
MATH-454 Parallel and High Performance Computing
Lecture 5: Advanced MPI

Pablo Antolin
Slides of N. Richart, E. Lanti, V. Keller’s lecture notes

March 27 2025



Advanced MPI
Goals of this section

Persistent communications
Advanced collective communications
Describing your own datatype
Redefining communicators
Associating a topology to a communicator
Parallel I/O

P. Antolin 2 / 45



Persistent point to point



Persistent communications

MPI_Send_init, MPI_Recv_init, initialize the communication
Same signature as non-blocking communications
MPI_Start, MPI_Startall to start the communication
Completion is checked the same way as for non-blocking

P. Antolin 4 / 45



Persistent communications

Example of MPI_Send_init adapted from Rookie HPC

1 if (rank == SENDER) {
2 MPI_Request request;
3 MPI_Send_init(send_buffer, buffer_size, MPI_INT, RECEIVER, TAG,

MPI_COMM_WORLD, &request);↪→

4 for(int i = 0; i < 3; i++) {
5 // Filling in send_buffer
6 MPI_Start(&request); // Launch the send
7 MPI_Wait(&request, MPI_STATUS_IGNORE); // Wait until completion
8 }
9 }

10 else (rank == RECEIVER) {
11 for(int i = 0; i < 3; i++) {
12 MPI_Recv(recv_buffer, buffer_size, MPI_INT, SENDER, TAG, ...);
13 // Do something with recv_buffer
14 }
15 }

P. Antolin 5 / 45



Persistent communications

Example adapted MPI_Recv_init from Rookie HPC

1 if (rank == SENDER) {
2 for(int i = 0; i < 3; i++) {
3 // Filling in send_buffer
4 MPI_Ssend(send_buffer, buffer_size, MPI_INT, RECEIVER, TAG,

MPI_COMM_WORLD);↪→

5 }
6 }
7 else (rank == RECEIVER) {
8 MPI_Request request;
9 MPI_Recv_init(recv_buffer, buffer_size, MPI_INT, SENDER, TAG,

MPI_COMM_WORLD, &request);↪→

10 for(int i = 0; i < 3; i++) {
11 MPI_Start(&request); // Launch the reception
12 MPI_Wait(&request, MPI_STATUS_IGNORE); // Wait until completion
13 // Do something with recv_buffer.
14 }
15 }

P. Antolin 6 / 45



Advanced collective communications



Collective communications
V extension to MPI_Gather

Syntax

1 int MPI_Gatherv(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, const int recvcounts[], const int
displs[], MPI_Datatype recvtype, int root, MPI_Comm comm);

↪→

↪→

receives different sizes per process
receives in an array with strides
recvcounts is now an array, one entry per rank
displs array of displacements defining where to place the i-th received data

P. Antolin 8 / 45



Collective communications
Gatherv semantic

Semantic equivalent

1 // Every process i
2 MPI_Send(sendbuf, recvcounts[i], sendtype, root, /*...*/ );
3

4 // On root process
5 for(int j = 0; j < nb_process; ++j)
6 MPI_Recv(recvbuf+displs[j] * extent(recvtype), recvcounts[j],

recvtype, j, /*...*/ );↪→

P. Antolin 9 / 45



Collective communications
V extension to MPI_Scatter

Syntax

1 int MPI_Scatterv(const void *sendbuf, const int sendcounts[], const
int displs[], MPI_Datatype sendtype, void *recvbuf, int
recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm);

↪→

↪→

sends different sizes
sendcounts is now an array, one entry per rank
displs array of displacements defining where the i-th data to send is placed

P. Antolin 10 / 45



Collective communications
Scatterv semantic

Semantic equivalent

1 // On root process
2 for(int j = 0; j < nb_process; ++j)
3 MPI_Send(sendbuf+displs[j]*extent(sendtype), sendcounts[j],

sendtype, j, /*...*/ )↪→

4

5 // Every process i
6 MPI_Recv(recvbuf, sendcounts[i], recvtype, root, /*...*/ ).

