. Algorithmic changes

W SCITAS P. Antolin 34 /53

Optimization
cp=
LP' L Compiler flags

m Compilers have a set of optimizations they can do (if possible)

m You can find a list of options for GNU compilers on their doc

W SCITAS P. Antolin 35 /53

https://gcc.gnu.org/onlinedocs/gcc/gcc-command-options/options-that-control-optimization.html

Optimization
cp=
LP' L Compiler flags

m Compilers have a set of optimizations they can do (if possible)
m You can find a list of options for GNU compilers on their doc
m Common options are:
» -00, -01, -02, -03: from almost no optimizations to most optimizations

W SCITAS P. Antolin 35 /53

https://gcc.gnu.org/onlinedocs/gcc/gcc-command-options/options-that-control-optimization.html

Optimization
cp=
LP' L Compiler flags

m Compilers have a set of optimizations they can do (if possible)
m You can find a list of options for GNU compilers on their doc
m Common options are:

» -00, -01, -02, -03: from almost no optimizations to most optimizations
» -Ofast: activate more aggressive options, e.g., -ffast-math (but can
produce wrong results in some particular cases)

W SCITAS P. Antolin 35 /53

https://gcc.gnu.org/onlinedocs/gcc/gcc-command-options/options-that-control-optimization.html

Optimization
cp=
LP' L Compiler flags

Compilers have a set of optimizations they can do (if possible)

You can find a list of options for GNU compilers on their doc
m Common options are:

» -00, -01, -02, -03: from almost no optimizations to most optimizations
» -Ofast: activate more aggressive options, e.g., -ffast-math (but can
produce wrong results in some particular cases)

Test your program with different options (-03 does not necessarily leads to faster
programs)

Note that the more optimization the longer the compilation time

W SCITAS P. Antolin 35 /53

https://gcc.gnu.org/onlinedocs/gcc/gcc-command-options/options-that-control-optimization.html

Optimization
cpe
LP' L Optimized libraries

m Do not re-invent the wheel!
m A lot of optimized libraries exist with different purposes (solvers, data structures,
1/0, etc.). A few examples:
» Solvers: PETSc, MUMPS, LAPACK, scaLAPACK, PARDISO, etc.
» |/O: HDF5, ADIOS, etc.
» Math libraries: FFTW, BLAS, etc.

W SCITAS P. Antolin 36 / 53

Optimization
CopT

m Sometimes, we cannot rely on compiler options or libraries and we must optimize
“by hand"”

m Usually, the goal is to rewrite the code in such a way that the compiler can
optimize it
m Start by having a correct program before trying to optimize

m “Premature optimization is the root of all evil’, D. Knuth

W SCITAS P. Antolin 37 / 53

Optimization
CcpC

m Example of matrix/matrix multiplication. Graph shows complexity (O(n“)) for
different algorithms

W SCITAS P. Antolin 38 / 53

Optimization
=PrL

Algorithmic optimizations

m Example of matrix/matrix multiplication. Graph shows complexity (O(n“)) for
different algorithms

3=

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

W SCITAS P. Antolin 38 / 53

-pr- Parallelization
LP' L When to parallelize

m Only when your code has no bugs and is optimized

= SCITAS

m Are your ready to parallelize?

1.

oW

Is it worth to parallelize my code? Does my algorithm scale?

Performance prediction?

Profiling?

Bottlenecks?

Which parallel paradigm should | use? What is the target architecture (SMP,
cluster, GPU, hybrid, etc)?

P. Antolin 39 /53

Parallelization
=PrL ea

When to parallelize

In 1991, David H. Bailey published a famous paper: Twelve ways to fool the masses
when giving performance results on parallel computers

6: Compare your results against scalar, unoptimized code on Crays.

