h . m} . ' ¥ 7
| : "N | I (| -
I i B i
‘ : | :
' - ‘ 4 | g
; : 4 \ il |
* P } ‘ ¥
! ¥. | Al:n_
| ! - 1R ’ § :
! = 3 : H
! | o ’ ; ‘
EIR Y :
(s *’r | , !
i | . L | : Al’
p 4 . I‘i i 4 M

MATH 454 Parallei and ngh Performance Computlng
Lecture 5: Advanced MPI

Pablo Antolin
Slides of N. Richart, E. Lanti, V. Keller’s lecture notes
March 27 2025

m SCITAS

Advanced MPI
CopT
EPFL

Persistent communications

Advanced collective communications

Describing your own datatype

Redefining communicators

Associating a topology to a communicator
Parallel I/0

W SCITAS P. Antolin 2 /45

= SCITAS

Persistent communications

MPI_Send_init, MPI_Recv_init, initialize the communication

m Same signature as non-blocking communications

MPI_Start, MPI_Startall to start the communication

Completion is checked the same way as for non-blocking

W SCITAS P. Antolin 4 /45

Persistent communications
=PrL

Example of MPI_Send_init adapted from Rookie HPC

1 if (rank == SENDER) {

2 MPI_Request request;

3 MPI_Send_init(send_buffer, buffer_size, MPI_INT, RECEIVER, TAG,
< MPI_COMM_WORLD, &request);

4 for(int i = 0; i < 3; i++) {

5 // Filling in send_buffer

6 MPI_Start (&request); // Launch the send

7

8

9

MPI_Wait(&request, MPI_STATUS_IGNORE); // Wait until completion

+
}
10 else (rank == RECEIVER) {
11 for(int i = 0; i < 3; i++) {
12 MPI_Recv(recv_buffer, buffer_size, MPI_INT, SENDER, TAG, ...);
13 // Do something with recv_buffer
= SCITAS * } P. Antolin 5 / 45

= s

Persistent communications
=PrL

Example adapted MPI_Recv_init from Rookie HPC

1 if (rank == SENDER) {
2 for(int 1 = 0; i < 3; i++) {
3 // Filling in send_buffer
4 MPI_Ssend(send_buffer, buffer_size, MPI_INT, RECEIVER, TAG,
— MPI_COMM_WORLD) ;

B X
6 F
7 else (rank == RECEIVER) {
8 MPI_Request request;
9 MPI_Recv_init(recv_buffer, buffer_size, MPI_INT, SENDER, TAG,

< MPI_COMM_WORLD, &request);
10 for(int i = 0; i < 3; i++) {
11 MPI_Start(&request); // Launch the reception
12 MPI_Wait(&request, MPI_STATUS_IGNORE); // Watit until completion
13 // Do something with Tecy_ buffer

L] schAsM 1 P. Ant: 6 / 45

= SCITAS

.=P.=L Collect_lve communications
i1 V extension to MPI_Gather

1 int MPI_Gatherv(const void *sendbuf, int sendcount, MPI_Datatype
— sendtype, void *recvbuf, const int recvcounts[], const int
< displs[], MPI_Datatype recvtype, int root, MPI_Comm comm);

m receives different sizes per process
m receives in an array with strides
m recvcounts is now an array, one entry per rank

displs array of displacements defining where to place the i-th received data

W SCITAS P. Antolin 8 /45

EPFL Collective communications
Gatherv semantic

Semantic equivalent

1 // Every process 1

2 MPI_Send(sendbuf, recvcounts[i], sendtype, root, /*...*/);

3

4 // On root process

5 for(int j = 0; j < nb_process; ++j)