P. Antolin 11 / 45



Non-blocking collective communications

I variant of collective communications
extra parameter request
MPI_Ibcast

MPI_Igather, MPI_Igatherv, MPI_Iscatter, MPI_Iscatterv
MPI_Iallgather, MPI_Iallgatherv, MPI_Ialltoall
MPI_Ireduce, MPI_Iallreduce, MPI_Iscan, MPI_Iexscan

P. Antolin 12 / 45



Persistent collective communications

_init variant of collective communications
extra parameter request
MPI_Barrier_init, MPI_Bcast_init
MPI_Gather_init, MPI_Gatherv_init, MPI_Scatter_init,
MPI_Scatterv_init

MPI_Allgather_init, MPI_Allgatherv_init, MPI_Alltoall_init
MPI_Reduce_init, MPI_Allreduce_init, MPI_Scan_init, MPI_Exscan_init

P. Antolin 13 / 45



Derived Datatypes



Derived Datatypes
Definition of a datatypes

MPI_Datatype opaque type containing a Typemap
▶ Typemap = {(type0, disp0), · · · , (typen−1, dispn−1)}
▶ sequence of basic datatypes
▶ sequence of displacements (in bytes)

extent is the span from the first byte to the last one, with alignment requirement

lb(Typemap) = min
j
(dispj),

ub(Typemap) = max
j

(dispj + sizeof(typej)) + ϵ, and

extent(Typemap) = ub(Typemap)− lb(Typemap)

ϵ is there to account for alignment requirements
Before use, MPI_Datatype must be registered with MPI_Type_commit
(and freed after with MPI_Type_free, more info later on)

P. Antolin 15 / 45



Derived Datatypes
Base datatypes

MPI datatype C datatype

MPI_CHAR char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_LONG_LONG_INT signed long long int

MPI_LONG_LONG signed long long int

MPI_SIGNED_CHAR signed char

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int
P. Antolin 16 / 45



Derived Datatypes
Base datatypes

MPI datatype C datatype

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_C_BOOL _Bool

MPI_INT8_T int8_t

MPI_INT16_T int16_t

MPI_INT32_T int32_t

MPI_INT64_T int64_t

MPI_UINT8_T uint8_t

MPI_UINT16_T uint16_t

MPI_UINT32_T uint32_t

MPI_UINT64_T uint64_t
P. Antolin 16 / 45



Derived Datatypes
Base datatypes

MPI datatype C++ datatype

MPI_CXX_BOOL bool

MPI_CXX_FLOAT_COMPLEX std::complex<float>

MPI_CXX_DOUBLE_COMPLEX std::complex<double>

MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>

P. Antolin 16 / 45



Derived Datatypes
Base datatypes

MPI datatype C datatype

MPI_AINT MPI_Aint

MPI_OFFSET MPI_Offset

MPI_COUNT MPI_Count

MPI_BYTE

MPI_PACKED

P. Antolin 16 / 45



Derived Datatypes
Arrays

Syntax

1 int MPI_Type_contiguous(int count, MPI_Datatype oldtype,
MPI_Datatype *newtype);↪→

2

3 int MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype);↪→

array of contiguous values or with strided blocks of same type
count: number of repetitions (blocks)
blocklength: number of elements per block
stride: number of elements between start of each block

P. Antolin 17 / 45



Derived Datatypes
Array variants

MPI_Type_create_hvector: same as MPI_Type_vector with stride expressed
in bytes
MPI_Type_create_indexed_block same as MPI_Type_vector with array of and
displacements

MPI_Type_create_hindexed_block: same as
MPI_Type_create_indexed_block with displacements in bytes
MPI_Type_indexed: same as MPI_Type_create_indexed_block with arrays of
blocklengths

MPI_Type_create_hindexed: same as MPI_Type_indexed with displacements
in bytes

P. Antolin 18 / 45



Derived Datatypes
Structures

Syntax

1 int MPI_Type_create_struct(int count, const int
array_of_blocklengths[], const MPI_Aint
array_of_displacements[], const MPI_Datatype array_of_types[],
MPI_Datatype *newtype)

↪→

↪→

↪→

count: number of repetitions (blocks)
array_of_blocklengths: sizes per block
array_of_displacements: displacements between blocks in bytes
array_of_types: types contained in each blocks

P. Antolin 19 / 45



Derived Datatypes
Usefull helper functions

MPI_Get_address: get the address of a variable
MPI_Aint_diff: get the difference between 2 addresses
MPI_Aint_add: get the sum of 2 addresses
MPI_Type_size: get the size of a datatype
MPI_Get_type_extent: get the lower bound and the extent of a type
MPI_Type_create_resized: reset the lower bound and the extent of a type

P. Antolin 20 / 45



Derived Datatypes
Commit/free

Syntax

1 int MPI_Type_commit(MPI_Datatype *datatype);
2

3 int MPI_Type_free(MPI_Datatype *datatype);

new datatypes should be committed before being usable in communications
committed types need to be freed once not used anymore