&

W SCITAS P. Antolin 40 / 53

https://www.davidhbailey.com/dhbpapers/twelve-ways.pdf
https://www.davidhbailey.com/dhbpapers/twelve-ways.pdf

e WL L o e e e el L e e

m| N -

2 T T T T
LN T 5 B | & B = A s Fr =

e | |
-

2
E
o
7]
n

Single-core optimization
L= =] =
LP' L Goal of this section

m Better grasp how programming can influence performance
m We first review some basic optimization principles to keep in mind
m Deeper understanding of the working principles of the CPU

» How data transfers are handled
» Concept of vectorization

W SCITAS P. Antolin 42 / 53

Single-core optimization

Basic optimization techniques

m Often, very simple changes to the code lead to significant performance
improvements
m The following may seem trivial, but you would be surprised how often they could
be used in scientific codes
m The main problem is that we often make a one-to-one mapping between the
equations and the algorithm
Do less work

1 for (int i = 0; i < N; ++i) { 1 double tmp = alpha + sin(x);

2 ali] = (alpha + sin(x)) * 2 for (dnt i = 0; i < N; ++i) {
— blil; 3 alil = tmp * b[i];

3} 4 F

m Constant term is re-computed at every iteration of the loop
m Can be taken out of the loop and computed once

W SCITAS P. Antolin 43 / 53

° MATH-454 Parallel and High Performance ComputinglLecture 2:
2 Performance and single-core optimization
I—Single—core optimization

Basic optimization concepts

I—Single—core optimization

2025-03

e In very simple cases like here, the compiler is smart enough to do it for you

e The main point is that the compiler will do most of the optimization job. Our goal
is to write code that expresses our intention in a clear way so that the compiler can
optimize it.

=pEL Sln.gle—f:o-re .optlmlgatlon
=i 1 Basic optimization techniques

Avoid branches

1 for (i = 0; i < N; ++i) { 1 for (i = 0; i < N; ++i) {

2 for (j = 0; j < N; ++j) { 2 for (j =1i; j < N; ++j) {
3 if (§ >= 1) { 3 b[j] = alil[j];

4 sign = 1.0; 4}

5 } else { 5 for (j =0; j <i; ++j) {
6 sign = -1.0; 6 blj]l = -alil[j]l;

7 } 7}

8 b[j] = sign * alil[j]; s }

9o}

10 }

m Avoid conditional branches in loops
m They can often be written differently or taken out of the loop

W SCITAS P. Antolin 44 / 53

Single-core optimization
CcpC
LP' L Tale of a smart librarian

m To better understand the concepts behind caching, let's take the example of a
librarian

m The first customer enters and asks for a book. The librarian goes into the huge
storeroom and returns with the book when he finds it

m After some time, the client returns the book and the librarian puts it back into the
storeroom

m A second customer enters and asks for the same book...

m This workflow can take a lot of time depending on how much customers want to
read the same book

W SCITAS P. Antolin 45 / 53

Single-core optimization
CcpC
LP' L Tale of a smart librarian

m Qur librarian is a bit lazy, but clever. Since a lot of customers ask for the same
book, he decides to put a small shelf behind his desk to temporarily store the
books he retrieves.

m This way he can quickly grab the book instead of going to the storeroom.

m When a customer asks for a book, he will first look on his shelf. If he finds the
book, it's a cache hit and he returns it to the customer. If not, it's a cache miss
and he must go back in the storeroom.

m This is a very clever system, especially if there is temporal locality, i.e., if the
customers often ask for the same books.

m Can he do better?

W SCITAS P. Antolin 46 / 53

Single-core optimization
CcpC
LP' L Tale of a smart librarian

m Oftentimes, our librarian see that people taking one book will go back and ask for
the sequels of the book

m He decides to change a bit his workflow. Now, when he goes into the storeroom to
retrieve a book, he comes back with a few of them, all on the same shelf

m This way, when the customer brings back a book and asks for the sequel, it is
already present on the librarian shelf

m This workflow works well when there is spatial locality, i.e., when you ask for a
book there is a significant chance that you will read the sequel

W SCITAS P. Antolin 47 / 53

Single-core optimization
CcpC

Core 0.1ns(15s)

m Now, what is the link between our librarian and the

CPU? They work in a similar fashion! L1 1ns (10s)
m When a load instruction is issued the L1 cache logic
checks if data is already present. If yes, this is a cache L2 1ns(105s)

hit and data can be retrieved very quickly. If no, this is
a cache miss and the next memory levels are checked.

m |f the data is nowhere to be found, then it is loaded L3 10 ns (1 min)
from the main memory

m As for our librarian, not only the required data is loaded

for each cache miss, but a whole cache line RAM 100 ns (10 min)

W SCITAS P. Antolin 48 / 53

Single-core optimization

Example: vector multiplication with a scalar

m Simple vector/scalar multiplication
m Focus on data loading (bli])

m Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
> ali] = alpha * b[i];
3 }