6 MPI_Recv(recvbuf+displs[j] * extent(recvtype), recvcounts[j],
< recvtype, j, /*...*/);

W SCITAS P. Antolin 9 /45

.=P.=L Collect_lve communications
i1 V extension to MPI_Scatter

1 int MPI_Scatterv(const void *sendbuf, const int sendcounts[], const
< int displs[], MPI_Datatype sendtype, void *recvbuf, int
— recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm) ;

m sends different sizes
m sendcounts is now an array, one entry per rank

m displs array of displacements defining where the i-th data to send is placed

W SCITAS P. Antolin 10 / 45

.:P.:L Collective communications
LI Scatterv semantic

Semantic equivalent

1 // On root process

2 for(int j = 0; j < nb_process; ++j)

3 MPI_Send(sendbuf+displs[j]+*extent(sendtype), sendcounts[j],
- sendtype, j, /*...%*/)

5 // Every process 1t
6 MPI_Recv(recvbuf, sendcounts[i], recvtype, root, /*...*/).

W SCITAS P. Antolin 11 / 45

Non-blocking collective communications

| variant of collective communications

m extra parameter request

MPI_TIbcast

MPI_Igather, MPI_Igatherv, MPI_TIscatter, MPI_Iscatterv
MPI_Tallgather, MPI_TIallgatherv, MPI_Talltoall
MPI_Ireduce, MPI_Iallreduce, MPI_Iscan, MPI_Texscan

W SCITAS P. Antolin 12 / 45

Persistent collective communications

= init variant of collective communications
m extra parameter request
m MPI_Barrier_init, MPI_Bcast_init

m MPI_Gather_init, MPI_Gatherv_init, MPI_Scatter_init,
MPI_Scatterv_init

m MPI_Allgather_init, MPI_Allgatherv_init, MPI_Alltoall_init
m MPI_Reduce_init, MPI_Allreduce_init, MPI_Scan_init, MPI_Exscan_init

W SCITAS P. Antolin 13 / 45

= SCITAS

Derived Datatypes
L= = =

m MPI_Datatype opaque type containing a Typemap
> Typemap = {(typeo, dispo), - , (typen—1, dispn—1)}
> sequence of basic datatypes
» sequence of displacements (in bytes)
m extent is the span from the first byte to the last one, with alignment requirement

Ib(Typemap) = min(dispj),
J
ub(Typemap) = max(disp; + sizeof(type;j)) + €, and
J
extent(Typemap) = ub(Typemap) — Ib(Typemap)

€ is there to account for alignment requirements
m Before use, MPI_Datatype must be registered with MPI_Type_commit
(and freed after with MPI_Type_free, more info later on)

P. Antolin 15 / 45

= SCITAS

Derived Datatypes
L= = =
EPFL

MPI datatype C datatype

MPI_CHAR char

MPI_SHORT signed short int
MPI_INT signed int

MPI_LONG signed long int
MPI_LONG_LONG_INT signed long long int
MPI_LONG_LONG signed long long int
MPI_SIGNED_CHAR signed char
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG , unsigned long long int

W SCITAS 16 / 45

= SCITAS

PEL Derived Datatypes
I Base datatypes

MPI datatype

C datatype

MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_C_BOOL
MPI_INT8_T
MPI_INT16_T
MPI_INT32_T
MPI_INT64_T
MPI_UINT8_T
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T, ,

ntol

float
double
long double
_Bool
int8_t
intl6_t
int32_t
int64_t
uint8_t
uintl6_t
uint32_t

inuint64_t 16/ 45

Derived Datatypes
L= = =
EPFL

MPI datatype C++ datatype
MPI_CXX_BOOL bool
MPI_CXX_FLOAT_COMPLEX std::complex<float>
MPI_CXX_DOUBLE_COMPLEX std: :complex<double>

MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>

W SCITAS P. Antolin 16 / 45

Derived Datatypes
L= = =
EPFL

MPI datatype C datatype

MPI_AINT MPI_Aint
MPI_OFFSET MPI_Offset
MPI_COUNT MPI_Count
MPI_BYTE

MPI_PACKED

W SCITAS P. Antolin 16 / 45

Derived Datatypes
L= = =
EPFL

1 int MPI_Type_contiguous(int count, MPI_Datatype oldtype,
— MPI_Datatype *newtype);