P. Antolin 21 / 45



Derived Datatypes
Example

mpi/datatypes.cc
13 struct Test_t {
14 double d[2];
15 int i;
16 };
17
18 std::vector<Test_t> foo(100);
19
20 std::array<int, 2> block_lengths = {2, 1};
21 std::array<MPI_Aint, 2> displacements;
22 std::array<MPI_Datatype, 2> old_types = {MPI_DOUBLE, MPI_INT};
23
24 MPI_Aint addr0;
25 MPI_Get_address(&foo[0], &addr0);
26 MPI_Get_address(&foo[0].d, &displacements[0]);
27 MPI_Get_address(&foo[0].i, &displacements[1]);
28
29 displacements[0] = MPI_Aint_diff(displacements[0], addr0);
30 displacements[1] = MPI_Aint_diff(displacements[1], addr0);
31
32 MPI_Datatype mpi_test_t;
33 MPI_Type_create_struct(2, block_lengths.data(), displacements.data(),
34 old_types.data(), &mpi_test_t);
35
36 MPI_Type_commit(&mpi_test_t);
37 // Do stuff using mpi_test_t
38 MPI_Type_free(&mpi_test_t); P. Antolin 22 / 45



Pack/Unpack



Pack/Unpack
Pack

Syntax

1 int MPI_Pack(const void *inbuf, int incount, MPI_Datatype datatype,
void *outbuf, int outsize, int *position, MPI_Comm comm);↪→

inbuf, incount, datatype correspond to the description of data to pack
outbuf, outsize description of the buffer where to pack
position current position in the packing buffer

P. Antolin 24 / 45



Pack/Unpack
Unpack

Syntax

1 int MPI_Unpack(const void *inbuf, int insize, int *position, void
*outbuf, int outsize, MPI_Datatype datatype, MPI_Comm comm);↪→

inbuf, incount, description of the buffer from which to unpack
position current position in the unpacking buffer (gets updated)
outbuf, outsize, and datatype correspond to the description of data to unpack

P. Antolin 25 / 45



Pack/Unpack
Example

mpi/pack_unpack.cc

29 std::vector<char> buf(100); // 100 Bytes
30 int a; // 4 Bytes
31 double d[10]; // 80 Bytes
32 int pos{0};
33

34 if (rank == 0) {
35 // Fill a and d here
36 MPI_Pack(&a, 1, MPI_INT, buf.data(), buf.size(), &pos, MPI_COMM_WORLD);
37 MPI_Pack(d, 10, MPI_DOUBLE, buf.data(), buf.size(), &pos, MPI_COMM_WORLD);
38 MPI_Send(buf.data(), pos, MPI_PACKED, 1, 0, MPI_COMM_WORLD);
39 }
40 else if (rank == 1) {
41 MPI_Recv(buf.data(), buf.size(), MPI_PACKED, 0, 0, MPI_COMM_WORLD, &status);
42 MPI_Unpack(buf.data(), buf.size(), &pos, &a, 1, MPI_INT, MPI_COMM_WORLD);
43 MPI_Unpack(buf.data(), buf.size(), &pos, d, 10, MPI_DOUBLE, MPI_COMM_WORLD);
44 }

P. Antolin 26 / 45



Groups and Communicator



Groups and Communicators

a communicator:
▶ Encapsulate a context, a group, a virtual topology and attributes
▶ Two kinds intra-communicator and inter-communicator

a group:
▶ ordered set of processes
▶ each process has an unique ID (rank within the group) and can belong to

several different groups
▶ a group can be used to create a new communicator

P. Antolin 28 / 45



Groups and Communicators
Creating new communicators

duplicating or splitting an existing one MPI_Comm_dup, MPI_Comm_split
creating communicator from a group MPI_Comm_create,
MPI_Comm_create_group

need to create groups
▶ from a communicator MPI_Comm_group
▶ boolean operations MPI_Group_union, MPI_Group_intersection,

MPI_Group_difference
▶ specifying ranks MPI_Group_incl, MPI_Group_excl

destroy created objects MPI_Comm_free, MPI_Group_free

P. Antolin 29 / 45



Virutal Topologies



Virtual Topologies

potential performance gain by mapping process to hardware
helps for program readability
types of topologies: Cartesian, Graph, Distributed Graph
collective communication on neighborhoods