L1

Ib[ﬂllb[ﬂlbmlb[s] |b[4]|b[s]|b[5]|b[7]|b[S]|b[9]|b[10]|b[11]|b[12]|b[|3]|b[14]|b[15]|

RAM
W SCITAS P. Antolin 49 / 53

Single-core optimization

Example: vector multiplication with a scalar

m Simple vector/scalar multiplication
m Focus on data loading (bli])

m Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
> ali] = alpha * b[i];
Load b[0]:

s } Cache miss
s oo - ot
Fetcn Cacne 1IInme 1TT7rom RAW

L1

Ib[ﬂllbmlbmlb[s] Ib[4]Ib[S]|b[5]|b[7]|b[S]lb[9]|b[10]|b[11]Ib[1z]|b[|3]|b[14]|b[15]|

RAM
W SCITAS P. Antolin 49 / 53

Single-core optimization

Example: vector multiplication with a scalar

m Simple vector/scalar multiplication
m Focus on data loading (bli])

m Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
> ali] = alpha * b[i];
Load b[0]:

s } Cache miss
s oo - ot
Fetcn Cacne 1I1Inme 1TT7rom RAW

b[0]|b[1]

L1

Ib[0]|b[11| b[2]|b[3] |b[4]|b[s]|b[5]|b[7]|b[S]|b[9]|b[10]|b[11]|b[12]|b[|3]|b[14]|b[15]|

RAM
W SCITAS P. Antolin 49 / 53

Single-core optimization

Example: vector multiplication with a scalar

m Simple vector/scalar multiplication
m Focus on data loading (bli])

m Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
> ali] = alpha * b[i];
Load b[1]:

s } Cache hit

e I 4 a
retcnmTrom o

b[0]|b[1]

L1

Ib[ﬂllb[ﬂlbmlb[s] |b[4]|b[s]|b[5]|b[7]|b[S]|b[9]|b[10]|b[11]|b[12]|b[|3]|b[14]|b[15]|

RAM
W SCITAS P. Antolin 49 / 53

Single-core optimization

Example: vector multiplication with a scalar

m Simple vector/scalar multiplication
m Focus on data loading (bli])

m Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
> ali] = alpha * b[i];
Load b[2]:

s } Cache miss
s oo - ot
Fetcn Cacne 1IInme 1TT7rom RAW

L1

Ib[ﬂllbmlbmlb[s] Ib[4]Ib[S]|b[5]|b[7]|b[S]lb[9]|b[10]|b[11]Ib[1z]|b[|3]|b[14]|b[15]|

RAM
W SCITAS P. Antolin 49 / 53

Single-core optimization

Example: vector multiplication with a scalar

m Simple vector/scalar multiplication
m Focus on data loading (bli])

m Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
> ali] = alpha * b[i];
Load b[2]:

s } Cache miss
s oo - ot
Fetcn Cacne 1IInme 1TT7rom RAW

t

b[2]b[3]

b[0][b[1]

L1

Ib[U]|b[1]|b[Z]|b[3]|b[4]|b[S]|b[5]|b[7]|b[S]|b[9]|b[10]|b[11]|b['|2]|b[|3]|b[14]|b[15]|

RAM
W SCITAS P. Antolin 49 / 53

=pEL Single-core optimization
LI Memory layout and data access

m How do we store ND arrays into memory?

m Memory is a linear storage. Arrays are stored contiguously, one element after the
other.

= We have to choose a convention. Row major (C/C++) or column major (Fortran).

m Row major means that elements are stored contiguously according to the last index
of the array. In column-major order, they are stored according to the first index.

doo Ao1 do2
dip A11 912
dpp dp1 A2

| | | aool amlaozl aml anlanl azol anlazzl | I
Memory
W SCITAS P. Antolin 50 / 53

=pEL Single-core optimization
LI Memory layout and data access

m How do we store ND arrays into memory?

m Memory is a linear storage. Arrays are stored contiguously, one element after the
other.