2

3 int MPI_Type_vector(int count, int blocklength, int stride,
— MPI_Datatype oldtype, MPI_Datatype *newtype);

array of contiguous values or with strided blocks of same type

count: number of repetitions (blocks)

blocklength: number of elements per block

stride: number of elements between start of each block

W SCITAS P. Antolin 17 / 45

Derived Datatypes
cps
EPFL

m MPI_Type_create_hvector: same as MPI_Type_vector with stride expressed
in bytes

m MPI_Type_create_indexed_block same as MPI_Type_vector with array of and
displacements

m MPI_Type_create_hindexed_block: same as
MPI_Type_create_indexed_block with displacements in bytes

m MPI_Type_indexed: same as MPI_Type_create_indexed_block with arrays of
blocklengths

m MPI_Type_create_hindexed: same as MPI_Type_indexed with displacements
in bytes

W SCITAS P. Antolin 18 / 45

= SCITAS

1 int MPI_Type_create_struct(int count, const int
< array_of_blocklengths[], const MPI_Aint
— array_of_displacements[], const MPI_Datatype array_of_typesl[],
< MPI_Datatype *newtype)

count: number of repetitions (blocks)
array_of_blocklengths: sizes per block
array_of_displacements: displacements between blocks in bytes

array_of_types: types contained in each blocks

P. Antolin

19 / 45

Derived Datatypes
L=y = L=
LP' L Usefull helper functions

m MPI_Get_address: get the address of a variable

m MPI_Aint_diff: get the difference between 2 addresses

m MPI_Aint_add: get the sum of 2 addresses

m MPI_Type_size: get the size of a datatype

m MPI_Get_type_extent: get the lower bound and the extent of a type

m MPI_Type_create_resized: reset the lower bound and the extent of a type

W SCITAS P. Antolin 20 / 45

Derived Datatypes
L= = =
EPFL

1 int MPI_Type_commit(MPI_Datatype *datatype) ;
2
3 int MPI_Type_free(MPI_Datatype *datatype);

m new datatypes should be committed before being usable in communications

m committed types need to be freed once not used anymore

W SCITAS P. Antolin 21 / 45

Derived Datatypes

Example

mpi/datatypes.cc

13 struct Test_t {
14 double d[2];

15 int i;

16 };

17

18 std::vector<Test_t> fo0o(100);
19

20 std::array<int, 2> block_lengths = {2, 1};
21 std::array<MPI_Aint, 2> displacements;
22 std::array<MPI_Datatype, 2> old_types = {MPI_DOUBLE, MPI_INT};

24 MPI_Aint addrO;

25 MPI_Get_address(&foo[0], &addrO);

26 MPI_Get_address(&foo[0].d, &displacements[0]);
27 MPI_Get_address(&foo[0].i, &displacements[1]);

29 displacements[0] = MPI_Aint_diff(displacements[0], addr0);
30 displacements[1] = MPI_Aint_diff(displacements[1], addr0);

32 MPI_Datatype mpi_test_t;
33 MPI_Type_create_struct(2, block_lengths.data(), displacements.data(),
34 old_types.data(), &mpi_test_t);

36 MPI_Type_commit (Zmpi_test_t);
37 // Do stuff using mpi_test_t
m sciTas 38 MPI_Type_free (4mpi_test_t); P. Antolin 2 /45