P. Antolin 31 / 45



Virtual Topologies
Cartesian topology

Syntax

1 int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[],
const int periods[], int reorder, MPI_Comm *comm_cart);↪→

create a communicator with cartesian information
convenient functions:
▶ MPI_Dims_create helps creating balanced distribution of process
▶ MPI_Cart_shift helps determining neighboors
▶ MPI_Cart_rank get the rank based on coordinates
▶ MPI_Cart_coords get coordinates based on rank

P. Antolin 32 / 45



Virtual topology
Neighborhoods collective

MPI_Neighbor_allgather assuming we are on process with rank i , gather data
from all rank j if edge (j , i) exists and send same data to all j where edge (i , j)
exists
MPI_Neighbor_alltoall compare to allgather, sends different data to all j
process
vector variants are available v
immediate variants are available I
persistent varianst are available _init

P. Antolin 33 / 45



Parallel I/O



Parallel I/O overview

I/O is often (if not always) the main bottleneck in a parallel application
MPI provides a mechanism to read/write in parallel

0 1 2 3 MPI Processes

Interconnect

File

P. Antolin 35 / 45



Introducing remarks

MPI IO API works on your desktop/laptop
Most of the large HPC systems have a parallel file system (like GPFS, Lustre,
etc.)
If the file is distributed smartly on a parallel file system: performance increases
MPI IO offers a high-level API to access a distributed file (no needs to implement
complex POSIX calls)
does not work with ASCII files
Most of the standard file formats support MPI IO (e.g., HDF5, NetCDF, etc.)

P. Antolin 36 / 45



Gather and write

0 1 2 3

MPI_Gather(mypart, 0)

Write()

P. Antolin 37 / 45



Parallel write

0 1 2 3

MPI_File_Write()

P. Antolin 38 / 45



Open/Close a file in parallel

Syntax

1 int MPI_File_open(MPI_Comm comm, const char *filename, int amode,
MPI_Info info, MPI_File *fh);↪→

2

3 int MPI_File_close(MPI_File *fh);

comm: the communicator that contains the writing/reading MPI processes
filename: a file name
amode: file access mode, MPI_MODE_RDONLY, MPI_MODE_WRONLY, MPI_MODE_RDWR,
MPI_MODE_CREATE, e.t.c.
info: file info object (MPI_INFO_NULL is a valid info)
fh: file handle

Collective calls: all MPI processes in the communicator should call it with same inputs
P. Antolin 39 / 45



Parallel IO
Terminology

etype is the elementary type of the data of the parallel accessed file
offset is a position in the file in term of multiple of etypes
displacement of a position within the file is the number of bytes from the
beginning of the file

Offset is 9
Displacement is 36

sizeof(etype) = 4 bytes

P. Antolin 40 / 45



Parallel IO
Simple independent read/write

Syntax

1 int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status);↪→

2

3 int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void
*buf, int count, MPI_Datatype datatype, MPI_Status *status);↪→

Can be used from a single (or group) of processes
offset must be specified in the buf buffer
count elements of type datatype are read/written

P. Antolin 41 / 45



Parallel IO
view by each process

Syntax

1 int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype
etype, MPI_Datatype filetype, const char *datarep, MPI_Info
info);

↪→

↪→

2

3 int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype
*etype, MPI_Datatype *filetype, char *datarep);↪→

initially, each process views the file as a linear byte stream and each process views
data in its own native representation
disp is the displacement (defines the beginning of the data of the file that belongs
to the process) in byte
etype is the unit of data access and positioning
filetype is a single etype or a multiple of it

P. Antolin 42 / 45



Setting up a view

first view

second view

file structure:

header

first displacement second displacement

(source: MPI 2.2 specifications)
P. Antolin 43 / 45



Parallel IO
Simple independent read/write without offset

Syntax

1 int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype
datatype, MPI_Status *status);↪→

2

3 int MPI_File_write(MPI_File fh, const void *buf, int count,
MPI_Datatype datatype, MPI_Status *status);↪→

P. Antolin 44 / 45



Parallel IO
Collective read/write with/without offset

Syntax

1 int MPI_File_write_all(MPI_File fh, const void *buf, int count,
MPI_Datatype datatype, MPI_Status *status);↪→

2

3 int MPI_File_read_all(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status);↪→

P. Antolin 45 / 45


	Persistent point to point
	Advanced collective communications
	V versions
	Non-blocking collective communications
	Persistent collective communications

	Derived Datatypes
	Pack/Unpack
	Groups and Communicator
	Virutal Topologies
	Parallel I/O