= We have to choose a convention. Row major (C/C++) or column major (Fortran).

m Row major means that elements are stored contiguously according to the last index
of the array. In column-major order, they are stored according to the first index.

| | | aool amlaozl aml anlanl azol anlazzl | I
Memory
W SCITAS P. Antolin 50 / 53

Single-core optimization
=PrL

Example: matrix/vector multiplication

= Focus on data loading (a[i][j])
= Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {

2 for (dnt i = 0; i < N; ++i) {
3 cli]l += alil[j]1 * b[jl;
s}

5 F

L1

[Por2orf2uela]an[avfaafanfoz] | | [[[[|

RAM
W SCITAS P. Antolin 51 / 53

Single-core optimization
=PrL

Example: matrix/vector multiplication

= Focus on data loading (a[i][j])
= Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 cli]l += alil[j]1 * b[jl;

4 } Load a[0][0]:
Cache miss
5 } Fetch cache line from RAM
L1

[Por2orf2uela]an[avfaafanfoz] | | [[[[|

RAM
W SCITAS P. Antolin 51 / 53

Single-core optimization
=PrL

Example: matrix/vector multiplication

= Focus on data loading (a[i][j])
= Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 cli]l += alil[j]1 * b[jl;

4 } Load a[0][0]:
Cache miss
5 } Fetch cache line from RAM
Aoo|A01
L1

[Bodgenfooe|2]2 [avfaafanfoz] | | [[[[|

RAM
W SCITAS P. Antolin 51 / 53

Single-core optimization
=PrL

Example: matrix/vector multiplication

= Focus on data loading (a[i][j])
= Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 cli]l += alil[j]1 * b[jl;

4 } Load a[1][0]:
Cache miss
5 } Fetch cache line from RAM
L1

[Por2orf2uela]an[avfaafanfoz] | | [[[[|

RAM
W SCITAS P. Antolin 51 / 53

Single-core optimization

L=y = L=
LP' L Example: matrix/vector multiplication

= Focus on data loading (a[i][j])
= Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 cli]l += alil[j]1 * b[jl;

4 } Load a[1][0]:
Cache miss
5 } Fetch cache line from RAM
do2(A10
Aoo|A01
L1

[2or20rBuafada[avfaafanfoz] | | [[[[|

RAM
W SCITAS P. Antolin 51 / 53

Single-core optimization
=PrL

Example: matrix/vector multiplication

= Focus on data loading (a[i][j])
= Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 cli]l += alil[j]1 * b[jl;

4 } Load a[2][0]:
Cache miss
5 } Fetch cache line from RAM
L1

[Por2orf2uela]an[avfaafanfoz] | | [[[[|

RAM
W SCITAS P. Antolin 51 / 53

Single-core optimization

L=y = L=
LP' L Example: matrix/vector multiplication

= Focus on data loading (a[i][j])
= Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {

2 for (dnt i = 0; i < N; ++i) {

3 clil += alil[j] * bljl;

4 } Load a[2][0]:

Cache miss
5 } Fetch cache line from RAM

Az0[A21

Aoo|A01
L1

[2or2orf2uelac]an[avfaafamlez] | | [[[| |

RAM
W SCITAS P. Antolin 51 / 53

Single-core optimization
CcpC

m Caches are small, but very fast memories
m Their purpose is to alleviate long latency and limited bandwidth of the RAM

m Data is fetched by group, called cache line, and stored into the different levels of
cache

m In order to fully exploit caches, data in caches must be re-used as much as possible
(temporal locality)

= Avoid random memory accesses that case many cache misses and prefer
contiguous access (spatial locality)

m Be careful of the data types you use and how they are mapped onto memory

W SCITAS P. Antolin 52 / 53

=pEL S.lngle—core. optlmlzatlon
=i 1 Single Instruction Multiple Data

m Modern CPUs can apply the same operation to multiple data

m Special registers xmm, ymm and zmm holding 2, 4 or 8 doubles

ol [| |
for (int i = 0; i < N; ++i) { +

c[i] = a[i] + b[i] ...

ol |] |

}

W SCITAS P. Antolin 53 / 53

=pEL S.lngle—core. optlmlzatlon
=i 1 Single Instruction Multiple Data

m Modern CPUs can apply the same operation to multiple data

m Special registers xmm, ymm and zmm holding 2, 4 or 8 doubles

D

A +
T g e
o]zl

}

W SCITAS P. Antolin 53 / 53

	Performance measurement
	Performance metrics
	Scalings, speedup and efficiency
	Amdahl's law
	Roofline model
	Profiling

	Single-core optimization
	Basic optimization concepts
	Memory hierarchy
	Single Instruction Multiple Data