= SCITAS

Pack/Unpack
L=y = L=

1 int MPI_Pack(const void *inbuf, int incount, MPI_Datatype datatype,
— void *outbuf, int outsize, int *position, MPI_Comm comm) ;

m inbuf, incount, datatype correspond to the description of data to pack
m outbuf, outsize description of the buffer where to pack

m position current position in the packing buffer

W SCITAS P. Antolin 24 / 45

Pack/Unpack
EPFL

1 int MPI_Unpack(const void *inbuf, int insize, int *position, void
— *outbuf, int outsize, MPI_Datatype datatype, MPI_Comm comm) ;

m inbuf, incount, description of the buffer from which to unpack
m position current position in the unpacking buffer (gets updated)

m outbuf, outsize, and datatype correspond to the description of data to unpack

W SCITAS P. Antolin 25 / 45

Pack/Unpack

E PFL Example

mpi/pack _unpack.cc

29 std::vector<char> buf(100); // 100 Bytes
30 int a; // 4 Bytes
31 double d[10]; // 80 Bytes
32 int pos{0};

34 if (rank == 0) {

35 // Fill a and d here

36 MPI_Pack(&a, 1, MPI_INT, buf.data(), buf.size(), &pos, MPI_COMM_WORLD) ;

37 MPI_Pack(d, 10, MPI_DOUBLE, buf.data(), buf.size(), &pos, MPI_COMM_WORLD) ;
38 MPI_Send(buf.data(), pos, MPI_PACKED, 1, O, MPI_COMM_WORLD) ;

39 }

40 else if (rank == 1) {

41 MPI_Recv(buf.data(), buf.size(), MPI_PACKED, 0O, O, MPI_COMM_WORLD, &status);
42 MPI_Unpack(buf.data(), buf.size(), &pos, &a, 1, MPI_INT, MPI_COMM_WORLD) ;

43 MPI_Unpack(buf.data(), buf.size(), &pos, d, 10, MPI_DOUBLE, MPI_COMM_WORLD) ;
44 }

W SCITA! P—Antotin / 45

Groups and Communicator &~ ||

X
\ \
L] \
W SCITAS \

Groups and Communicators

® 3 communicator:

» Encapsulate a context, a group, a virtual topology and attributes
» Two kinds intra-communicator and inter-communicator
= a group:
» ordered set of processes
» each process has an unique ID (rank within the group) and can belong to
several different groups
» a group can be used to create a new communicator

W SCITAS P. Antolin 28 / 45

=pPEL Groups and Communicators
=i 1 Creating new communicators

m duplicating or splitting an existing one MPI_Comm_dup, MPI_Comm_split
m creating communicator from a group MPI_Comm_create,
MPI_Comm_create_group
m need to create groups
» from a communicator MPI_Comm_group
» boolean operations MPI_Group_union, MPI_Group_intersection,
MPI_Group_difference
» specifying ranks MPI_Group_incl, MPI_Group_excl
m destroy created objects MPI_Comm_free, MPI_Group_free

W SCITAS P. Antolin 29 / 45

= SCITAS

Virtual Topologies

potential performance gain by mapping process to hardware

helps for program readability

types of topologies: Cartesian, Graph, Distributed Graph

collective communication on neighborhoods

W SCITAS P. Antolin 31/ 45

cpE Virtual Topologies
=i 1 Cartesian topology

1 int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[],
< const int periods[], int reorder, MPI_Comm *comm_cart);

m create a communicator with cartesian information
m convenient functions:

» MPI_Dims_create helps creating balanced distribution of process
» MPI_Cart_shift helps determining neighboors

» MPI_Cart_rank get the rank based on coordinates

» MPI_Cart_coords get coordinates based on rank

W SCITAS P. Antolin 32 /45

Virtual topology
L=y = L=
LP' L Neighborhoods collective

m MPI_Neighbor_allgather assuming we are on process with rank 7, gather data
from all rank j if edge (j, /) exists and send same data to all j where edge (/,})
exists

m MPI_Neighbor_alltoall compare to allgather, sends different data to all j
process

m vector variants are available v
m immediate variants are available |

m persistent varianst are available init

W SCITAS P. Antolin 33 /45

= SCITAS

Parallel 1/O overview

m |/O is often (if not always) the main bottleneck in a parallel application

m MPI provides a mechanism to read/write in parallel

Interconnect

W SCITAS P. Antolin 35 /45

Introducing remarks

= MPI 10 API works on your desktop/laptop

= Most of the large HPC systems have a parallel file system (like GPFS, Lustre,
etc.)

m |f the file is distributed smartly on a parallel file system: performance increases

m MPI 10 offers a high-level API to access a distributed file (no needs to implement
complex POSIX calls)

= does not work with ASCII files
m Most of the standard file formats support MPI 10 (e.g., HDF5, NetCDF, etc.)

W SCITAS P. Antolin 36 / 45

=P L

‘\§<;;;;:::::::::ii://///ﬁ;;j;;;her(mypart, 0)

Write()

L LT T i [[e

L
© & & e

MPI_File_Write()

T e 111 PErrr

Open/Close a file in parallel

1 int MPI_File_open(MPI_Comm comm, const char *filename, int amode,
< MPI_Info info, MPI_File *fh);

2
3 int MPI_File_close(MPI_File *fh);

m comm: the communicator that contains the writing/reading MPI processes
m filename: a file name

m amode: file access mode, MPI_MODE_RDONLY, MPI_MODE_WRONLY, MPI_MODE_RDWR,
MPI_MODE_CREATE, e.t.c.

m info: file info object (MPI_INFO_NULL is a valid info)
= fh: file handle

Collective calls: all MPI processes in the communicator should call it with same inputs

W SCITAS P. Antolin 39 / 45

Parallel 10
CopT
EPFL

m etype is the elementary type of the data of the parallel accessed file
m offset is a position in the file in term of multiple of etypes

m displacement of a position within the file is the number of bytes from the
beginning of the file

Offset is 9
Displacement is 36

l
HNEEEEEESEEEEEEE

sizeof(etype) = 4 bytes

W SCITAS P. Antolin 40 / 45

—pr- Parallel 10
LP' L Simple independent read/write

1 int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int
— count, MPI_Datatype datatype, MPI_Status *status);

2

3 int MPI_File_write_at(MPI_File fh, MPI_QOffset offset, const void
— *buf, int count, MPI_Datatype datatype, MPI_Status *status);

m Can be used from a single (or group) of processes
m offset must be specified in the buf buffer

m count elements of type datatype are read/written

W SCITAS P. Antolin 41 / 45

-pr- Parallel 10

1 int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype
— etype, MPI_Datatype filetype, const char *datarep, MPI_Info
« info);

3 int MPI_File_get_view(MPI_File fh, MPI_QOffset *disp, MPI_Datatype
— *etype, MPI_Datatype *filetype, char *datarep);

initially, each process views the file as a linear byte stream and each process views
data in its own native representation

disp is the displacement (defines the beginning of the data of the file that belongs
to the process) in byte

etype is the unit of data access and positioning

filetype is a single etype or a multiple of it

W SCITAS P. Antolin 42 / 45

Setting up a view

second view ’ ‘

file structure:

headr I B BN B B O M |

first displacement second displacement

(source: MPI 2.2 specifications)

W SCITAS P. Antolin 43 / 45

= =1= [Parallel 10
cPrL Simple independent read/write without offset

1 int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype
— datatype, MPI_Status *status);

2

3 int MPI_File_write(MPI_File fh, const void #*buf, int count,
<~ MPI_Datatype datatype, MPI_Status *status);

W SCITAS P. Antolin 44 / 45

= =1= [Parallel 10
cPrL Collective read/write with/without offset

1 int MPI_File_write_all(MPI_File fh, const void *buf, int count,
— MPI_Datatype datatype, MPI_Status *status);

2

3 int MPI_File_read_all(MPI_File fh, void *buf, int count,
<~ MPI_Datatype datatype, MPI_Status *status);

W SCITAS P. Antolin 45 / 45

	Persistent point to point
	Advanced collective communications
	V versions
	Non-blocking collective communications
	Persistent collective communications

	Derived Datatypes
	Pack/Unpack
	Groups and Communicator
	Virutal Topologies
	Parallel I/O

